1
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Li AY, Xiao HN, Zhao ZY, Xiang C, Chen ZY, Wang PX, Xia Y, Yu B, Li H, Xiao T. Prognostic and immune implications of a novel 7-methylguanosine-related microRNA signature in breast invasive carcinoma: from exploration to validation. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04849-1. [PMID: 37171615 DOI: 10.1007/s00432-023-04849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
OBJECTIVES This study aims to develop and validate a prognostic signature based on 7-methylguanosine-related (M7G-related) miRNAs for predicting prognosis and immune implications in breast invasive carcinoma (BRCA). MATERIALS AND METHODS M7G-related miRNA data of BRCA were obtained from The Cancer Genome Atlas (TCGA). Least absolute shrinkage and selection operator (LASSO)-penalized, univariate, and multivariate Cox regression analyses were used to construct the prognostic signature. Furthermore, the predictive validity was verified using Kaplan-Meier (KM) survival risk and receiver operating characteristic (ROC) plots. Internal random sampling verification was used to simplify and validate the signature. RT-qPCR was used to quantify the expression level of transcriptional profiles. The independent prognostic role of the risk score was validated using univariate and multivariate regression. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used for functional and immune enrichment analysis. RESULTS A total of 18 M7G-related miRNAs were identified to construct the prognostic signature in BRCA. The low-risk group exhibited significantly higher overall survival than the high-risk group in the KM survival plot (P < 0.001). The area under the curve (AUC) for 1-, 3-, and 5-year survivals in the ROC curve were 0.737, 0.724, and 0.702, respectively. The survival significance in the training and testing cohorts was confirmed by random sampling verification. The most prominent miRNAs in the signature were the miR-7, miR-139, miR-10b, and miR-4728. Furthermore, immune scores for B, mast, and Th1 cells varied between risk groups. Our research demonstrated that CD52 was the most positively correlated gene with immune cells and functions in BRCA. CONCLUSION Our study presents a comprehensive and systematic analysis of M7G-related miRNAs to construct a prognostic signature in BRCA. The signature demonstrated excellent prognostic validity, with the risk score as an independent prognostic factor. These results provide critical evidence for further investigation of M7G miRNAs and offer new insights for BRCA patients in the context of effective immunotherapy.
Collapse
Affiliation(s)
- Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui-Ni Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hengyang, 421001, Hunan Province, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Cheng Xiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Zhuo-Yuan Chen
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Ping-Xiao Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Yu Xia
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Bin Yu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China.
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China.
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Renmin Road, Changsha, 410011, Hunan Province, China.
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China.
| |
Collapse
|
3
|
Yunusova N, Dzhugashvili E, Yalovaya A, Kolomiets L, Shefer A, Grigor’eva A, Tupikin A, Kondakova I, Tamkovich S. Comparative Analysis of Tumor-Associated microRNAs and Tetraspanines from Exosomes of Plasma and Ascitic Fluids of Ovarian Cancer Patients. Int J Mol Sci 2022; 24:ijms24010464. [PMID: 36613908 PMCID: PMC9820379 DOI: 10.3390/ijms24010464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Ovarian cancer (OC) is one of the most common and fatal types of gynecological cancer. In the early phase of OC detection, the current treatment and diagnostic methods are not efficient and sensitive enough. Therefore, it is crucial to explore the mechanisms of OC metastasis and discover valuable factors for early diagnosis of female cancers and novel therapeutic strategies for metastasis. Exosomes are known to be involved in the development, migration, and invasion of cancer cells, and their cargo could be useful for the non-invasive biopsy development. CD151- and Tspan8-positive exosomes are known to support the degradation of the extracellular matrix, and are involved in stroma remodeling, angiogenesis and cell motility, as well as the association of miR-24 and miR-101 with these processes. The objective of this study was to explore the relationship of these components of exosomal cargo, in patients with OC, to clarify the clinical significance of these markers in liquid biopsies. The levels of tetraspanins Tspan8+ and CD151+ exosomes were significantly higher in plasma exosomes of OC patients compared with healthy females (HFs). The relative levels of miR-24 and miR-101 in plasma exosomes of HFs were significantly higher than in plasma exosomes of OC patients, while the levels of these microRNAs in exosomes from plasma and ascites of ill females showed no difference. Our study revealed a strong direct correlation between the change in the ascites exosomes CD151+Tspan8+ subpopulation level and the expression levels of the ascites (R = 0.81, p < 0.05) and plasma exosomal miR-24 (R = 0.74, p < 0.05) in OC patients, which confirms the assumption that exosomal cargo act synergistically to increase cellular motility, affecting cellular processes and signaling. Bioinformatics analysis confirmed the involvement of CD151 and Tspan8 tetraspanins and genes controlled by miR-24-3p and miR-101 in signaling pathways, which are crucial for carcinogenesis, demonstrating that these tetraspanins and microRNAs are potential biomarkers for OC screening, and predictors of poor clinicopathological behavior in tumors.
