1
|
Bi Y, Xu K, Wang Y, Li X, Zhang X, Wang J, Zhang Y, Liu Q, Fang Q. Efficient metal-organic framework-based dual co-catalysts system assist CdS for hydrogen production from photolysis of water. J Colloid Interface Sci 2024; 661:501-511. [PMID: 38308890 DOI: 10.1016/j.jcis.2024.01.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Metal-organic framework materials (MOFs) and their derivatives have been widely used in the field of photocatalytic water decomposition for hydrogen production. In this study, NiS/CdS was initially acquired and subsequently combined with DUT-67 via ultrasound to create a unique ternary photocatalyst NiS/CdS@DUT-67. The rate of hydrogen production for NiS/CdS@DUT-67 is 9618 μmol·g NiS/CdS-1·h-1 for NiS/CdS@DUT-67, which is 32 times and 2.5 times higher than that for CdS and NiS/CdS, respectively. Of particular interest is the fact that even after 50 h of photocatalysis, the hydrogen production rate did not show a significant decrease, demonstrating its excellent stability compared to CdS and NiS/CdS. In this ternary system, NiS and DUT-67 function as dual co-catalysts for CdS, collaborating to enhance charge separation during the photocatalysis. This study presents a clear demonstration of the advantages of utilizing metal-organic framework derivatives (MOF-derivatives) cophotocatalysts and their synergistic effect, resulting in improved photocatalytic activity and stability of semiconductors. This innovative approach provides a new perspective on constructing photocatalytic materials with exceptional performance.
Collapse
Affiliation(s)
- Yiyang Bi
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun Xu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ying Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xupeng Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jiabo Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yu Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
2
|
Ji H, Liu S, Shi H, Wang W. Phosphomolybdic acid-based sulfur-containing metal–organic framework as an efficient catalyst for dibenzothiophene oxidative desulfurization. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2039142] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haifeng Ji
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Shuting Liu
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Hongfei Shi
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Weidong Wang
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou, People’s Republic of China
| |
Collapse
|
3
|
Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK, Hupp JT. MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 2022; 51:1045-1097. [PMID: 35005751 DOI: 10.1039/d1cs00968k] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A defining characteristic of nearly all catalytically functional MOFs is uniform, molecular-scale porosity. MOF pores, linkers and nodes that define them, help regulate reactant and product transport, catalyst siting, catalyst accessibility, catalyst stability, catalyst activity, co-catalyst proximity, composition of the chemical environment at and beyond the catalytic active site, chemical intermediate and transition-state conformations, thermodynamic affinity of molecular guests for MOF interior sites, framework charge and density of charge-compensating ions, pore hydrophobicity/hydrophilicity, pore and channel rigidity vs. flexibility, and other features and properties. Collectively and individually, these properties help define overall catalyst functional behaviour. This review focuses on how porous, catalyst-containing MOFs capitalize on molecular-scale confinement, containment, isolation, environment modulation, energy delivery, and mobility to accomplish desired chemical transformations with potentially superior selectivity or other efficacy, especially in comparison to catalysts in homogeneous solution environments.
Collapse
Affiliation(s)
- Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Timothy A Goetjen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Qining Wang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Julia G Knapp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Megan C Wasson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Ying Yang
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Zoha H Syed
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Justin M Notestein
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| |
Collapse
|
4
|
Abednatanzi S, Najafi M, Gohari Derakhshandeh P, Van Der Voort P. Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214259] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Cheedarala RK, Chidambaram RR, Siva A, Song JI. An aerobic oxidation of alcohols into carbonyl synthons using bipyridyl-cinchona based palladium catalyst. RSC Adv 2021; 11:32942-32954. [PMID: 35493605 PMCID: PMC9042156 DOI: 10.1039/d1ra05855j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/04/2022] Open
Abstract
We have reported an aerobic oxidation of primary and secondary alcohols to respective aldehydes and ketones using a bipyridyl-cinchona alkaloid based palladium catalytic system (PdAc-5) using oxygen at moderate pressure. The PdAc-5 catalyst was analysed using SEM, EDAX, and XPS analysis. The above catalytic system is used in experiments for different oxidation systems which include different solvents, additives, and bases which are cheap, robust, non-toxic, and commercially available on the industrial bench. The obtained products are quite appreciable in both yield and selectivity (70-85%). In addition, numerous important studies, such as comparisons with various commercial catalysts, solvent systems, mixture of solvents, and catalyst mole%, were conducted using PdAc-5. The synthetic strategy of oxidation of alcohol into carbonyl compounds was well established and all the products were analysed using 1H NMR, 13CNMR and GC-mass analyses.
