1
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
2
|
Bu Y, Ni S, Yobas L. Accelerated Electrophoretic Focusing and Purification of DNA Based on Synchronous Coefficient of Drag Alteration. Anal Chem 2023; 95:16453-16458. [PMID: 37916921 DOI: 10.1021/acs.analchem.3c03632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Synchronous coefficient of drag alteration refers to a multidimensional transport mechanism where a net drift of molecules is achieved under a zero-time-average alternating motive force by perturbing their drag coefficient synchronously with the applied force. An electrophoretic form of the method is often applied to focus and purify nucleic acids in a gel under rotating electric fields. However, this method requires lengthy operation due to the use of limited field strengths. Here, using DNA as target molecules, we demonstrate that the operation time can be reduced from hours to minutes by replacing polymer gel with a microfabricated artificial sieve. We also describe an electrophoretic protocol that facilitates the collection of purified DNA from the sieve, which is shown to yield amplifiable DNA from crude samples including the lysates of cultured cells and whole blood. The sieve can be further equipped with nucleic acid amplification and detection functions for a point-of-care diagnostic application.
Collapse
Affiliation(s)
- Yang Bu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR 999077, P.R.China
| | - Sheng Ni
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR 999077, P.R.China
| | - Levent Yobas
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR 999077, P.R.China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, SAR 999077, P.R.China
| |
Collapse
|
3
|
Locatelli E, Bianco V, Valeriani C, Malgaretti P. Nonmonotonous Translocation Time of Polymers across Pores. PHYSICAL REVIEW LETTERS 2023; 131:048101. [PMID: 37566871 DOI: 10.1103/physrevlett.131.048101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
Polymers confined in corrugated channels, i.e., channels of varying amplitude, display multiple local maxima and minima of the diffusion coefficient upon increasing their degree of polymerization N. We propose a theoretical effective free energy for linear polymers based on a Fick-Jacobs approach. We validate the predictions against numerical data, obtaining quantitative agreement for the effective free energy, the diffusion coefficient, and the mean first passage time. Finally, we employ the effective free energy to compute the polymer lengths N_{min} at which the diffusion coefficient presents a minimum: we find a scaling expression that we rationalize with a blob model. Our results could be useful to design porous adsorbers, that separate polymers of different sizes without the action of an external flow.
Collapse
Affiliation(s)
- Emanuele Locatelli
- Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
- INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
| | - Valentino Bianco
- Faculty of Chemistry, Chemical Physics Department, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Termica y Electronica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Paolo Malgaretti
- Helmholtz Institut Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich, Cauer Strasse 1, 91058, Erlangen, Germany
| |
Collapse
|
4
|
Miller LM, Draper BE, Barnes LF, Ofoegbu PC, Jarrold MF. Analysis of Megadalton-Sized DNA by Charge Detection Mass Spectrometry: Entropic Trapping and Shearing in Nanoelectrospray. Anal Chem 2023. [PMID: 37267126 DOI: 10.1021/acs.analchem.3c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The analysis of nucleic acids by conventional mass spectrometry is complicated by counter ions which cause mass heterogeneity and limit the size of the DNA that can be analyzed. In this work, we overcome this limitation using charge detection mass spectrometry to analyze megadalton-sized DNA. Using positive mode electrospray, we find two dramatically different charge distributions for DNA plasmids. A low charge population that charges like compact DNA origami and a much higher charge population, with charges that extend over a broad range. For the high-charge population, the deviation between the measured mass and mass expected from the DNA sequence is consistently around 1%. For the low-charge population, the deviation is larger and more variable. The high-charge population is attributed to the supercoiled plasmid in a random coil configuration, with the broad charge distribution resulting from the rich variety of geometries the random coil can adopt. High-resolution measurements show that the mass distribution shifts to slightly lower mass with increasing charge. The low-charge population is attributed to a condensed form of the plasmid. We suggest that the condensed form results from entropic trapping where the random coil must undergo a geometry change to squeeze through the Taylor cone and enter an electrospray droplet. For the larger plasmids, shearing (mechanical breakup) occurs during electrospray or in the electrospray interface. Shearing is reduced by lowering the salt concentration.
Collapse
Affiliation(s)
- Lohra M Miller
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Benjamin E Draper
- Megadalton Solutions Inc, 3750 E Bluebird Ln, Bloomington, Indiana 47401, United States
| | - Lauren F Barnes
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Polycarp C Ofoegbu
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| | - Martin F Jarrold
- Chemistry Department, Indiana University, 800 E Kirkwood Ave, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Verma N, Walia S, Pandya A. Micro/nanofluidic devices for DNA/RNA detection and separation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:85-107. [PMID: 35033291 DOI: 10.1016/bs.pmbts.2021.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development and research have ramped up at a greater speed than ever in the field of diseases diagnosis. Still there is struggle in developing early detection techniques which uses complex biomolecules like RNA, DNA and proteins in order to detect diseases caused by bacteria, viruses or fungi. Until now separation techniques used before detection rely on traditional techniques like electrophoresis etc. which often require centralized services. Although efforts are made in developing devices that is capable enough on carrying out separation and detection based on microfluidic (MF) and nanofluidic (NF) or lab on chip. Hence, in this chapter, we have discussed about the advancement, limitations and future steps that needs to be taken to flourish the field of NF and MF for the detection and separation of nucleic acid.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India
| | - Sakshi Walia
- Department of Biological Sciences and Biotechnology, Institute of Advanced Research, Gandhinagar, India
| | - Alok Pandya
- Department of Engineering and Physical Sciences, Institute of Advanced Research, Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Sonker M, Kim D, Egatz-Gomez A, Ros A. Separation Phenomena in Tailored Micro- and Nanofluidic Environments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:475-500. [PMID: 30699038 DOI: 10.1146/annurev-anchem-061417-125758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Separations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches. This review provides an overview of several unique separation applications demonstrated in recent years in tailored micro- and nanofluidic environments. These include electrokinetic methods such as dielectrophoresis and electrophoresis, but also rather nonintuitive ratchet separation mechanisms, continuous flow separations, and fractionations such as deterministic lateral displacement, as well as methods employing entropic forces for separation.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|