1
|
Tessarolo J, Benchimol E, Jouaiti A, Hosseini MW, Clever GH. Modular enhancement of circularly polarized luminescence in Pd 2A 2B 2 heteroleptic cages. Chem Commun (Camb) 2023; 59:3467-3470. [PMID: 36876714 PMCID: PMC10019126 DOI: 10.1039/d3cc00262d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
Metal-mediated assembly allows us to combine an achiral emissive ligand A with different chiral ligands (such as B) in a non-statistical fashion, obtaining Pd2A2B2 heteroleptic cages showing circularly polarized luminescence (CPL). By using the 'shape complementary assembly' (SCA) strategy, the cages are exclusively obtained as cis-Pd2A2B2 stereoisomers, as confirmed by NMR, MS and DFT analyses. Their unique chiroptical properties derive from the synergy of all the building blocks. Ligand B imparts the chiral information of its aliphatic backbone, comprising two stereogenic sp3 carbon centres, to the overall structure, causing CD and CPL signal induction for the chromophore on ligand A. The heteroleptic cage shows CPL with a |glum| value of 2.5 × 10-3, which is 3-times higher than that for a progenitor based on aromatic helical building block H, thus opening a rational route towards optimizing the CPL properties of self-assembled nanostructures in a modular way.
Collapse
Affiliation(s)
- Jacopo Tessarolo
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| | - Elie Benchimol
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| | - Abdelaziz Jouaiti
- Laboratoire de Tectonique Moléculaire, UMR Unistra-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Mir Wais Hosseini
- Laboratoire de Tectonique Moléculaire, UMR Unistra-CNRS 7140, Université de Strasbourg, 4 rue Blaise Pascal, 67070 Strasbourg, France
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, Dortmund 44227, Germany.
| |
Collapse
|
2
|
|
3
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest-Modulated Circularly Polarized Luminescence by Ligand-to-Ligand Chirality Transfer in Heteroleptic Pd II Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202205725. [PMID: 35616285 PMCID: PMC9544203 DOI: 10.1002/anie.202205725] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/11/2022]
Abstract
Multicomponent metallo-supramolecular assembly allows the rational combination of different building blocks. Discrete multifunctional hosts with an accessible cavity can be prepared in a non-statistical fashion. We employ our shape-complementary assembly (SCA) method to achieve for the first time integrative self-sorting of heteroleptic PdII cages showing guest-tunable circularly polarized luminescence (CPL). An enantiopure helicene-based ligand (M or P configuration) is coupled with a non-chiral emissive fluorenone-based ligand (A or B) to form a series of Pd2 L2 L'2 assemblies. The modular strategy allows to impart the chiral information of the helicenes to the overall supramolecular system, resulting in CPL from the non-chiral component. Guest binding results in a 4-fold increase of CPL intensity. The principle offers potential to generate libraries of multifunctional materials with applications in molecular recognition, enantioselective photo-redox catalysis and information processing.
Collapse
Affiliation(s)
- Kai Wu
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Jacopo Tessarolo
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| | - Ananya Baksi
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| | - Guido H. Clever
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto Hahn Str. 644227DortmundGermany
| |
Collapse
|
4
|
Zhu J, Li C, Li X, Wang Q, Zou L. Different-shaped ligand mediating efficient structurally similar cage-to-cage transformation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wu K, Tessarolo J, Baksi A, Clever GH. Guest‐modulated Circularly Polarized Luminescence by Ligand‐to‐Ligand Chirality Transfer in Heteroleptic Pd(II) Coordination Cages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kai Wu
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Jacopo Tessarolo
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Ananya Baksi
- TU Dortmund: Technische Universitat Dortmund Chemistry and Chemical Biology GERMANY
| | - Guido H. Clever
- TU Dortmund University Faculty for Chemistry and Chemical Biology Otto-Hahn-Str. 6 44227 Dortmund GERMANY
| |
Collapse
|
6
|
Goeb S, Sallé M. Electron-rich Coordination Receptors Based on Tetrathiafulvalene Derivatives: Controlling the Host-Guest Binding. Acc Chem Res 2021; 54:1043-1055. [PMID: 33528243 DOI: 10.1021/acs.accounts.0c00828] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coordination-driven self-assembly methodology has emerged over the last few decades as an extraordinarily versatile synthetic tool for obtaining discrete macrocyclic or cage structures. Rational approaches using large libraries of ligands and metal complexes have allowed researchers to reach more and more sophisticated discrete structures such as interlocked, chiral, or heteroleptic cages, and some of them are designed for guest binding applications. Efforts have been notably produced in controlling host-guest affinity with, in particular, an evident interest in targeting substrate transportation and subsequent delivering. Recent accomplishments in this direction were described from functional cages which can be addressed with light, pH, or through a chemical exchange. The case of a redox-stimulation has been much less explored. In this case, the charge state of the redox-active cavity can be controlled through an applied electrical