1
|
Jin J, Mou C, Zou J, Xie X, Wang C, Shen T, Deng Y, Li B, Jin Z, Li X, Chi YR. Development of axially chiral urazole scaffolds for antiplant virus applications against potato virus Y. PEST MANAGEMENT SCIENCE 2023; 79:2527-2538. [PMID: 36864730 DOI: 10.1002/ps.7428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Potato virus Y (PVY) was first discovered by Smith in 1931 and is currently ranked as the fifth most significant plant virus. It can cause severe damage to plants from the family Solanaceae, which results in billions of dollars of economic loss worldwide every year. To discover new antiviral drugs, a class of multifunctional urazole derivatives bearing a stereogenic CN axis were synthesized with excellent optical purities for antiviral evaluations against PVY. RESULTS The absolute configurations of the axially chiral compounds exhibited obvious distinctions in antiviral bioactivities, with several of these enantio-enriched axially chiral molecules showing excellent anti-PVY activities. In particular, compound (R)-9f exhibited remarkable curative activities against PVY with a 50% maximal effective concentration (EC50 ) of 224.9 μg mL-1 , which was better than that of ningnanmycin (NNM), which had an EC50 of 234.0 μg mL-1 . And the EC50 value of the protective activities of compound (R)-9f was 462.2 μg mL-1 , which was comparable to that of NNM (442.0 μg mL-1 ). The mechanisms of two enantiomer of the axially chiral compounds 9f were studied by both molecule docking and defensive enzyme activity tests. CONCLUSION Mechanistic studies demonstrated that the axially chiral configurations of the compounds played significant roles in the molecule PVY-CP (PVY Coat Protein) interactions and could enhance the activities of the defense enzymes. The (S)-9f showed only one carbon-hydrogen bond and one π-cation interaction between the chiral molecule and the PVY-CP amino acid sites. In contrast, the (R)-enantiomer of 9f exhibited three hydrogen bonding interactions between the carbonyl groups and the PVY-CP active sites of ARG157 and GLN158. The current study provides significant information on the roles that axial chiralities play in plant protection against viruses, which will facilitate the development of novel green pesticides bearing axial chiralities with excellent optical purities. © 2023 Society of Chemical Industry.
Collapse
Grants
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province [Qianjiaohe KY number (2020)004]
- The 10 Talent Plan (Shicengci) of Guizhou Province ([2016]5649)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG5/19), MOE AcRF Tier 2 (MOE2019-T2-2-117), and MOE AcRF Tier 3 Award (MOE2018-T3-1-003)
- National Natural Science Foundation of China (32172459, 21961006, 22071036)
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Science and Technology Department of Guizhou Province ([2018]2802, [2019]1020, Qiankehejichu-ZK[2021]Key033)
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Chengli Mou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Juan Zou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China
| | - Chen Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Mechanistic aspects of electro-oxidative generated triazolinediones in the presence of amines-EC' versus ECE mechanism. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Lindsay AC, Kilmartin PA, Sperry J. Synthesis of 3-nitroindoles by sequential paired electrolysis. Org Biomol Chem 2021; 19:7903-7913. [PMID: 34549223 DOI: 10.1039/d1ob01453f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3-Nitroindoles are synthetically versatile intermediates but current methods for the preparation hinder their widespread application. Herein, we report that nitroenamines undergo electrochemical cyclisation to 3-nitroindoles in the presence of potassium iodide. Detailed control experiments and cyclic voltammogram studies infer the reaction proceeds via a sequential paired electrolysis process, beginning with anodic oxidation of iodide (I-) to the iodine radical (I˙), which facilitates cyclisation of the nitroenamine to give a 3-nitroindolinyl radical. Cathodic reduction and protonation generates a 3-nitroindoline that upon oxidation forms the 3-nitroindole.
