1
|
Nasimpour F, Mansournia M, Badiei A. Nitrogen-contained Nanoporous Hyper-cross-linked Polymer: A New Turn-on Fluorescence Probe for Detection of Ag + Ions in Aqueous Media. J Fluoresc 2024; 34:2115-2121. [PMID: 37707710 DOI: 10.1007/s10895-023-03404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
A fluorescence probe was designed using a nitrogen-contained mesoporous hyper-cross-linked polymer precursor (NH2-HCP) in order to selectively detect silver (Ag+) ions. NH2-HCP exhibits fluorescence intensity, but upon the addition of Ag+, a significant enhancement in fluorescence signal is observed. The relationship between fluorescence intensity enhancement and Ag+ concentration shows a linear and monotonic trend. The probe's response to various other cations such as Al3+, Fe3+, Cd2+, Ni2+, Cu2+, Fe2+, Hg2+, Mg2+, Zn2+, Pb2+, Mn2+, Co2+, Ca2+, Na+, and K+, as well as halogen anions like F-, Cl-, Br-, and I- was also investigated. Under optimal conditions, the probe demonstrated a linear range of 0.1-3 μM and a detection limit of 0.01 μM.
Collapse
Affiliation(s)
- Fariba Nasimpour
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Ding L, Chanchaona N, Konstas K, Hill MR, Fan X, Wood CD, Lau CH. Synthesizing Hypercrosslinked Polymers with Deep Eutectic Solvents to Enhance CO 2/N 2 Selectivity. CHEMSUSCHEM 2024; 17:e202301602. [PMID: 38298090 DOI: 10.1002/cssc.202301602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Hypercrosslinked polymers (HCPs) are widely used in ion exchange, water purification, and gas separation. However, HCP synthesis typically requires hazardous halogenated solvents e. g., dichloroethane, dichloromethane and chloroform which are toxic to human health and environment. Herein we hypothesize that the use of halogenated solvents in HCP synthesis can be overcome with deep eutectic solvents (DES) comprising metal halides-FeCl3, ZnCl2 that can act as both the solvent hydrogen bond donor and catalyst for polymer crosslinking via Friedel Crafts alkylation. We validated our hypothesis by synthesizing HCPs in DESs via internal and external crosslinking strategies. [ChCl][ZnCl2]2 and [ChCl][FeCl3]2 was more suitable for internal and external hypercrosslinking, respectively. The specific surface areas of HCPs synthesized in DES were 20-60 % lower than those from halogenated solvents, but their CO2/N2 selectivities were up to 453 % higher (CO2/N2 selectivity of poly-α,α'-dichloro-p-xylene synthesized in [ChCl][ZnCl2]2 via internal crosslinking reached a value of 105). This was attributed to the narrower pore size distributions of HCPs synthesized in DESs.
Collapse
Affiliation(s)
- Liang Ding
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| | - Nadhita Chanchaona
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| | - Kristina Konstas
- Manufacturing Unit, CSIRO Australia, Gate 3 Normanby Road, VIC, 3141
| | - Matthew R Hill
- Manufacturing Unit, CSIRO Australia, Gate 3 Normanby Road, VIC, 3141
| | - Xianfeng Fan
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| | - Colin D Wood
- Energy Business Unit, CSIRO Australia, Kensington, WA, 6151, Australia
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Kings Building, Edinburgh, EH93FB, United Kingdom
| |
Collapse
|
3
|
Moradi MR, Torkashvand A, Ramezanipour Penchah H, Ghaemi A. Amine functionalized benzene based hypercrosslinked polymer as an adsorbent for CO 2/N 2 adsorption. Sci Rep 2023; 13:9214. [PMID: 37280347 DOI: 10.1038/s41598-023-36434-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/03/2023] [Indexed: 06/08/2023] Open
Abstract
In this work, benzene based hypercrosslinked polymer (HCP) as an adsorbent was modified using amine group to enhance CO2 uptake capability and selectivity. Based on BET analysis result, the HCP and the modified HCP provide surface area of 806 (m2 g-1) and micropore volume of 453 (m2 g-1) and 0.19 (cm3 g-1) and 0.14 (cm3 g-1), respectively. The CO2 and N2 gases adsorption were performed in a laboratory scale reactor at a temperature between 298 and 328 K and pressure up to 9 bar. The experimental data were evaluated using isotherm, kinetic and thermodynamic models to identify the absorbent behavior. The maximum CO2 adsorption capacity at 298 K and 9 bar was obtained 301.67 (mg g-1) for HCP and 414.41 (mg g-1) for amine modified HCP. The CO2 adsorption thermodynamic parameters assessment including enthalpy changes, entropy changes, and Gibbs free energy changes at 298 K were resulted - 14.852 (kJ mol-1), - 0.024 (kJ mol-1 K-1), - 7.597 (kJ mol-1) for HCP and - 17.498 (kJ mol-1), - 0.029(kJ mol-1 K-1), - 8.9 (kJ mol-1) for amine functionalized HCP, respectively. Finally, the selectivity of the samples were calculated at a CO2/N2 composition of 15:85 (v/v) and 43% enhancement in adsorption selectivity at 298 K was obtained for amine modified HCP.