Collapse
Affiliation(s)
- Natalia Yunusova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Ekaterina Dzhugashvili
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alena Yalovaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Larisa Kolomiets
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Aleksei Shefer
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alina Grigor’eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexey Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Irina Kondakova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Svetlana Tamkovich
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
4
|
Song J, Lin Z, Liu Q, Huang S, Han L, Fang Y, Zhong P, Dou R, Xiang Z, Zheng J, Zhang X, Wang S, Xiong B. MiR-192-5p/RB1/NF-κBp65 signaling axis promotes IL-10 secretion during gastric cancer EMT to induce Treg cell differentiation in the tumour microenvironment. Clin Transl Med 2022; 12:e992. [PMID: 35969010 PMCID: PMC9377151 DOI: 10.1002/ctm2.992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells are important components of the tumour microenvironment (TME) that play roles in gastric cancer (GC) metastasis. Although tumour cells that undergo epithelial-mesenchymal transition (EMT) regulate Treg cell function, their regulatory mechanism in GC remains unclear. METHODS The miR-192-5p was identified by examining three Gene Expression Omnibus GC miRNA expression datasets. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were conducted to identify interactions between miR-192-5p and RB1. The role of miR-192-5p/RB1 in GC progression was evaluated based on EdU incorporation, wound healing and Transwell assays. An in vitro co-culture assay was performed to measure the effect of miR-192-5p/RB1 on Treg cell differentiation. In vivo experiments were conducted to explore the role of miR-192-5p in GC progression and Treg cell differentiation. RESULTS MiR-192-5p was overexpressed in tumour and was associated with poor prognosis in GC. MiR-192-5p bound to the RB1 3'-untranslated region, resulting in GC EMT, proliferation, migration and invasion. MiR-192-5p/RB1 mediated interleukin-10 (IL-10) secretion by regulating nuclear factor-kappaBp65 (NF-κBp65), affecting Treg cell differentiation. NF-κBp65, in turn, promoted miR-192-5p expression and formed a positive feedback loop. Furthermore, in vivo experiments confirmed that miR-192-5p/RB1 promotes GC growth and Treg cell differentiation. CONCLUSION Collectively, our studies indicate that miR-192-5p/RB1 promotes EMT of tumour cells, and the miR-192-5p/RB1/NF-κBp65 signaling axis induces Treg cell differentiation by regulating IL-10 secretion in GC. Our results suggest that targeting miR-192-5p/RB1/NF-κBp65 /IL-10 may pave the way for the development of new immune treatments for GC.
Collapse
Affiliation(s)
- Jialin Song
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zaihuan Lin
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Qing Liu
- Department of Respiratory and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhanChina
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhanChina
| | - Sihao Huang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Lei Han
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Yan Fang
- Department of obstetrics and gynecologyGuangzhou Women and Children's Medical CenterGuangzhouChina
| | - Panyi Zhong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Rongzhang Dou
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Zhenxian Xiang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Jinsen Zheng
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Xinyao Zhang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Shuyi Wang
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| | - Bin Xiong
- Department of Gastrointestinal SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
- Hubei Key Laboratory of Tumour Biological BehavioursWuhanChina
- Hubei Cancer Clinical Study CenterWuhanChina
| |
Collapse
|
5
|
MicroRNAs as Potential Tools for Predicting Cancer Patients’ Susceptibility to SARS-CoV-2 Infection and Vaccination Response. Cells 2022; 11:cells11152279. [PMID: 35892576 PMCID: PMC9332853 DOI: 10.3390/cells11152279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease that is caused by a highly contagious and severe acute respiratory syndrome—coronavirus 2 (SARS-CoV-2). This infection started to spread across the world in 2019 and rapidly turned into a global pandemic, causing an urgent necessity for treatment strategies development. The mRNA vaccines against SARS-CoV-2 can trigger an immune response, providing genetic information that allows the production of spike glycoproteins. MiRNAs play a crucial role in diverse key cellular processes, including antiviral defense. Several miRNAs are described as key factors in SARS-CoV-2 human infection through the regulation of ACE2 levels and by the inhibition of SARS-CoV-2 replication and spike expression. Consequently, these molecules have been considered as highly promising biomarkers. In numerous human malignancies, it has been recognized that miRNAs expression is dysregulated. Since miRNAs can target SARS-CoV-2-associated mRNAs, in cancer patients, the deregulation of these molecules can impair the immune response to the vaccines. Therefore, in this review, we propose a miRNA profile of seven SARS-CoV-2-related miRNAs, namely miR-214, miR-98-5p, miR-7-5p, miR-24-3p, miR-145-5p, miR-223-3p and miR-15b-5p, that are deregulated in a high number of cancers and have the potential to be used as prognostic biomarkers to stratify cancer patients.
