1
|
Hwang YH, Lee JH, Um T, Lee H. 3D printing of monolithic gravity-assisted step-emulsification device for scalable production of high viscosity emulsion droplets. LAB ON A CHIP 2024; 24:4778-4785. [PMID: 39324255 DOI: 10.1039/d4lc00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Microfluidic technology widely used in generating monodisperse emulsion droplets often suffers from complexity, scalability, applicability to practical fluids, as well as operation instability due to its susceptibility to flow perturbations, low clearance, and depletion of surfactants. Herein, we present a monolithic 3D-printed step-emulsification device (3D-PSD) for scalable and robust production of high viscosity emulsion droplets up to 208.16 mPa s, which cannot be fully addressed using conventional step-emulsification devices. By utilizing stereo-lithography (SLA), 24 triangular nozzles with a pair of 3D void flow distributors are integrated within the 3D-PSD to ensure uniform flow distribution followed by monodisperse droplet formation. The outlets positioned vertically downward enables gravity-assisted clearing to prevent droplet accumulation and thereby maintain size monodispersity. Deposition of silica nanoparticles (SiNP) within the device was also shown to alter the surface wettability from hydrophobic to hydrophilic, enabling the production of both water-in-oil (W/O) as well as oil-in-water (O/W) emulsion droplets, operated at a maximum production rate of up to 50 mL h-1. The utility of the device is further verified through continuous production of biodegradable polycaprolactone (PCL) microparticles using O/W emulsion as templates. We envision that the 3D-PSD presented in this work marks a significant leap in high-throughput production of high viscosity emulsion droplets as well as the particle analogs.
Collapse
Affiliation(s)
- Yoon-Ho Hwang
- Department of Polymer Engineering, Pukyong National University, Nam-gu, Busan 48513, Republic of Korea
| | - Je Hyun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| | - Taewoong Um
- Mechatronics R&D Center, Samsung Electronics, Hwaseong, Gyeonggi-do 18448, South Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
2
|
Huang B, Ge X, Rubinstein BY, Chen X, Wang L, Xie H, Leshansky AM, Li Z. Gas-assisted microfluidic step-emulsification for generating micron- and submicron-sized droplets. MICROSYSTEMS & NANOENGINEERING 2023; 9:86. [PMID: 37435566 PMCID: PMC10330193 DOI: 10.1038/s41378-023-00558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Micron- and submicron-sized droplets have extensive applications in biomedical diagnosis and drug delivery. Moreover, accurate high-throughput analysis requires a uniform droplet size distribution and high production rates. Although the previously reported microfluidic coflow step-emulsification method can be used to generate highly monodispersed droplets, the droplet diameter (d) is constrained by the microchannel height (b), d ≳ 3 b , while the production rate is limited by the maximum capillary number of the step-emulsification regime, impeding emulsification of highly viscous liquids. In this paper, we report a novel, gas-assisted coflow step-emulsification method, where air serves as the innermost phase of a precursor hollow-core air/oil/water emulsion. Air gradually diffuses out, producing oil droplets. The size of the hollow-core droplets and the ultrathin oil layer thickness both follow the scaling laws of triphasic step-emulsification. The minimal droplet size attains d ≈ 1.7 b , inaccessible in standard all-liquid biphasic step-emulsification. The production rate per single channel is an order-of-magnitude higher than that in the standard all-liquid biphasic step-emulsification and is also superior to alternative emulsification methods. Due to low gas viscosity, the method can also be used to generate micron- and submicron-sized droplets of high-viscosity fluids, while the inert nature of the auxiliary gas offers high versatility.