Collapse
Affiliation(s)
- Mohammad Reza Moradi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Alireza Torkashvand
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Hamid Ramezanipour Penchah
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, PO Box 16846-13114, Tehran, Iran.
| |
Collapse
|
4
|
Liu A, Mollart C, Trewin A, Fan X, Lau CH. Photo-Modulating CO 2 Uptake of Hypercross-linked Polymers Upcycled from Polystyrene Waste. CHEMSUSCHEM 2023; 16:e202300019. [PMID: 36772914 DOI: 10.1002/cssc.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 05/20/2023]
Abstract
Incorporating photo-switches into skeletal structures of microporous materials or as guest molecules yield photo-responsive materials for low-energy CO2 capture but at the expense of lower CO2 uptake. Here, we overcome this limitation by exploiting trans-cis photoisomerization of azobenzene loaded into the micropores of hypercross-linked polymers (HCPs) derived from waste polystyrene. Azobenzene in HCP pores reduced CO2 uptake by 19 %, reaching 37.7 cm3 g-1 , but this loss in CO2 uptake was not only recovered by trans-cis photoisomerization of azobenzene, but also increased by 22 %, reaching 56.9 cm3 g-1 , when compared to as-prepared HCPs. Computational simulations show that this increase in CO2 uptake is due to photo-controlled increments in 10-20 Å micropore volume, i. e., adsorption sites and a photo-reversible positive dipole moment. Irradiating these HCPs with visual-range light reverted CO2 uptake to 33 cm3 g-1 . This shows that it is feasible to recycle waste polystyrene into advanced materials for low-energy carbon capture.
Collapse
Affiliation(s)
- Aotian Liu
- School of Engineering, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3BF, United Kingdom
| | - Catherine Mollart
- Department of Chemistry, Lancaster University, Lancaster, UK, LA1 4YB, United Kingdom
| | - Abbie Trewin
- Department of Chemistry, Lancaster University, Lancaster, UK, LA1 4YB, United Kingdom
| | - Xianfeng Fan
- School of Engineering, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3BF, United Kingdom
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Robert Stevenson Road, Edinburgh, EH9 3BF, United Kingdom
| |
Collapse
|
5
|
Mane ST, Kanase DG, Mohite S. Role of aromatic ring spacer in homo‐coupled conjugated microporous polymers in selective
CO
2
separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sachin Tanaji Mane
- Department of Chemistry Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya Sangli Maharashtra India
| | - D. G. Kanase
- Department of Chemistry Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya Sangli Maharashtra India
| | - Suhas Mohite
- Department of Chemistry Bharati Vidyapeeth Deemed University, Yashwantrao Mohite College Pune Maharashtra India
| |
Collapse
|
6
|
Post-synthetic modification of fluorenone based hypercrosslinked porous copolymers for carbon dioxide capture. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Triptycene based and nitrogen rich hyper cross linked polymers (TNHCPs) as efficient CO2 and iodine adsorbent. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Changani Z, Razmjou A, Taheri-Kafrani A, Warkiani ME, Asadnia M. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry. CHEMOSPHERE 2020; 249:126079. [PMID: 32062554 DOI: 10.1016/j.chemosphere.2020.126079] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
The development of stable and effective iodine removal systems would be highly desirable in addressing environmental issues relevant to water contamination. In the present research, a novel iodine adsorbent was synthesized by self-polymerization of dopamine (PDA) onto inert polypropylene (PP) membrane. This PP/PDA membrane was thoroughly characterized and its susrface propeties was analyzed by various analytical techniques indcluding field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH), contact angle, and surface free energy measurement. The PP/PDA membranes were subsequently used for batchwise removal of iodine at different temperatures (25-70 °C), pH (2-7), and surface areas (1-10 cm2) to understand the underlying adsorption phenomena and to estimate the membrane capacity for iodine uptake. The increase in temperature and pH both led to higher adsorption of iodine. The present approach showed a removal efficiency of over 75% for iodine using 10 cm2 PP/PDA membrane (18.87 m2 g-1) within 2 h at moderate temperatures (∼50 °C) and pH > 4, about 15 fold compared to the PP control membrane. The adsorption kinetics and isotherms were well fitted to the pseudo-second-order kinetic and Langmuir isotherm models (R2 > 0.99). This adsorbent can be recycled and reused at least six times with stable iodine adsorption. These findings were attributed to the homogenous monolayer adsorption of the iodide on the surface due to the presence of catechol and amine groups in the PP/PDA membrane. This study proposes an efficient adsorbent for iodine removal.