Collapse
|
6
|
In silico Methods for Identification of Potential Therapeutic Targets. Interdiscip Sci 2022; 14:285-310. [PMID: 34826045 PMCID: PMC8616973 DOI: 10.1007/s12539-021-00491-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/01/2022]
Abstract
AbstractAt the initial stage of drug discovery, identifying novel targets with maximal efficacy and minimal side effects can improve the success rate and portfolio value of drug discovery projects while simultaneously reducing cycle time and cost. However, harnessing the full potential of big data to narrow the range of plausible targets through existing computational methods remains a key issue in this field. This paper reviews two categories of in silico methods—comparative genomics and network-based methods—for finding potential therapeutic targets among cellular functions based on understanding their related biological processes. In addition to describing the principles, databases, software, and applications, we discuss some recent studies and prospects of the methods. While comparative genomics is mostly applied to infectious diseases, network-based methods can be applied to infectious and non-infectious diseases. Nonetheless, the methods often complement each other in their advantages and disadvantages. The information reported here guides toward improving the application of big data-driven computational methods for therapeutic target discovery.
Graphical abstract
Collapse
|
7
|
MiR-192-5p inhibits proliferation, migration, and invasion in papillary thyroid carcinoma cells by regulation of SH3RF3. Biosci Rep 2021; 41:229721. [PMID: 34486645 PMCID: PMC8463656 DOI: 10.1042/bsr20210342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown. Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development. Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay. Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression. Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.
Collapse
|
8
|
Zhang HW, Shi Y, Liu JB, Wang HM, Wang PY, Wu ZJ, Li L, Gu LP, Cao PS, Wang GR, Ma YS, Fu D. Cancer-associated fibroblast-derived exosomal microRNA-24-3p enhances colon cancer cell resistance to MTX by down-regulating CDX2/HEPH axis. J Cell Mol Med 2021; 25:3699-3713. [PMID: 33621425 PMCID: PMC8051723 DOI: 10.1111/jcmm.15765] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022] Open
Abstract
MicroRNA‐24‐3p (miR‐24‐3p) has been implicated as a key promoter of chemotherapy resistance in numerous cancers. Meanwhile, cancer‐associated fibroblasts (CAFs) can secret exosomes to transfer miRNAs, which mediate tumour development. However, little is known regarding the molecular mechanism of CAF‐derived exosomal miR‐24‐3p in colon cancer (CC). Hence, this study intended to characterize the functional relevance of CAF‐derived exosomal miR‐24‐3p in CC cell resistance to methotrexate (MTX). We identified differentially expressed HEPH, CDX2 and miR‐24‐3p in CC through bioinformatics analyses, and validated their expression in CC tissues and cells. The relationship among HEPH, CDX2 and miR‐24‐3p was verified using ChIP and dual‐luciferase reporter gene assays. Exosomes were isolated from miR‐24‐3p inhibitor–treated CAFs (CAFs‐exo/miR‐24‐3p inhibitor), which were used in combination with gain‐of‐function and loss‐of‐function experiments and MTX treatment. CCK‐8, flow cytometry and colony formation assays were conducted to determine cell viability, apoptosis and colony formation, respectively. Based on the findings, CC tissues and cells presented with high expression of miR‐24‐3p and low expression of HEPH and CDX2. CDX2 was a target gene of miR‐24‐3p and could up‐regulate HEPH. Under MTX treatment, overexpressed CDX2 or HEPH and down‐regulated miR‐24‐3p reduced cell viability and colony formation and elevated cell apoptosis. Furthermore, miR‐24‐3p was transferred into CC cells via CAF‐derived exosomes. CAF‐derived exosomal miR‐24‐3p inhibitor diminished cell viability and colony formation and increased cell apoptosis in vitro and inhibited tumour growth in vivo under MTX treatment. Altogether, CAF‐derived exosomal miR‐24‐3p accelerated resistance of CC cells to MTX by down‐regulating CDX2/HEPH axis.