Collapse
Affiliation(s)
- Biao Huang
- Department of Aerospace Engineering, Beijing Institute of Technology, No. 5 ZhongGuanCunNan Street, HaiDian District, Beijing, 100081 China
| | - Xinjin Ge
- State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300350 China
| | | | - Xianchun Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 ZhongGuanCunNan Street, HaiDian District, Beijing, 100081 China
| | - Lu Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 ZhongGuanCunNan Street, HaiDian District, Beijing, 100081 China
| | - Huiying Xie
- Department of Aerospace Engineering, Beijing Institute of Technology, No. 5 ZhongGuanCunNan Street, HaiDian District, Beijing, 100081 China
| | - Alexander M. Leshansky
- Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, 32000 Israel
| | - Zhenzhen Li
- Department of Aerospace Engineering, Beijing Institute of Technology, No. 5 ZhongGuanCunNan Street, HaiDian District, Beijing, 100081 China
| |
Collapse
|
3
|
Ahmed H, Khan EA, Stokke BT. Microfluidic dual picoinjection based encapsulation of hemoglobin in alginate microcapsules reinforced by a poly(L-lysine)- g-poly(ethylene glycol). SOFT MATTER 2022; 19:69-79. [PMID: 36468540 DOI: 10.1039/d2sm01045c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hemoglobin (Hb) encapsulation inside polysaccharide hydrogels has been considered a possible red blood cell (RBC) surrogate in transfusiology. Here we report on the microfluidic dual picoinjection assisted synthesis of Hb encapsulated alginate-poly(L-lysine)-g-poly(ethylene glycol) beads. This process is realized by the on-chip injections of blended Hb alginate solutions in emulsified aqueous calcium chloride (CaCl2) droplets followed by a subsequent injection of an aqueous PLL-g-PEG into each emulsified aqueous droplet. The proposed fabrication approach was realized using a flow-focusing and two picoinjection sites in a single PDMS device. Aqueous CaCl2 solution was emulsified and infused with Hb-alginate solution as the squeezed droplet passed through the first picoinjection site. The injection of PLL-g-PEG to reinforce the microgel and minimize the protein leaching was realized in the second picoinjection site located downstream from the first in the same microfluidic channel. In this process, monodisperse Hb-alginate-PLL-g-PEG particles with a diameter around the size of RBCs (9 μm) were obtained with around 80% of the 7.5 mg ml-1 Hb included in the injected aqueous alginate retaining in the obtained microparticles. Microparticles with Hb loading (32.8 pg per bead) and retention (28.8 pg per bead) over a week of storage at 4 °C are in accordance with the average amount of Hb per RBC. The Hb-alginate-PLL-g-PEG microbeads fabricated in the size range of RBCs are significant for further exploration.
Collapse
Affiliation(s)
- Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| | | | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
4
|
Kim HH, Cho Y, Baek D, Rho KH, Park SH, Lee S. Parallelization of Microfluidic Droplet Junctions for Ultraviscous Fluids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205001. [PMID: 36310131 DOI: 10.1002/smll.202205001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The parallelization of multiple microfluidic droplet junctions has been successfully achieved so that the production throughput of the uniform microemulsions/particles has witnessed considerable progress. However, these advancements have been observed only in the case of a low viscous fluid (viscosity of 10-2 -10-3 Pa s). This study designs and fabricates a microfluidic device, enabling a uniform micro-emulsification of an ultraviscous fluid (viscosity of 3.5 Pa s) with a throughput of ≈330 000 droplets per hour. Multiple T-junctions of a dispersed oil phase, split from a single inlet, are connected into the single post-crossflow channel of a continuous water phase. In the proposed device, the continuous water phase undergoes a series circuit, wherein the resistances are continuously accumulated. The independent corrugations of the dispersed oil phase channel, under the theoretical guidance, compromise such increased resistances; the ratio of water to oil flow rates at each junction becomes consistent across T-junctions. Owing to the design being based on a fully 2D interconnection, single-step soft lithography is sufficient for developing the full device. This easy-to-craft architecture contrasts with the previous approach, wherein complicated 3D interconnections of the multiple junctions are involved, thereby facilitating the rapid uptake of high throughput droplet microfluidics for experts and newcomers alike.