Collapse
Affiliation(s)
- Zinat Changani
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran; UNESCO Centre for Membrane Science and Technology, School of Chemical Science and Engineering, University of New South Wales, Sydney, 2052, Australia.
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Ultimo, NSW, 2007, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
9
|
Wen W, Shuttleworth PS, Yue H, Fernández-Blázquez JP, Guo J. Exceptionally Stable Microporous Organic Frameworks with Rigid Building Units for Efficient Small Gas Adsorption and Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7548-7556. [PMID: 31967780 DOI: 10.1021/acsami.9b20771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three microporous organic frameworks (hereafter denoted as MPOF-Ads) based on a rigid adamantane core have been successfully synthesized via Sonogashira-Hagihara polycondensation coupling in high yields, 83.7-94.6%. The obtained amorphous MPOF-Ads networks have high Brunauer-Emmett-Teller surface areas (up to 737.3 m2 g-1), narrow pore size distribution (0.95-1.06 nm), and superior thermal (the initial decomposition temperature T5% under an N2 atmosphere can reach 410 °C) and chemical stability (no apparent degradation in common organic solvents or strong acid/base solutions after 7 days). At 273 K and 1.0 bar, these MPOF-Ads networks present good uptake capacities for small gas molecules (13.9 wt % CO2 and 1.66 wt % CH4) for which the presence of high surface area, predominant microporosity, and narrow pore size distribution are beneficial. In addition, the as-prepared MPOF-Ads networks possess moderate isosteric heats for CO2 (Qst = 19.5-30.3 kJ mol-1) and show desired CO2/N2 and CO2/CH4 selectivity (36.3-38.4 and 4.1-4.3 based on Henry's law and 17.88-24.92 and 4.24-5.70 based on ideal adsorbed solution theory, respectively). With the demonstrated properties, the synthesized MPOF-Ads networks display potential for small gas storage and separation that can be used in harsh environments because of their superior physical and chemical stability.
Collapse
Affiliation(s)
- Weiqiu Wen
- School of Chemical Engineering & Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | - Peter S Shuttleworth
- Department of Polymer Physics, Elastomers and Energy , Institute of Polymer Science and Technology, CSIC , 28006 Madrid , Spain
| | - Hangbo Yue
- School of Chemical Engineering & Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| | | | - Jianwei Guo
- School of Chemical Engineering & Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
10
|
Pan Y, Xu Z, Tan W, Zhu Y, Wang Y, Li P, Chen X, Sun Z, Li C, Jiang B. Novel amino-functionalized hypercrosslinked polymer nanoparticles constructed from commercial macromolecule polystyrene via a two-step strategy for CO 2 adsorption. NEW J CHEM 2020. [DOI: 10.1039/d0nj04976j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Commercial polymers have large cost advantage to drive HCPs to industrialize. The AHCPNPs using commercial PS as main block prove that it still has well-defined microporous structure, high specific surface area and extremely CO2 capture capacity.