potential or introduction of an appropriate oxidizing/reducing chemical agent. Beyond possible applications in electrochemical sensing for environmental and medical sciences as well as for redox catalysis, controlling the cavity charge offers the possibility to modulate the host-guest binding affinity through electrostatic interactions, up to the point of disassembly of the host-guest complex, i.e., releasing of the guest molecule from the host cavity.This Account highlights the key studies that we carried out at Angers, related to discrete redox-active coordination-based architectures (i.e., metalla-rings, -cages, and -tweezers). These species are built upon metal-driven self-assembly between electron-rich ligands, based on the tetrathiafulvalene (TTF) moiety (as well as some of its S-rich derivatives), and various metal complexes. Given the high π-donating character of those ligands, the corresponding host structures exhibit a high electronic density on the cavity panels. This situation is favorable to bind complementary electron-poor guests, as it was illustrated with bis(pyrrolo)tetrathiafulvalene (BPTTF)-based cavities, which exhibit hosting properties for C60 or tetrafluorotetracyanoquinodimethane (TCNQ-F4). In addition to the pristine tetrathiafulvalene, which was successfully incorporated into palladium- or ruthenium-based architectures, the case of the so-called extended tetrathiafulvalene (exTTF) appears particularly fascinating. A series of related polycationic and neutral M4L2 ovoid containers, as well as a M6L3 cage, were synthesized, and their respective binding abilities for neutral and anionic guests were studied. Remarkably, such structures allow to control of the binding of the guest upon a redox-stimulation, through two distinctive processes: (i) cage disassembling or (ii) guest displacement. As an extension of this approach, metalla-assembled electron-rich tweezers were designed, which are able to trigger the guest release through an original process based on supramolecular dimerization activated through a redox stimulus. This ensemble of results illustrates the remarkable ability of electron-rich, coordination-based self-assembled cavities to bind various types of guests and, importantly, to trigger their release through a redox-stimulus.
Collapse
Affiliation(s)
- Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 2 bd Lavoisier, F-49000 Angers, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, 2 bd Lavoisier, F-49000 Angers, France
| |
Collapse
|
7
|
Dekhtiarenko M, Allain M, Carré V, Aubriet F, Voitenko Z, Sallé M, Goeb S. Comparing the self-assembly processes of two redox-active exTTF-based regioisomer ligands. NEW J CHEM 2021. [DOI: 10.1039/d1nj04555e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new exTTF-based ligand was synthesized and its coordination-driven self-assembly behavior with a square planar palladium complex was compared with a previously described regioisomer.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv 01033, Ukraine
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
| | - Vincent Carré
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078 Metz Cedex 03, France
| | - Frédéric Aubriet
- LCP-A2MC, FR 3624, Université de Lorraine, ICPM, 1 Bd Arago, 57078 Metz Cedex 03, France
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska st., Kyiv 01033, Ukraine
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-Anjou, 2 bd Lavoisier, F-49045 Angers, France
| |
Collapse
|
8
|
Krykun S, Croué V, Alévêque O, Levillain E, Allain M, Mézière C, Carré V, Aubriet F, Voïtenko Z, Goeb S, Sallé M. A self-assembled tetrathiafulvalene box. Org Chem Front 2021. [DOI: 10.1039/d0qo01543a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A M8L2 metalla-cage constructed through coordination-driven self-assembly from a quinonato bis-ruthenium complex and an electron-rich tetrathiafulvalene (TTF) tetrapyridyl ligand is depicted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - Zoia Voïtenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | | | - Marc Sallé
- Univ Angers
- CNRS
- MOLTECH-ANJOU
- F-49000 Angers
- France
| |
Collapse
|
9
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020; 59:11101-11107. [DOI: 10.1002/anie.202003220] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
10
|
Lisboa LS, Findlay JA, Wright LJ, Hartinger CG, Crowley JD. A Reduced‐Symmetry Heterobimetallic [PdPtL
4
]
4+
Cage: Assembly, Guest Binding, and Stimulus‐Induced Switching. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003220] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lynn S. Lisboa
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - James A. Findlay
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| | - L. James Wright
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - Christian G. Hartinger
- School of Chemical SciencesUniversity of Auckland Private Bag 92019 Auckland 1142 New Zealand
| | - James D. Crowley
- Department of ChemistryUniversity of Otago PO Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
11
|
Dekhtiarenko M, Krykun S, Carré V, Aubriet F, Canevet D, Allain M, Voitenko Z, Sallé M, Goeb S. Tuning the structure and the properties of dithiafulvene metalla-assembled tweezers. Org Chem Front 2020. [DOI: 10.1039/d0qo00641f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electroactive M2L2 metalla-macrocycle constructed through coordination driven self-assembly dimerizes upon oxidation and binds an electro-deficient substrate with a high association constant.