Collapse
Affiliation(s)
- Hyeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Dongjae Baek
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Hun Rho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Department of Biomicrosystem Technology and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
5
|
Brun PT. Fluid-Mediated Fabrication of Complex Assemblies. JACS AU 2022; 2:2417-2425. [PMID: 36465550 PMCID: PMC9709784 DOI: 10.1021/jacsau.2c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 06/17/2023]
Abstract
This Perspective accounts for recent progress in the directed control of interfacial fluid flows harnessed to assemble architected soft materials. We are focusing on the paradigmatic problem of free-surface flows in curable elastomers. These elastomers are initially liquid and cure into elastic solids whose shape is imparted by concomitant and competing phenomena: flow-induced deformations and curing. Particular attention is given to the role of capillary forces in these systems. Originating from the cohesive nature of liquids and thus favoring smooth interfaces, capillary forces can also promote the destabilization of interfaces, e.g., into droplets. In turn, such mechanical instabilities tend to grow into regular patterns, e.g., forming hexagonal lattices. We discuss how the universality, robustness, and ultimate regularity of these out-of-equilibrium processes could serve as a basis for new fabrication paradigms, where instabilities are directed to generate target architected solids obtained without each element laid in place by direct mechanized intervention.
Collapse
|
6
|
Deng B, Schroën K, de Ruiter J. Dynamics of bubble formation in spontaneous microfluidic devices: Controlling dynamic adsorption via liquid phase properties. J Colloid Interface Sci 2022; 622:218-227. [DOI: 10.1016/j.jcis.2022.04.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
7
|
Liu X, Jiang S, Zhu C, Ma Y, Fu T. Formation of viscoelastic droplets in a step‐emulsification microdevice. AIChE J 2022. [DOI: 10.1002/aic.17780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiyang Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Shaokun Jiang
- the 718th Research Institute of China State Shipbuilding Corporation Limited, No. 17 Zhanlan Road Handan City Hebei Province China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
8
|
Zhan W, Liu Z, Jiang S, Zhu C, Ma Y, Fu T. Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Chen Z, Lv Z, Zhang Z, Weitz DA, Zhang H, Zhang Y, Cui W. Advanced microfluidic devices for fabricating multi-structural hydrogel microsphere. EXPLORATION (BEIJING, CHINA) 2021; 1:20210036. [PMID: 37323691 PMCID: PMC10191056 DOI: 10.1002/exp.20210036] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/02/2021] [Indexed: 06/15/2023]
Abstract
Hydrogel microspheres are a novel functional material, arousing much attention in various fields. Microfluidics, a technology that controls and manipulates fluids at the micron scale, has emerged as a promising method for fabricating hydrogel microspheres due to its ability to generate uniform microspheres with controlled geometry. With the development of microfluidic devices, more complicated hydrogel microspheres with multiple structures can be constructed. This review presents an overview of advances in microfluidics for designing and engineering hydrogel microspheres. It starts with an introduction to the features of hydrogel microspheres and microfluidic techniques, followed by a discussion of material selection for fabricating microfluidic devices. Then the progress of microfluidic devices for single-component and composite hydrogel microspheres is described, and the method for optimizing microfluidic devices is also given. Finally, this review discusses the key research directions and applications of microfluidics for hydrogel microsphere in the future.
Collapse
Affiliation(s)
- Zehao Chen
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhendong Lv
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Zhen Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
| | - David A. Weitz
- Department of Physics and Harvard John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMassachusettsUSA
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi University and Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yuhui Zhang
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghaiP. R. China
- Department of Spine SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiP. R. China
| |
Collapse
|
10
|
Liu Z, Liu X, Jiang S, Zhu C, Ma Y, Fu T. Effects on droplet generation in step-emulsification microfluidic devices. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Wu J, Yadavali S, Lee D, Issadore DA. Scaling up the throughput of microfluidic droplet-based materials synthesis: A review of recent progress and outlook. APPLIED PHYSICS REVIEWS 2021; 8:031304. [PMID: 34484549 PMCID: PMC8293697 DOI: 10.1063/5.0049897] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/07/2021] [Indexed: 05/14/2023]
Abstract
The last two decades have witnessed tremendous progress in the development of microfluidic chips that generate micrometer- and nanometer-scale materials. These chips allow precise control over composition, structure, and particle uniformity not achievable using conventional methods. These microfluidic-generated materials have demonstrated enormous potential for applications in medicine, agriculture, food processing, acoustic, and optical meta-materials, and more. However, because the basis of these chips' performance is their precise control of fluid flows at the micrometer scale, their operation is limited to the inherently low throughputs dictated by the physics of multiphasic flows in micro-channels. This limitation on throughput results in material production rates that are too low for most practical applications. In recent years, however, significant progress has been made to tackle this challenge by designing microchip architectures that incorporate multiple microfluidic devices onto single chips. These devices can be operated in parallel to increase throughput while retaining the benefits of microfluidic particle generation. In this review, we will highlight recent work in this area and share our perspective on the key unsolved challenges and opportunities in this field.