Collapse
Affiliation(s)
- Hong-Wei Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Ji-Bin Liu
- Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhi-Jun Wu
- Department of Oncology, Nantong Second People's Hospital, Nantong, China.,Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ping-Sheng Cao
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gao-Ren Wang
- Department of Radiotherapy, Nantong Tumor Hospital, Nantong, China
| | - Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Cancer Institute, Nantong Tumor Hospital, Nantong, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
10
|
Wu D, Wu F, Li B, Huang W, Wang D. EZH2 promotes the expression of LPA1 by mediating microRNA-139 promoter methylation to accelerate the development of ovarian cancer. Cancer Cell Int 2020; 20:551. [PMID: 33292225 PMCID: PMC7670614 DOI: 10.1186/s12935-020-01622-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
Background It has been known that ovarian cancer (OC) is a leading cause for women mortality globally. We aimed to analyze the underlying mechanism supporting that enhancer of zeste homolog 2 (EZH2) affected the development of OC via the involvement of microRNA-139 (miR-139)/transforming growth factor beta (TGF-β)/lysophosphatidic acid-1 (LPA1) axis. Methods High expression patterns of EZH2 and miR-139 and low LPA1 expression pattern in OC were evaluated using RT-qPCR and immunoblotting, while their correlation was assessed by the Spearman’s rank and Pearson’s correlation coefficient. Subsequently, dual-luciferase reporter gene assay was applied to validate the binding relationship between miR-139 and LPA1, while H3K27me enrichment was assessed by ChIP assay. After that, the effects of altered expression of EZH2, miR-194, or LPA1 on the cell biological functions and the expression pattern of TGF-related factors were evaluated. Results We found that EZH2 repressed the miR-139 expression pattern by recruiting H3K27me3 to promote miR-139 promoter methylation, while silencing of EZH2 suppressed in vitro cancer progression by increasing miR-139. LPA1 was a target of miR-139, and could activate the TGF-β signaling pathway, which hastened the OC progression. miR-139-targeted inhibition of LPA1 and LPA1-activated TGF-β signaling pathway were evidenced to be critical mechanisms underlying the effects of EZH2 on OC cells. Lastly, silencing of EZH2 inhibited the xenograft growth in vivo. Conclusions EZH2 could down-regulate miR-139 expression pattern by recruiting H3K27me3 to promote the miR-139 promoter methylation and activate the TGF-β pathway by up-regulating LPA1, which contributed to the progression of OC. The current study may possess potentials for OC treatment.
Collapse
Affiliation(s)
- Dongbo Wu
- Department of Obstetrics and Gynecology, The First Hospital of Changsha, Changsha, 410000, People's Republic of China
| | - Fanglan Wu
- Department of Clinical Laboratory, The First Hospital of Changsha, Changsha, 410005, People's Republic of China
| | - Birong Li
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Western Jiefang Road, Changsha, 410000, Hunan, People's Republic of China
| | - Wei Huang
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Western Jiefang Road, Changsha, 410000, Hunan, People's Republic of China.
| | - Donglian Wang
- Department of Gynecology, The Maternal and Child Health Hospital of Hunan Province, Changsha, 410000, People's Republic of China
| |
Collapse
|
11
|
Bazavar M, Fazli J, Valizadeh A, Ma B, Mohammadi E, Asemi Z, Alemi F, Maleki M, Xing S, Yousefi B. miR-192 enhances sensitivity of methotrexate drug to MG-63 osteosarcoma cancer cells. Pathol Res Pract 2020; 216:153176. [DOI: 10.1016/j.prp.2020.153176] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
|
12
|
Robelin P, Tod M, Colomban O, Lachuer J, Ray-Coquard I, Rauglaudre GD, Joly F, Chevalier-Place A, Combe P, Lortholary A, Hamizi S, Raban N, Ferron G, Meunier J, Berton-Rigaud D, Alexandre J, Kaminsky MC, Dubot C, Leary A, Malaurie E, You B. Comparative analysis of predictive values of the kinetics of 11 circulating miRNAs and of CA125 in ovarian cancer during first line treatment (a GINECO study). Gynecol Oncol 2020; 159:256-263. [DOI: 10.1016/j.ygyno.2020.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/11/2020] [Indexed: 01/26/2023]
