1
|
Han S, Park J, Moon S, Eom S, Jin CM, Kim S, Ryu YS, Choi Y, Lee JB, Choi I. Label-free and liquid state SERS detection of multi-scaled bioanalytes via light-induced pinpoint colloidal assembly. Biosens Bioelectron 2024; 264:116663. [PMID: 39167886 DOI: 10.1016/j.bios.2024.116663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
Surface-enhanced Raman scattering (SERS) has been extensively applied to detect complex analytes due to its ability to enhance the fingerprint signals of molecules around nanostructured metallic surfaces. Thus, it is essential to design SERS-active nanostructures with abundant electromagnetic hotspots in a probed volume according to the dimensions of the analytes, as the analytes must be located in their hotspots for maximum signal enhancement. Herein, we demonstrate a simple method for detecting robust SERS signals from multi-scaled bioanalytes, regardless of their dimensions in the liquid state, through a photothermally driven co-assembly with colloidal plasmonic nanoparticles as signal enhancers. Under resonant light illumination, plasmonic nanoparticles and analytes in the solution quickly assemble at the focused surface area by convective movements induced by the photothermal heating of the plasmonic nanoparticles without any surface modification. Such collective assemblies of plasmonic nanoparticles and analytes were optimized by varying the optical density and surface charge of the nanoparticles, the viscosity of the solvent, and the light illumination time to maximize the SERS signals. Using these light-induced co-assemblies, the intrinsic SERS signals of small biomolecules can be detected down to nanomolar concentrations based on their fingerprint spectra. Furthermore, large-sized biomarkers, such as viruses and exosomes, were successfully detected without labels, and the complexity of the collected spectra was statistically analyzed using t-distributed stochastic neighbor embedding combined with support vector machine (t-SNE + SVM). The proposed method is expected to provide a robust and convenient method to sensitively detect biologically and environmentally relevant analytes at multiple scales in liquid samples.
Collapse
Affiliation(s)
- Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seonghyeon Eom
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Chang Min Jin
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungmin Kim
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Yong-Sang Ryu
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea
| | - Yeonho Choi
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02481, Republic of Korea; Exopert Corporation, Seoul, 02580, Republic of Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea; Department of Applied Chemistry, University of Seoul, Seoul, 02504, Republic of Korea.
| |
Collapse
|
2
|
Sondhi P, Lingden D, Bhattarai JK, Demchenko AV, Stine KJ. Applications of Nanoporous Gold in Therapy, Drug Delivery, and Diagnostics. METALS 2023; 13:78. [PMID: 39238564 PMCID: PMC11376205 DOI: 10.3390/met13010078] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Nanoporous gold (np-Au) has promising applications in therapeutic delivery. The promises arise from its high surface area-to-volume ratio, ease of tuning shape and size, ability to be modified by organic molecules including drugs, and biocompatibility. Furthermore, np-Au nanostructures can generate the photothermal effect. This effect can be used either for controlled release of drugs of therapeutic importance or for destroying cancer cells by heating locally. Despite the enormous potential, the research on the therapeutical use of the np-Au is still in its early stage. In this review, we discuss the current progress and future directions of np-Au for therapeutic applications.
Collapse
Affiliation(s)
- Palak Sondhi
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121, USA
| | - Dhanbir Lingden
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121, USA
| | - Jay K Bhattarai
- Mallinckrodt Pharmaceuticals Company, Saint Louis, MO 63042, USA
| | - Alexei V Demchenko
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | - Keith J Stine
- Department of Chemistry and Biochemistry, University of Missouri-Saint Louis, Saint Louis, MO 63121, USA
| |
Collapse
|
3
|
Park J, Lee S, Lee H, Han S, Kang TH, Kim D, Kang T, Choi I. Colloidal Multiscale Assembly via Photothermally Driven Convective Flow for Sensitive In-Solution Plasmonic Detections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201075. [PMID: 35570749 DOI: 10.1002/smll.202201075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
The assembly of metal nanoparticles and targets to be detected in a small light probe volume is essential for achieving sensitive in-solution surface-enhanced Raman spectroscopy (SERS). Such assemblies generally require either chemical linkers or templates to overcome the random diffusion of the colloids unless the aqueous sample is dried. Here, a facile method is reported to produce 3D multiscale assemblies of various colloids ranging from molecules and nanoparticles to microparticles for sensitive in-solution SERS detection without chemical linkers and templates by exploiting photothermally driven convective flow. The simulations suggest that colloids sub 100 nm in diameter can be assembled by photothermally driven convective flow regardless of density; the assembly of larger colloids up to several micrometers by convective flow is significant only if their density is close to that of water. Consistent with the simulation results, the authors confirm that the photothermally driven convective flow is mainly responsible for the observed coassembly of plasmonic gold nanorods with either smaller molecules or larger microparticles. It is further found that the coassembly with the plasmonic nanoantennae leads to dramatic Raman enhancements of molecules, microplastics, and microbes by up to fivefold of magnitude compared to those measured in solution without the coassembly.