Collapse
Affiliation(s)
- Maksym Dekhtiarenko
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Serhii Krykun
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Vincent Carré
- LCP-A2MC
- FR 3624
- Université de Lorraine
- ICPM
- 57078 Metz Cedex 03
| | | | - David Canevet
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Magali Allain
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv
- Kyiv 01033
- Ukraine
| | - Marc Sallé
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| | - Sébastien Goeb
- Laboratoire MOLTECH-Anjou
- UMR CNRS 6200
- UNIV Angers
- SFR MATRIX
- 49045 Angers Cedex
| |
Collapse
|
12
|
Preston D, Patil KM, O'Neil AT, Vasdev RAS, Kitchen JA, Kruger PE. Long-cavity [Pd2L4]4+ cages and designer 1,8-naphthalimide sulfonate guests: rich variation in affinity and differentiated binding stoichiometry. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00658k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Long cavity dual domain [Pd2L4]4+ cages bind long, dual domain guests, with tunable binding affinities and stoichiometries.
Collapse
Affiliation(s)
- Dan Preston
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Komal M. Patil
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| | - Alex T. O'Neil
- Chemistry
- School of Natural and Computational Sciences
- Massey University
- Auckland
- New Zealand
| | | | - Jonathan A. Kitchen
- Chemistry
- School of Natural and Computational Sciences
- Massey University
- Auckland
- New Zealand
| | - Paul E. Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Physical and Chemical Sciences
- University of Canterbury
- Christchurch 8041
- New Zealand
| |
Collapse
|
13
|
Abstract
The hydrophobic interaction plays a key role in the host–guest systems.
Collapse
Affiliation(s)
- Wei-Bin Yu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Feng-Yi Qiu
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Zhi-Feng Xin
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| | - Po Sun
- Analysis and Testing Central Facility
- Engineering Research Institute
- Anhui University of Technology
- Maanshan 243002
- P. R. China
| |
Collapse
|
14
|
Vasdev RAS, Findlay JA, Garden AL, Crowley JD. Redox active [Pd 2L 4] 4+ cages constructed from rotationally flexible 1,1'-disubstituted ferrocene ligands. Chem Commun (Camb) 2019; 55:7506-7509. [PMID: 31187814 DOI: 10.1039/c9cc03321a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two new ferrocene-containing [Pd2(LFc)4]4+(X-)4 (where X- = BF4- or SbF6-) self-assembled cages (C·BF4 and C·SbF6) were synthesised from the known, rotationally flexible, 1,1'-bis(3-pyridylethynyl)ferrocene ligand (LFc), and characterised by 1H, 13C and diffusion ordered (DOSY) NMR and UV-visible absorption spectroscopies, high resolution electrospray ionisation mass spectrometry (HR-ESI-MS), elemental analysis, X-ray crystallography and cyclic voltammetry (CV). The molecular structures confirmed that cage-like systems (C·BF4 and C·SbF6) were generated. Similar to related [Pd2L4]4+(X-)4, C·SbF6 was able to interact with a range of neutral and anionic guests, with p-toluenesulfonate showing the strongest association constant. Cyclic voltammetry studies revealed that the cage systems were redox active. However, the redox potential of the cage was unperturbed upon the addition of guests.