Collapse
Affiliation(s)
- Jingyu Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
12
|
Formation of droplets of shear‐thinning
non‐Newtonian
fluids in a step‐emulsification microdevice. AIChE J 2021. [DOI: 10.1002/aic.17395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Oevreeide IH, Szydlak R, Luty M, Ahmed H, Prot V, Skallerud BH, Zemła J, Lekka M, Stokke BT. On the Determination of Mechanical Properties of Aqueous Microgels-Towards High-Throughput Characterization. Gels 2021; 7:64. [PMID: 34072792 PMCID: PMC8261632 DOI: 10.3390/gels7020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Aqueous microgels are distinct entities of soft matter with mechanical signatures that can be different from their macroscopic counterparts due to confinement effects in the preparation, inherently made to consist of more than one domain (Janus particles) or further processing by coating and change in the extent of crosslinking of the core. Motivated by the importance of the mechanical properties of such microgels from a fundamental point, but also related to numerous applications, we provide a perspective on the experimental strategies currently available and emerging tools being explored. Albeit all techniques in principle exploit enforcing stress and observing strain, the realization differs from directly, as, e.g., by atomic force microscope, to less evident in a fluid field combined with imaging by a high-speed camera in high-throughput strategies. Moreover, the accompanying analysis strategies also reflect such differences, and the level of detail that would be preferred for a comprehensive understanding of the microgel mechanical properties are not always implemented. Overall, the perspective is that current technologies have the capacity to provide detailed, nanoscopic mechanical characterization of microgels over an extended size range, to the high-throughput approaches providing distributions over the mechanical signatures, a feature not readily accessible by atomic force microscopy and micropipette aspiration.
Collapse
Affiliation(s)
- Ingrid Haga Oevreeide
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Victorien Prot
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Bjørn Helge Skallerud
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| |
Collapse
|
14
|
Ge X, Rubinstein BY, He Y, Bruce FNO, Li L, Leshansky AM, Li Z. Double emulsions with ultrathin shell by microfluidic step-emulsification. LAB ON A CHIP 2021; 21:1613-1622. [PMID: 33683225 DOI: 10.1039/d0lc01044h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Double emulsions with ultrathin shells are important in some biomedical applications, such as controlled drug release. However, the existing production techniques require two or more manipulation steps, or more complicated channel geometry, to form thin-shell double emulsions. This work presents a novel microfluidic tri-phasic step-emulsification device, with an easily fabricated double-layer PDMS channel, for production of oil-in-oil-in-water and water-in-water-in-oil double emulsions in a single step. The shell thickness is controlled by the flow rates and can reach 1.4% of the μm-size droplet diameter. Four distinct emulsification regimes are observed depending on the experimental conditions. A theoretical model for the tri-phasic step-emulsification is proposed to predict the boundaries separating the four regimes of emulsification in plane of two dimensionless capillary numbers, Ca. The theory yields two coupled nonlinear differential equations that can be solved numerically to find the approximate shape of the free interfaces in the shallow (Hele-Shaw) microfluidic channel. This approximation is then used as the initial guess for the more accurate finite element method solution, showing very good agreement with the experimental findings. This study demonstrates the feasibility of co-flow step-emulsification as a promising method to production of double (and multiple) emulsions and micro-capsules with ultrathin shells of controllable thickness.