|
13
|
H2A Histone Family Member X (H2AX) Is Upregulated in Ovarian Cancer and Demonstrates Utility as a Prognostic Biomarker in Terms of Overall Survival. J Clin Med 2020; 9:jcm9092844. [PMID: 32887437 PMCID: PMC7565050 DOI: 10.3390/jcm9092844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: H2AX can be of prognostic value in breast cancer, since in advanced stage patients with high levels, there was an association with worse overall survival (OS). However, the clinical relevance of H2AX in ovarian cancer (OC) remains to be elucidated. Methods: OC H2AX expression studied using the TCGA/GTEX datasets. Subsequently, patients were classified as either high or low in terms of H2AX expression to compare OS and perform gene set enrichment. qRT-PCR validated in-silico H2AX findings followed by immunohistochemistry on a tissue microarray. The association between single nucleotide polymorphisms in the area of H2AX; prevalence and five-year OC survival was tested in samples from the UK Biobank. Results: H2AX was significantly overexpressed in OCs compared to normal tissues, with higher expression associated with better OS (p = 0.010). Gene Set Enrichment Analysis demonstrated gene sets involved in G2/M checkpoint, DNA repair mTORC1 signalling were enriched in the H2AX highly expressing OCs. Polymorphisms in the area around the gene were associated with both OC prevalence (rs72997349-C, p = 0.005) and worse OS (rs10790282-G, p = 0.011). Finally, we demonstrated that H2AX gene expression correlated with γ-H2AX staining in vitro. Conclusions: Our findings suggest that H2AX can be a novel prognostic biomarker for OC.
Collapse
|
14
|
Poel D, Rustenburg F, Sie D, van Essen HF, Eijk PP, Bloemena E, Elhorst Benites T, van den Berg MC, Vergeer MR, Leemans RC, Buffart TE, Ylstra B, Brakenhoff RH, Verheul HM, Voortman J. Expression of let-7i and miR-192 is associated with resistance to cisplatin-based chemoradiotherapy in patients with larynx and hypopharynx cancer. Oral Oncol 2020; 109:104851. [PMID: 32585557 DOI: 10.1016/j.oraloncology.2020.104851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 06/07/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The majority of patients with locally advanced larynx or hypopharynx squamous cell carcinoma are treated with organ-preserving chemoradiotherapy (CRT). Clinical outcome following CRT varies greatly. We hypothesized that tumor microRNA (miRNA) expression is predictive for outcome following CRT. METHODS Next-generation sequencing (NGS) miRNA profiling was performed on 37 formalin-fixed paraffin-embedded (FFPE) tumor samples. Patients with a recurrence-free survival (RFS) of less than 2 years and patients with late/no recurrence within 2 years were compared by differential expression analysis. Tumor-specific miRNAs were selected based on normal mucosa miRNA expression data from The Cancer Genome Atlas database. A model was constructed to predict outcome using group-regularized penalized logistic ridge regression. Candidate miRNAs were validated by RT-qPCR in the initial sample set as well as in 46 additional samples. RESULTS Thirteen miRNAs were differentially expressed (p < 0.05, FDR < 0.1) according to outcome group. Initial class prediction in the NGS cohort (n = 37) resulted in a model combining five miRNAs and disease stage, able to predict CRT outcome with an area under the curve (AUC) of 0.82. In the RT-qPCR cohort (n = 83), 25 patients (30%) experienced early recurrence (median RFS 8 months; median follow-up 42 months). Class prediction resulted in a model combining let-7i-5p, miR-192-5p and disease stage, able to discriminate patients with good versus poor clinical outcome (AUC:0.80). CONCLUSION The combined miRNA expression and disease stage prediction model for CRT outcome is superior to using either factor alone. This study indicates NGS miRNA profiling using FFPE specimens is feasible, resulting in clinically relevant biomarkers.