Collapse
Affiliation(s)
- Junhee Park
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Seungki Lee
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hyunjoo Lee
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seungyeon Han
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Tae Ho Kang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Dongchoul Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
4
|
Koya A, Zhu X, Ohannesian N, Yanik AA, Alabastri A, Proietti Zaccaria R, Krahne R, Shih WC, Garoli D. Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS NANO 2021; 15:6038-6060. [PMID: 33797880 PMCID: PMC8155319 DOI: 10.1021/acsnano.0c10945] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/29/2021] [Indexed: 05/04/2023]
Abstract
The field of plasmonics is capable of enabling interesting applications in different wavelength ranges, spanning from the ultraviolet up to the infrared. The choice of plasmonic material and how the material is nanostructured has significant implications for ultimate performance of any plasmonic device. Artificially designed nanoporous metals (NPMs) have interesting material properties including large specific surface area, distinctive optical properties, high electrical conductivity, and reduced stiffness, implying their potentials for many applications. This paper reviews the wide range of available nanoporous metals (such as Au, Ag, Cu, Al, Mg, and Pt), mainly focusing on their properties as plasmonic materials. While extensive reports on the use and characterization of NPMs exist, a detailed discussion on their connection with surface plasmons and enhanced spectroscopies as well as photocatalysis is missing. Here, we report on different metals investigated, from the most used nanoporous gold to mixed metal compounds, and discuss each of these plasmonic materials' suitability for a range of structural design and applications. Finally, we discuss the potentials and limitations of the traditional and alternative plasmonic materials for applications in enhanced spectroscopy and photocatalysis.
Collapse
Affiliation(s)
| | - Xiangchao Zhu
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Nareg Ohannesian
- Department
of Electrical and Computer Engineering, University of Houston, Houston Texas 77204, United States
| | - A. Ali Yanik
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Alessandro Alabastri
- Department
of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
| | - Remo Proietti Zaccaria
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Cixi
Institute of Biomedical Engineering, Ningbo Institute of Materials
Technology and Engineering, Chinese Academy
of Sciences, Zhejiang 315201, China
| | - Roman Krahne
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Wei-Chuan Shih
- Department
of Electrical and Computer Engineering, University of California, Santa
Cruz, California 95064, United States
| | - Denis Garoli
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
- Faculty of
Science and Technology, Free University
of Bozen, Piazza Università
5, 39100 Bolzano, Italy
| |
Collapse
|
5
|
Wang D, Xue W, Ren X, Xu Z. A review on sensing mechanisms and strategies for telomerase activity detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Chowdhury AD, Nasrin F, Gangopadhyay R, Ganganboina AB, Takemura K, Kozaki I, Honda H, Hara T, Abe F, Park S, Suzuki T, Park EY. Controlling distance, size and concentration of nanoconjugates for optimized LSPR based biosensors. Biosens Bioelectron 2020; 170:112657. [PMID: 33010704 DOI: 10.1016/j.bios.2020.112657] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023]
Abstract
In this report, we have examined the distance- and size-dependent localized surface plasmon resonance (LSPR) between fluorescent quantum dots (QDs) and adjacent gold nanoparticles (AuNPs) to provide a comprehensive evaluation, aiming for practical application in biosensing platform. A series of peptides with different chain lengths, connected between QDs and AuNPs is initially applied to prepare various CdSe QDs-peptide-AuNP systems to optimize LSPR signal. Separation distance between two nanoparticles of these systems before and after conjugation is also confirmed by quantum mechanical modeling and corroborated with their LSPR influenced fluorescence variations. After detailed optimizations, it can be noted that larger sized AuNPs make strong quenching of QDs, which gradually shows enhancement of fluorescence with the increment of distance and the smaller sized AuNPs. Depending on the requirement, it is possible to tune the optimized structure of the CdSe QD-peptide-AuNP nanostructures for the application. In this work, two different structural designs with different peptide chain length are chosen to construct two biosensor systems, observing their fluorescence enhancement and quenching effects, respectively. Using different structural orientation of these biosensors, two nanoconjugates has applied for detection of norovirus and influenza virus, respectively to confirm their application in sensing.