Collapse
Affiliation(s)
- Xinjin Ge
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | | | - Yifeng He
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | - Frederick N O Bruce
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | - Liaonan Li
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| | - Alexander M Leshansky
- Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| | - Zhenzhen Li
- School of Aerospace Engineering, Beijing Institute of Technology, ZhongGuanCunNan Street #5, 100081, Beijing, China.
| |
Collapse
|
15
|
Tenje M, Cantoni F, Porras Hernández AM, Searle SS, Johansson S, Barbe L, Antfolk M, Pohlit H. A practical guide to microfabrication and patterning of hydrogels for biomimetic cell culture scaffolds. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ooc.2020.100003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Concepts for efficient preparation of particulate polymer carrier systems by droplet-based microfluidics. Int J Pharm 2020; 584:119401. [DOI: 10.1016/j.ijpharm.2020.119401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
17
|
Shi Z, Lai X, Sun C, Zhang X, Zhang L, Pu Z, Wang R, Yu H, Li D. Step emulsification in microfluidic droplet generation: mechanisms and structures. Chem Commun (Camb) 2020; 56:9056-9066. [DOI: 10.1039/d0cc03628e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Step emulsification for micro- and nano-droplet generation is reviewed in brief, including the emulsion mechanisms and microfluidic devices.
Collapse
Affiliation(s)
- Zhi Shi
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Xiaochen Lai
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Chengtao Sun
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Lei Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Ridong Wang
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| | - Haixia Yu
- Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments
- Tianjin University
- Tianjin
- China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments
- Tianjin University
- Tianjin
- China
| |
Collapse
|
18
|
Opalski AS, Makuch K, Derzsi L, Garstecki P. Split or slip – passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Adv 2020; 10:23058-23065. [PMID: 35520343 PMCID: PMC9054724 DOI: 10.1039/d0ra03007d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
We investigate the role of viscosities on the formation of double emulsion in a microfluidic step emulsification system. Aqueous droplets of various viscosities and sizes were engulfed in fluorocarbon oil and subsequently transformed into double droplets in the microfluidic step emulsifying device. We identify two distinct regimes of double droplet formation: (i) core droplets split into multiple smaller droplets, or (ii) cores slip whole into the forming oil shell. We show that the viscosity ratio of the core and shell phases plays a crucial role in determining the mode of formation of the double emulsions. Finally, we demonstrate that high viscosity of the core droplet allows for generation of double emulsions with constant shell thickness for cores of various sizes. We investigate the role of fluid viscosities on formation of double emulsion in a microfluidic step emulsification system. The ratio of fluid viscosities controls double droplet formation, leading to splitting of the core for low core-to-shell viscosity ratio.![]()
Collapse
Affiliation(s)
- Adam S. Opalski
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Karol Makuch
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Ladislav Derzsi
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Piotr Garstecki
- Institute of Physical Chemistry of Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| |
Collapse
|
19
|
Monodisperse droplet formation by spontaneous and interaction based mechanisms in partitioned EDGE microfluidic device. Sci Rep 2019; 9:7820. [PMID: 31127142 PMCID: PMC6534564 DOI: 10.1038/s41598-019-44239-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/09/2019] [Indexed: 01/01/2023] Open
Abstract
The partitioned EDGE droplet generation device is known for its’ high monodisperse droplet formation frequencies in two distinct pressure ranges, and an interesting candidate for scale up of microfluidic emulsification devices. In the current study, we test various continuous and dispersed phase properties and device geometries to unravel how the device spontaneously forms small monodisperse droplets (6–18 μm) at low pressures, and larger monodisperse droplets (>28 μm) at elevated pressures. For the small droplets, we show that the continuous phase inflow in the droplet formation unit largely determines droplet formation behaviour and the resulting droplet size and blow-up pressure. This effect was not considered as a factor of significance for spontaneous droplet formation devices that are mostly characterised by capillary numbers in literature. We then show for the first time that the formation of larger droplets is caused by physical interaction between neighbouring droplets, and highly dependent on device geometry. The insights obtained here are an essential step toward industrial emulsification based on microfluidic devices.