Collapse
Affiliation(s)
- Dennis Poel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - François Rustenburg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurosurgery, Cancer Center Amsterdam, the Netherlands
| | - Daoud Sie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Hendrik F van Essen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Paul P Eijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Elisabeth Bloemena
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Maxillofacial Surgery/Oral Pathology, Academic Center for Dentistry Amsterdam (ACTA), the Netherlands
| | - Teresita Elhorst Benites
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Madeleine C van den Berg
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands
| | - Marije R Vergeer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Radiation Oncology, Cancer Center Amsterdam, the Netherlands
| | - René C Leemans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Tineke E Buffart
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Antoni van Leeuwenhoek Hospital, Department of Gastrointestinal Oncology, Amsterdam, the Netherlands
| | - Bauke Ylstra
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pathology, Cancer Center Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, the Netherlands
| | - Henk M Verheul
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jens Voortman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Medical Oncology, Cancer Center Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Khalili N, Nouri-Vaskeh M, Hasanpour Segherlou Z, Baghbanzadeh A, Halimi M, Rezaee H, Baradaran B. Diagnostic, prognostic, and therapeutic significance of miR-139-5p in cancers. Life Sci 2020; 256:117865. [PMID: 32502540 DOI: 10.1016/j.lfs.2020.117865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022]
Abstract
miRNAs are a group of non-coding RNAs that have regulatory functions in post-transcriptional gene expression. These molecules play a fundamental role in cellular processes, for instance cell proliferation, apoptosis, migration, and invasion. Scientific investigations have previously established that miRNAs can either promote or suppress tumor development by mediating different signaling pathways. miR-139-5p, located on chromosome 11q13.4, has been examined extensively in cancers. Studies have demonstrated that miR-139-5p might be an attractive cancer biomarker. Herein, we will review how miR-139-5p acts in cancer diagnosis, prognosis, and therapy, as well as elucidating its major target genes and associated signaling pathways.
Collapse
Affiliation(s)
- Neda Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoud Nouri-Vaskeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Halimi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haleh Rezaee
- Infectious Diseases and Tropical Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Pharmacy (Pharmacotherapy), Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Huang P, Qi B, Yao H, Zhang L, Li Y, Li Q. Knockdown of DANCR Suppressed the Biological Behaviors of Ovarian Cancer Cells Treated with Transforming Growth Factor-β (TGF-β) by Sponging MiR-214. Med Sci Monit 2020; 26:e922760. [PMID: 32417846 PMCID: PMC7251966 DOI: 10.12659/msm.922760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Ovarian cancer is one of the most common gynecological malignancies and mortality ranks the highest in cancer-associated death in females' worldwide. Here, we attempted to evaluate the effect of DANCR on the biological behavior of transforming growth factor-ß (TGF-ß) stimulated ovarian cancer cells. MATERIAL AND METHODS The expression of DANCR in ovarian cancer cells (A2780 and SKOV3) treated with TGF-ß were detected by quantitative real-time polymerase chain reaction (qRT-PCR). DANCR silencing was constructed using lentiviral transfection in ovarian cancer cells. The Cell Counting Kit-8 (CCK-8), flow cytometry and Transwell assays were performed to measure some cytology index. Western blot was utilized to explore the effect of DANCR on Krüppel-like factor 5 (KLF5) expression. RESULTS The expression of DANCR in cancer cells (A2780 and SKOV3) treated with TGF-ß was significantly higher. DANCR silencing suppressed cell viability, migration and invasion, and induced cell apoptosis of TGF-ß treated ovarian cancer cells. Bioinformatics analysis showed that DANCR served as a sponge for miR-214, and also showed that KLF5 was targeted by miR-214. In addition, DANCR could inhibit the expression of KLF5. CONCLUSIONS We are the first to report that knockdown of DANCR could affect the biological process of ovarian cancer cells treated with TGF-ß by sponging miR-214, which may provide new therapeutic ideas of ovarian cancer.
Collapse
Affiliation(s)
- Ping Huang
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Bingli Qi
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Hairong Yao
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Liang Zhang
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Yanying Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| | - Qian Li
- Department of Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China (mainland)
| |
Collapse
|
17
|
Non-coding RNAs in drug resistance of head and neck cancers: A review. Biomed Pharmacother 2020; 127:110231. [PMID: 32428836 DOI: 10.1016/j.biopha.2020.110231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC), which includes epithelial malignancies of the upper aerodigestive tract (oral cavity, oropharynx, pharynx, hypopharynx, larynx, and thyroid), are slowly but consistently increasing, while the overall survival rate remains unsatisfactory. Because of the multifunctional anatomical intricacies of the head and neck, disease progression and therapy-related side effects often severely affect the patient's appearance and self-image, as well as their ability to breathe, speak, and swallow. Patients with HNC require a multidisciplinary approach involving surgery, radiation therapy, and chemotherapeutics. Chemotherapy is an important part of the comprehensive treatment of tumors, especially advanced HNC, but drug resistance is the main cause of poor clinical efficacy. The most important determinant of this phenomenon is still largely unknown. Recent studies have shown that non-coding RNAs have a crucial role in HNC drug resistance. In addition, they can serve as biomarkers in the diagnosis, treatment, and prognosis of HNCs. In this review, we summarize the relationship between non-coding RNAs and drug resistance of HNC, and discuss their potential clinical application in overcoming HNC chemoresistance.