Collapse
Affiliation(s)
- Yaoyu Pan
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Ziqiang Xu
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Wenze Tan
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Yalin Zhu
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Yun Wang
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Peihang Li
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Xueqin Chen
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
- Key Laboratory of Green Preparation and Application for Functional Materials
| | - Zhengguang Sun
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
| | - Cao Li
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
| | - Bingbing Jiang
- Key Laboratory of Polymer Material in Hubei
- Hubei University
- Wuhan 430062
- China
- Key Laboratory of Green Preparation and Application for Functional Materials
| |
Collapse
|
11
|
Liu F, Fu W, Chen S. Adsorption behavior and kinetics of CO
2
on amine‐functionalized hyper‐crosslinked polymer. J Appl Polym Sci 2019. [DOI: 10.1002/app.48479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fenglei Liu
- PCFM Lab, School ChemistrySun Yat‐Sen University Guangzhou 510275 People's Republic of China
| | - Wenhao Fu
- PCFM Lab, School ChemistrySun Yat‐Sen University Guangzhou 510275 People's Republic of China
| | - Shuixia Chen
- PCFM Lab, School ChemistrySun Yat‐Sen University Guangzhou 510275 People's Republic of China
- Materials Science InstituteSun Yat‐Sen University Guangzhou 510275 People's Republic of China
| |
Collapse
|
12
|
Fu Z, Mohamed IM, Li J, Liu C. Novel adsorbents derived from recycled waste polystyrene via cross-linking reaction for enhanced adsorption capacity and separation selectivity of CO2. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Su P, Zhang X, Xu Z, Zhang G, Shen C, Meng Q. Amino-functionalized hypercrosslinked polymers for highly selective anionic dye removal and CO2/N2 separation. NEW J CHEM 2019. [DOI: 10.1039/c9nj02847a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recently, great improvements have been achieved in the fabrication of adsorbents.
Collapse
Affiliation(s)
- Pengcheng Su
- Institute of Oceanic and Environmental Chemical Engineering
- and State Key Lab Breeding Base of Green Chemical Synthesis Technology
- Zhejiang University of Technology
- 310014 Hangzhou
- P. R. China
| | - Xu Zhang
- Institute of Oceanic and Environmental Chemical Engineering
- and State Key Lab Breeding Base of Green Chemical Synthesis Technology
- Zhejiang University of Technology
- 310014 Hangzhou
- P. R. China
| | - Zehai Xu
- Institute of Oceanic and Environmental Chemical Engineering
- and State Key Lab Breeding Base of Green Chemical Synthesis Technology
- Zhejiang University of Technology
- 310014 Hangzhou
- P. R. China
| | - Guoliang Zhang
- Institute of Oceanic and Environmental Chemical Engineering
- and State Key Lab Breeding Base of Green Chemical Synthesis Technology
- Zhejiang University of Technology
- 310014 Hangzhou
- P. R. China
| | - Chong Shen
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| | - Qin Meng
- College of Chemical and Biological Engineering, and State Key Laboratory of Chemical Engineering
- Zhejiang University
- 310027 Hangzhou
- P. R. China
| |
Collapse
|
14
|
Li X, Guo J, Tong R, Topham PD, Wang J. Microporous frameworks based on adamantane building blocks: Synthesis, porosity, selective adsorption and functional application. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Selective CO2 capture and versatile dye adsorption using a microporous polymer with triptycene and 1,2,3-triazole motifs. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.12.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Jia Z, Pan J, Tian C, Yuan D. Twisted molecule-based hyper-crosslinked porous polymers for rapid and efficient removal of organic micropollutants from water. RSC Adv 2018; 8:36812-36818. [PMID: 35558961 PMCID: PMC9088887 DOI: 10.1039/c8ra04792h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Four hyper-crosslinked porous polymers were synthesized by a facile method, and exhibited excellent adsorption performances for organic micropollutant removal from water.
Collapse
Affiliation(s)
- Ziyan Jia
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Jiannan Pan
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Chen Tian
- School of Environment and Energy
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters
- Ministry of Education
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials
- South China University of Technology
| | - Daqiang Yuan
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
17
|
Lee SP, Mellon N, Shariff AM, Leveque JM. Geometry variation in porous covalent triazine polymer (CTP) for CO2 adsorption. NEW J CHEM 2018. [DOI: 10.1039/c8nj00638e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covalent triazine-based organic polymers (CTPs), a sub class of covalent organic polymers (COPs), are promising materials for CO2 adsorption although the impact of their dimensionality on the trapping process is not well-understood.
Collapse
Affiliation(s)
- Siew-Pei Lee
- Chemical Engineering Department
- Universiti Teknologi PETRONAS
- 32610 Bandar Seri Iskandar
- Malaysia
| | - N. Mellon
- Chemical Engineering Department
- Universiti Teknologi PETRONAS
- 32610 Bandar Seri Iskandar
- Malaysia
| | - Azmi M. Shariff
- Chemical Engineering Department
- Universiti Teknologi PETRONAS
- 32610 Bandar Seri Iskandar
- Malaysia
| | | |
Collapse
|