Collapse
|
20
|
Opalski AS, Makuch K, Lai YK, Derzsi L, Garstecki P. Grooved step emulsification systems optimize the throughput of passive generation of monodisperse emulsions. LAB ON A CHIP 2019; 19:1183-1192. [PMID: 30843018 DOI: 10.1039/c8lc01096j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Microfluidic step emulsification passively produces highly monodisperse droplets and can be easily parallelized for high throughput emulsion production. The two main techniques used for step emulsification are: i) edge-based droplet generation (EDGE), where droplets are formed in a single, very wide and shallow nozzle, and ii) microchannel emulsification (MCE), where droplets are formed in many separated narrow nozzles. These techniques differ in modes of droplet formation that influence the throughput and monodispersity of produced emulsions. Here we report a systematic study of novel grooved step emulsifying geometries, a hybrid of MCE and EDGE architectures. We introduce partitions of different heights to a wide (EDGE-like) slit to establish optimal geometries for high-throughput droplet production. We demonstrate that the volume and monodispersity of the produced emulsion can be tuned solely by changing the height of these partitions. We show that the spacing of the partitions influences the size of the produced droplets, but not the population monodispersity. We also determine the moment of transition between two distinct droplet generation modes as a function of the geometrical parameters of the nozzle. The optimized grooved geometry appears to combine the advantages of both MCE and EDGE, i.e. spatial localization of droplet forming units (DFUs), high-throughput formation of tightly monodisperse droplets from parallel DFUs, and low sensitivity to variation in the flow rate of the dispersed phase. As a proof-of-concept we show grooved devices that for a 260-fold increase of flow rate produce droplets with volume increased by just 75%, as compared to 91% increase in volume over a 180-fold increase of flow rate of the dispersed phase in MCE devices. We also present the optimum microfluidic device geometry that almost doubles the throughput of an MCE device in the generation of nanoliter droplets.
Collapse
Affiliation(s)
- Adam S Opalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland.
| | | | | | | | | |
Collapse
|
21
|
Etienne G, Vian A, Biočanin M, Deplancke B, Amstad E. Cross-talk between emulsion drops: how are hydrophilic reagents transported across oil phases? LAB ON A CHIP 2018; 18:3903-3912. [PMID: 30465575 DOI: 10.1039/c8lc01000e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Emulsion drops are frequently used as vessels, for example, to conduct biochemical reactions in small volumes or to perform screening assays at high throughputs while consuming minimal sample volumes. These applications typically require drops that do not allow exchange of reagents such that no cross-contamination occurs. Unfortunately, in many cases, reagents are exchanged between emulsion drops even if they have a low solubility in the surrounding phase, resulting in cross-contaminations. Here, we investigate the mechanism by which hydrophilic reagents are transported across an oil phase using water-oil-water double emulsion drops as a model system. Remarkably, even large objects, including 11 000 base pair double-stranded circular DNA are transported across oil shells. Importantly, this reagent transport, that is to a large extent caused by aqueous drops that spontaneously form at the water-oil interface, is not limited to double emulsions but also occurs between single emulsion drops. We demonstrate that the uncontrolled reagent transport can be decreased by at least an order of magnitude if appropriate surfactants that lower the interfacial tension only moderately are employed or if the shell thickness of double emulsions is decreased to a few hundreds of nanometers.
Collapse
Affiliation(s)
- Gianluca Etienne
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Vian A, Reuse B, Amstad E. Scalable production of double emulsion drops with thin shells. LAB ON A CHIP 2018; 18:1936-1942. [PMID: 29881836 DOI: 10.1039/c8lc00282g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Double emulsions are often used as containers to perform high throughput screening assays and as templates for capsules. These applications require double emulsions to be mechanically stable such that they do not coalesce during processing and storage. A possibility to increase their stability is to reduce the thickness of their shells to sufficiently low values that lubrication effects hinder coalescence. However, the controlled fabrication of double emulsions with such thin shells is difficult. Here, we introduce a new microfluidic device, the aspiration device, that reduces the shell thickness of double emulsions down to 240 nm at a high throughput; thereby, the shell volume is reduced by up to 95%. The shell thickness of the resulting double emulsions depends on the pressure profile in the device and hence on the fluid flow rates in the channels and is independent of the shell thickness of the injected double emulsions. Therefore, this device enables converting double emulsions with polydisperse shell thicknesses into double emulsions with well-defined, uniform thin shells.
Collapse
Affiliation(s)
- A Vian
- Soft Materials Laboratory, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|