Collapse
Affiliation(s)
- Ankan Dutta Chowdhury
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Fahmida Nasrin
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Rupali Gangopadhyay
- University of Engineering and Management, Action Area III, New Town, Kolkata 100156, India.
| | - Akhilesh Babu Ganganboina
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Kenshin Takemura
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| | - Ikko Kozaki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Hiroyuki Honda
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.
| | - Toshimi Hara
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 4-27-2, Kita-13 Ando, Aoi-ku, Shizuoka 420-8637, Japan.
| | - Fuyuki Abe
- Department of Microbiology, Shizuoka Institute of Environment and Hygiene, 4-27-2, Kita-13 Ando, Aoi-ku, Shizuoka 420-8637, Japan.
| | - Sungjo Park
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine and Science, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, 1-20-115 Higashi-ku, Handa-yama, Hamamatsu 431-3192, Japan.
| | - Enoch Y Park
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya Suruga-ku, Shizuoka 422-8529, Japan.
| |
Collapse
|
7
|
Ohannesian N, Gunawardhana L, Misbah I, Rakhshandehroo M, Lin SH, Shih WC. Commercial and emerging technologies for cancer diagnosis and prognosis based on circulating tumor exosomes. JPHYS PHOTONICS 2020. [DOI: 10.1088/2515-7647/ab8699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abstract
Exosomes are nano-sized extracellular vesicles excreted by mammalian cells that circulate freely in the bloodstream of living organisms. Exosomes have a lipid bilayer that encloses genetic material used in intracellular communication (e.g. double-stranded DNA, micro-RNAs, and messenger RNA). Recent evidence suggests that dysregulation of this genetic content within exosomes has a major role in tumor progression in the surrounding microenvironment. Motivated by this discovery, we focused here on using exosomal biomarkers as a diagnostic and prognostic tool for cancer. In this review, we discuss recently discovered exosome-derived proteomic and genetic biomarkers used in cancer diagnosis and prognosis. Although several genetic biomarkers have been validated for their diagnostic values, proteomic biomarkers are still being actively pursued. We discuss both commercial technologies and emerging technologies for exosome isolation and analysis. Emerging technologies can be classified into optical and non-optical methods. The working principle of each method is briefly discussed as well as advantages and limitations.
Collapse
|
8
|
Li J, Zhao F, Deng Y, Liu D, Chen CH, Shih WC. Photothermal generation of programmable microbubble array on nanoporous gold disks. OPTICS EXPRESS 2018; 26:16893-16902. [PMID: 30119508 DOI: 10.1364/oe.26.016893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/04/2018] [Indexed: 05/25/2023]
Abstract
We present a novel technique to generate microbubbles photothermally by continuous-wave laser irradiation of nanoporous gold disk (NPGD) array covered microfluidic channels. When a single laser spot is focused on the NPGDs, a microbubble can be generated with controlled size by adjusting the laser power. The dynamics of both bubble growth and shrinkage are studied. Using computer-generated holography on a spatial light modulator (SLM), simultaneous generation of multiple microbubbles at arbitrary locations with independent control is demonstrated. A potential application of flow manipulation is demonstrated using a microfluidic X-shaped junction. The advantages of this technique are flexible bubble generation locations, long bubble lifetimes, no need for light-adsorbing dyes, high controllability over bubble size, and relatively lower power consumption.
Collapse
|
9
|
Jin CM, Joo JB, Choi I. Facile Amplification of Solution-State Surface-Enhanced Raman Scattering of Small Molecules Using Spontaneously Formed 3D Nanoplasmonic Wells. Anal Chem 2018; 90:5023-5031. [DOI: 10.1021/acs.analchem.7b04674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Chang Min Jin
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Ji Bong Joo
- Department of Chemical Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, 163 Siripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
10
|
Parvez Arnob MM, Shih WC. 3D plasmonic nanoarchitecture as an emerging biosensing platform. Nanomedicine (Lond) 2017; 12:2577-2580. [PMID: 28994340 DOI: 10.2217/nnm-2017-0258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Md Masud Parvez Arnob
- Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Wei-Chuan Shih
- Department of Electrical & Computer Engineering, University of Houston, Houston, TX 77204, USA.,Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA.,Program of Materials Science & Engineering, University of Houston, Houston, TX 77204, USA.,Department of Chemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|