Collapse
Affiliation(s)
- Roan A S Vasdev
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand. and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - James A Findlay
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand. and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Anna L Garden
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand. and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand. and MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
15
|
Mai HD, Tran NM, Yoo H. Multilevel coordination-driven assembly for metallosupramolecules with hierarchical structures. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Puig E, Desmarets C, Gontard G, Rager MN, Cooksy AL, Amouri H. Capturing a Square Planar Gold(III) Complex Inside a Platinum Nanocage: A Combined Experimental and Theoretical Study. Inorg Chem 2019; 58:3189-3195. [DOI: 10.1021/acs.inorgchem.8b03272] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Emmanuel Puig
- Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, CNRS, IPCM (UMR 8232), 4 place Jussieu, 75252 Paris cedex 05, France
| | - Christophe Desmarets
- Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, CNRS, IPCM (UMR 8232), 4 place Jussieu, 75252 Paris cedex 05, France
| | - Geoffrey Gontard
- Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, CNRS, IPCM (UMR 8232), 4 place Jussieu, 75252 Paris cedex 05, France
| | | | - Andrew L. Cooksy
- Department of Chemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Hani Amouri
- Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, CNRS, IPCM (UMR 8232), 4 place Jussieu, 75252 Paris cedex 05, France
| |
Collapse
|
17
|
Steel PJ, McMorran DA. Selective Anion Recognition by a Dynamic Quadruple Helicate. Chem Asian J 2018; 14:1098-1101. [PMID: 30209886 DOI: 10.1002/asia.201801262] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/04/2018] [Indexed: 01/06/2023]
Abstract
An M2 L4 quadruple helicate, formed by wrapping four molecules of 1,4-bis(3-pyridyloxy)benzene (L1 ) about two palladium(II) centers, is shown to bind anions within its internal cavity. 1 H NMR exchange experiments provide a quantitative measure of anion selectivity and reveal a preference for ClO4 - over the other tetrahedral anions BF4 - and ReO4 - and the octahedral anion PF6 - . X-ray crystal structures of [Pd2 (L1 )4 ]4+ helicates containing ClO4 , BF4 - and I- reveal that the cavity size can dynamically change in response to the size of the guest.
Collapse
Affiliation(s)
- Peter J Steel
- Department of Chemistry, University of Canterbury, Christchurch, 8140, New Zealand
| | - David A McMorran
- Department of Chemistry Te Tari Matauranga Mata, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
18
|
Szalóki G, Krykun S, Croué V, Allain M, Morille Y, Aubriet F, Carré V, Voitenko Z, Goeb S, Sallé M. Redox-Driven Transformation of a Discrete Molecular Cage into an Infinite 3D Coordination Polymer. Chemistry 2018; 24:11273-11277. [DOI: 10.1002/chem.201801653] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Indexed: 11/05/2022]
Affiliation(s)
- György Szalóki
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Serhii Krykun
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
- Taras Shevchenko National University of Kyiv; 64/13 Volodymyrska st. Kyiv 01033 Ukraine
| | - Vincent Croué
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Magali Allain
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Yohann Morille
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Frédéric Aubriet
- LCP-A2MC; FR 3624; Université de Lorraine, ICPM; 1 boulevard Arago 57078 Metz Cedex 03 France
| | - Vincent Carré
- LCP-A2MC; FR 3624; Université de Lorraine, ICPM; 1 boulevard Arago 57078 Metz Cedex 03 France
| | - Zoia Voitenko
- Taras Shevchenko National University of Kyiv; 64/13 Volodymyrska st. Kyiv 01033 Ukraine
| | - Sébastien Goeb
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| | - Marc Sallé
- Université d'Angers; CNRS UMR 6200; Laboratoire MOLTECH-Anjou; 2 bd Lavoisier 49045 Angers Cedex France
| |
Collapse
|
19
|
A M2L2 Redox-Active Metalla-Macrocycle Based on Electron-Rich 9-(1,3-Dithiol-2-ylidene)Fluorene. INORGANICS 2018. [DOI: 10.3390/inorganics6020044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
20
|
Huang Y, Zou GD, Li HM, Cui Y, Fan Y. A photoactive {Ti16} metal–organic capsule: structural, photoelectrochemical and photocatalytic properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj02992j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoactive and highly porous {Ti16} metal–organic coordination capsule with a cavity length of ∼1.4 nm was synthesized, in which photosensitizers and Ti-oxo cluster units can work cooperatively to promote the photoelectrochemical and photocatalytic performance.
Collapse
Affiliation(s)
- Yang Huang
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Guo-Dong Zou
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Hua-Min Li
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Ying Cui
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| | - Yang Fan
- College of Chemistry and Chemical Engineering
- Xinyang Normal University
- Xinyang 464000
- China
| |
Collapse
|
21
|
Ganta S, Chand DK. Multi-Stimuli-Responsive Metallogel Molded from a Pd2L4-Type Coordination Cage: Selective Removal of Anionic Dyes. Inorg Chem 2017; 57:3634-3645. [DOI: 10.1021/acs.inorgchem.7b02239] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Sudhakar Ganta
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Dillip K. Chand
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|