Collapse
Affiliation(s)
- Ravi Kumar Cheedarala
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University Changwon City Republic of Korea
| | - Ramasamy R Chidambaram
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Ayyanar Siva
- Supramolecular and Organometallic Chemistry Lab, Department of Inorganic Chemistry, School of Chemistry, Madurai Kamaraj University Madurai 625021 Tamil Nadu India
| | - Jung Il Song
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University Changwon City Republic of Korea
| |
Collapse
|
6
|
Engineered Superparamagnetic Core–Shell Metal–Organic Frame-Work (Fe3O4@Ni–Co-BTC NPs) with Enhanced Photocatalytic Activity for Selective Aerobic Oxidation of Alcohols Under Solar Light Irradiation. Catal Letters 2020. [DOI: 10.1007/s10562-020-03291-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Liu Y, Zou J, Guo B, Ren Y, Wang Z, Song Y, Yu Y, Wu L. Selective Photocatalytic Oxidation of Thioanisole on DUT-67(Zr) Mediated by Surface Coordination. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2199-2208. [PMID: 32075375 DOI: 10.1021/acs.langmuir.9b02582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DUT-67(Zr) was obtained by a solvothermal route and applied to photocatalytic selective synthesis of thioanisole under light illuminating. The conversion of thioanisole is up to 95%, and the selectivity of methyl phenyl sulfoxide is 98%. The activity of DUT-67(Zr) is over 10 times higher than that of UiO-66. This great increased activity is attributed to the high percentages of oxygen vacancies on DUT-67(Zr). The ESR result shows there are more oxygen vacancies that can expose high density unsaturated Zr sites on DUT-67(Zr). The in situ FTIR reveals that unsaturated Zr sites on DUT-67(Zr) possess Lewis acidity which facilitate the adsorption of the substrates to form the coordination species, promoting the activation of thioanisole. The absorption edge of DUT-67(Zr) with coordination species red-shifts to 360 nm, which can be presented by DRS. Furthermore, the oxygen molecules can be activated by excited electrons to form •O2-. Finally, a possible photocatalytic process of oxidating thioanisole to methyl phenyl sulfoxide based on the coordination effect between DUT-67(Zr) and thioanisole is proposed at a molecular level.
Collapse
Affiliation(s)
- Yanyang Liu
- State Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou 350116, P. R. China
| | - Junhua Zou
- State Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou 350116, P. R. China
| | - Binbin Guo
- State Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yahang Ren
- State Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhitong Wang
- State Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yujie Song
- State Key Laboratory of Photocatalysis on Energy and Environmental, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ling Wu
- Key Laboratory of Eco-materials Advanced Technology, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
8
|
|
9
|
|
10
|
Li G, Zhao S, Zhang Y, Tang Z. Metal-Organic Frameworks Encapsulating Active Nanoparticles as Emerging Composites for Catalysis: Recent Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800702. [PMID: 30247789 DOI: 10.1002/adma.201800702] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/10/2018] [Indexed: 05/21/2023]
Abstract
Beyond conventional porous materials, metal-organic frameworks (MOFs) have aroused great interest in the construction of nanocatalysts with the characteristics of catalytically active nanoparticles (NPs) confined into the cavities/channels of MOFs or surrounded by MOFs. The advantages of adopting MOFs as the encapsulating matrix are multifold: uniform and long-range ordered cavities can effectively promote the mass transfer and diffusion of substrates and products, while the diverse metal nodes and tunable organic linkers may enable outstanding synergy functions with the encapsulated active NPs. Herein, some key issues related to MOFs for catalysis are discussed. Then, state-of-the art progress in the encapsulation of catalytically active NPs by MOFs as well as their synergy functions for enhanced catalytic performance in the fields of thermo-, photo-, and electrocatalysis are summarized. Notably, encapsulation-structured nanocatalysts exhibit distinct advantages over conventional supported catalysts, especially in terms of the catalytic selectivity and stability. Finally, challenges and future developments in MOF-based encapsulation-structured nanocatalysts are proposed. The aim is to deliver better insight into the design of well-defined nanocatalysts with atomically accurate structures and high performance in challenging reactions.
Collapse
Affiliation(s)
- Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yin Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Future Technology, Center for Nanochemistry, Peking University, Beijing, 100871, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
11
|
Dadras A, Naimi-Jamal MR, Moghaddam FM, Ayati SE. Green and selective oxidation of alcohols by immobilized Pd onto triazole functionalized
$$\hbox {Fe}_{3}\hbox {O}_{4}$$
Fe
3
O
4
magnetic nanoparticles. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1567-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Karimian R, Davarpanah SJ. MIL-101(Fe) hexagonal microspindle as a highly efficient, reusable and versatile catalyst for benzo-fused heterocyclic nucleus synthesis. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramin Karimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Seyed Javad Davarpanah
- Applied Biotechnology Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| |
Collapse
|
13
|
Kumar BS, Pitchumani K. Chemistry in Confinement: Copper and Palladium Catalyzed Ecofriendly Organic Transformations within Porous Frameworks. CHEM REC 2017; 18:506-526. [DOI: 10.1002/tcr.201700056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Basuvaraj Suresh Kumar
- Department of Natural Products Chemistry, School of Chemistry; Madurai Kamaraj University; Madurai 625021, Tamil Nadu India
| | - Kasi Pitchumani
- Department of Natural Products Chemistry, School of Chemistry; Madurai Kamaraj University; Madurai 625021, Tamil Nadu India
- Centre for Green Chemistry Processes, School of Chemistry; Madurai Kamaraj University; Madurai 625021, Tamil Nadu India
| |
Collapse
|