Collapse
|
18
|
Chen Y, Wang L, Zhou J. Effects of microRNA‐1271 on ovarian cancer via inhibition of epithelial‐mesenchymal transition and cisplatin resistance. J Obstet Gynaecol Res 2019; 45:2243-2254. [PMID: 31411791 DOI: 10.1111/jog.14079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyan Chen
- Department of Outpatient PharmacyNingbo Women & Children's Hospital Ningbo China
| | - Li Wang
- Department of Outpatient PharmacyNingbo Women & Children's Hospital Ningbo China
| | - Jiefang Zhou
- Department of Clinical PharmacologyShaoxing Traditional Chinese Medicine Hospital Shaoxing China
| |
Collapse
|
19
|
Cui M, Yao X, Lin Y, Zhang D, Cui R, Zhang X. Interactive functions of microRNAs in the miR-23a-27a-24-2 cluster and the potential for targeted therapy in cancer. J Cell Physiol 2019; 235:6-16. [PMID: 31192453 DOI: 10.1002/jcp.28958] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs about 19-22 nucleotides in length. Growing evidence has reported the significant role of miRNAs in various cancer-associated biological processes, such as proliferation, differentiation, apoptosis, metabolism, invasion, metastasis, and drug resistance. However, most studies focus on the targets of some individual miRNAs; the interactive and global functions of diverse miRNAs are still unclear and the phenomenon of the gathering of miRNAs in clusters has always been ignored. On the other hand, the fact that a single miRNA may regulate many genes and that numerous mRNAs are regulated by the same miRNA also makes it imperative to further study the cooperating characteristics of miRNAs in cancer. MiR-23a-27a-24-2 is located in the human chromosome 9q22, forming three mature miRNAs: miR-23a, miR27a, and miR-24, which are expressed abnormally in many malignant tumors. This review aims to summarize the interactive functions of miRNAs in miR-23a-27a-24-2 clusters in cancer from the perspectives of the regulation network, tumor microenvironment, and targeted therapy.
Collapse
Affiliation(s)
- Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xiaoxiao Yao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Yang Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Dan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, P. R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, P. R. China
| |
Collapse
|
20
|
Cho Y, Milane L, Amiji MM. Genetic and epigenetic strategies for advancing ovarian cancer immunotherapy. Expert Opin Biol Ther 2019; 19:547-560. [DOI: 10.1080/14712598.2019.1602605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Youngwoo Cho
- School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Lara Milane
- Department of Pharmaceutical Science, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Mansoor M. Amiji
- Department of Pharmaceutical Science, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
21
|
Vittoria MA, Shenk EM, O'Rourke KP, Bolgioni AF, Lim S, Kacprzak V, Quinton RJ, Ganem NJ. A genome-wide microRNA screen identifies regulators of tetraploid cell proliferation. Mol Biol Cell 2018; 29:1682-1692. [PMID: 29791254 PMCID: PMC6080710 DOI: 10.1091/mbc.e18-02-0141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tetraploid cells, which are most commonly generated by errors in cell division, are genomically unstable and have been shown to promote tumorigenesis. Recent genomic studies have estimated that ∼40% of all solid tumors have undergone a genome-doubling event during their evolution, suggesting a significant role for tetraploidy in driving the development of human cancers. To safeguard against the deleterious effects of tetraploidy, nontransformed cells that fail mitosis and become tetraploid activate both the Hippo and p53 tumor suppressor pathways to restrain further proliferation. Tetraploid cells must therefore overcome these antiproliferative barriers to ultimately drive tumor development. However, the genetic routes through which spontaneously arising tetraploid cells adapt to regain proliferative capacity remain poorly characterized. Here, we conducted a comprehensive gain-of-function genome-wide screen to identify microRNAs (miRNAs) that are sufficient to promote the proliferation of tetraploid cells. Our screen identified 23 miRNAs whose overexpression significantly promotes tetraploid proliferation. The vast majority of these miRNAs facilitate tetraploid growth by enhancing mitogenic signaling pathways (e.g., miR-191-3p); however, we also identified several miRNAs that impair the p53/p21 pathway (e.g., miR-523-3p), and a single miRNA (miR-24-3p) that potently inactivates the Hippo pathway via down-regulation of the tumor suppressor gene NF2. Collectively, our data reveal several avenues through which tetraploid cells may regain the proliferative capacity necessary to drive tumorigenesis.
Collapse
Affiliation(s)
- Marc A Vittoria
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Elizabeth M Shenk
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Department of Biomedical Engineering, Boston University, Boston, MA 02118
| | - Kevin P O'Rourke
- Weill Cornell Medicine/Rockefeller University/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065
| | - Amanda F Bolgioni
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Sanghee Lim
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Victoria Kacprzak
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Ryan J Quinton
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118
| | - Neil J Ganem
- Department of Pharmacology and Experimental Therapeutics, University School of Medicine, Boston, MA 02118.,Division of Hematology and Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
22
|
Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W, Wang H. Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol 2018; 315:C225-C235. [PMID: 29719173 DOI: 10.1152/ajpcell.00283.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression has been reported to correlate with chemoresistance of cancer cells. Therefore, the present study aims at investigating the effects of microRNA-139-5p (miR-139-5p) on cisplatin resistance of ovarian cancer (OC) with involvement of ring finger protein 2 (RNF2) and the mitogen-activated protein kinase (MAPK) signaling pathway. OC tissues were obtained from 66 primary OC patients. The cisplatin-sensitive A2780 and cisplatin-resistant A2780/DDP cell lines were collected for construction of RNF2 silencing and overexpressed plasmids. Cell vitality and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and annexin V-FITC/propidium iodide double-staining, respectively. Next, expression of RNF2, extracellular signal-related kinase, and p38 was determined by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Finally, the volume of xenograft tumors in BALB/c nude mice was detected. RNF2 and miR-139-5p were identified to be involved in OC. In addition, MAPK activation and RNF2 were related to cisplatin resistance of OC. miR-139-5p was downregulated in cisplatin-resistant OC tissues, and miR-139-5p overexpression could inhibit cell vitality, reduce cisplatin resistance, and promote apoptosis of OC cells. Furthermore, miR-139-5p combined with MAPK inhibitors more obviously reduced cisplatin resistance of OC. Taken together, this study demonstrated that miR-139-5p overexpression combined with inactivation of the MAPK signaling pathway can reverse the cisplatin resistance of OC by suppressing RNF2. Thus, miR-139-5p overexpression might be a future therapeutic strategy for OC.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, People's Republic of China
| | - Xiao-Yun Cao
- Medical Insurance Management Office, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Ying-Ni Li
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Yu-Yan Qiu
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Ying-Na Li
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Wen Li
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, People's Republic of China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, People's Republic of China
| |
Collapse
|
23
|
Shao Y, Li H, Du R, Meng J, Yang G. Involvement of non-coding RNAs in chemotherapy resistance of ovarian cancer. J Cancer 2018; 9:1966-1972. [PMID: 29896281 PMCID: PMC5995945 DOI: 10.7150/jca.24550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/25/2018] [Indexed: 12/12/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological malignancy, with a low 5-year survival rate. Most patients with ovarian cancer are diagnosed in late-stages. A rising number of non-coding RNAs (ncRNAs) have been found to act as key regulators of gene expression by applying novel high-thought methods, such as next generation sequencing (NGS). Non-coding RNAs not only play important roles in carcinogenesis, but also affect the clinical treatment strategies. One of the biggest challenge in OC treatment was chemoresistance, which causes poor prognosis and high recurrence rate after applying traditional remedies. Of note, it has been proved that ncRNAs were deeply correlated with chemoresistance in several cancers, which made ncRNAs considered to be potential therapeutic targets in ovarian cancer. Among of all ncRNAs, the studies of miRNAs and lncRNAs in ovarian cancer chemoresistance were much clearer. In this study, we reviewed the most relevant researches in this field, and described the relationships between ncRNAs and chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Yang Shao
- Cancer Institute, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hui Li
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Ran Du
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Central Laboratory, The Fifth People's Hospital of Shanghai Fudan University, Shanghai 200240, China
| |
Collapse
|
24
|
Abstract
Bladder cancer has been identified as one of the most malignant cancers with high incidence and mortality. The underlying mechanisms by which regulate the tumorigenesis of bladder cancer deserve further investigation. Here, we found that miR-192-5p was downregulated in human bladder cancer cell lines and tissues. Overexpression of miR-192-5p significantly inhibited the growth of bladder cancer cells, while depletion of miR-192-5p exerted opposite effect. Bioinformatics analysis and molecular mechanism study identified that miR-192-5p targeted the transcription factor Yin Yang 1 (YY1) and decreased the expression level of YY1. Highly expressed YY1 attenuated the potential tumor suppressive function of miR-192-5p. The expression of miR-192-5p was negatively correlated with that of YY1 in bladder cancer tissues. These results indicated that miR-192-5p might serve as a promising target in bladder cancer diagnosis and therapy.
Collapse
|