Collapse
Affiliation(s)
- Ashley C Lindsay
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Paul A Kilmartin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
4
|
Jin J, Huang X, Xu J, Li T, Peng X, Zhu X, Zhang J, Jin Z, Chi YR. Carbene-Catalyzed Atroposelective Annulation and Desymmetrization of Urazoles. Org Lett 2021; 23:3991-3996. [PMID: 33979174 DOI: 10.1021/acs.orglett.1c01191] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An NHC-catalyzed atroposelective reaction between ynals and urazoles is disclosed. The reaction establishes a chiral C-N axis via an atroposelective [3 + 2] annulation/desymmetrization process. Our reaction allows efficient access to axially chiral and heteroatom-rich urazole derivatives with potential applications in bioactive molecules and catalysis.
Collapse
Affiliation(s)
- Jiamiao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xuan Huang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang 550025, China
| | - Tingting Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaolin Peng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xun Zhu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhichao Jin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.,Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
5
|
Pakravan N, Beiginejad H, Shayani-Jam H, Paziresh S. Electrochemical oxidation of urazoles in the presence of Meldrum’s acid derivatives: Synthesis of new urazole species, experimental and computational study. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Jamshidi M, Amani A, Khazalpour S, Torabi S, Nematollahi D. Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive electrosulfonylation study has been carried out via cathodic and anodic approaches for the production of organosulfone and sulfonamide derivatives.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | - Ameneh Amani
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran
| | | | - Sara Torabi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | | |
Collapse
|
7
|
Li M, Hong J, Xiao W, Yang Y, Qiu D, Mo F. Electrocatalytic Oxidative Transformation of Organic Acids for Carbon-Heteroatom and Sulfur-Heteroatom Bond Formation. CHEMSUSCHEM 2020; 13:1661-1687. [PMID: 31804002 DOI: 10.1002/cssc.201902657] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/01/2019] [Indexed: 06/10/2023]
Abstract
The electrolysis of organic acids has garnered increasing attention in recent years. In addition to the famous electrochemical decarboxylation known as Kolbe electrolysis, a number of other electrochemical processes have been recently established that allow for the construction of carbon-heteroatom and sulfur-heteroatom bonds from organic acids. Herein, recent advances in electrochemical C-X and S-X (X=N, O, S, Se) bond-forming reactions from five classes of organic acids and their conjugate bases, namely, carboxylic, thiocarboxylic, phosphonic, sulfinic, and sulfonic acids, are surveyed.
Collapse
Affiliation(s)
- Man Li
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, P.R. China
| | - Junting Hong
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, P.R. China
| | - Wei Xiao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, P.R. China
| | - Yang Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Di Qiu
- Tianjin Key Laboratory of Structure and Performance, for Functional Molecules, MOE Key Laboratory of, Inorganic-Organic Hybrid Functional Materials Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P.R. China
| | - Fanyang Mo
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, P.R. China
- Jiangsu Donghai Silicon Industry S&T Innovation Center, Donghai County, Jiangsu, 222300, P.R. China
| |
Collapse
|
8
|
Daneshyar A, Nematollahi D, Varmaghani F, Goljani H, Alizadeh H. Electrochemical synthesis of a new phosphonium betaine. Kinetic evaluation and antibacterial susceptibility. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Alvarez-Dorta D, Thobie-Gautier C, Croyal M, Bouzelha M, Mével M, Deniaud D, Boujtita M, Gouin SG. Electrochemically Promoted Tyrosine-Click-Chemistry for Protein Labeling. J Am Chem Soc 2018; 140:17120-17126. [DOI: 10.1021/jacs.8b09372] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dimitri Alvarez-Dorta
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Christine Thobie-Gautier
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Mikael Croyal
- Centre de Recherche en Nutrition Humaine Ouest (CRNHO), West Human Nutrition Research Center, F-44000 Nantes, France
- UMR 1280 PhAN, INRA, F-44000 Nantes, France
| | | | - Mathieu Mével
- INSERM UMR1089, Université de Nantes, CHU de Nantes, France
| | - David Deniaud
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Mohammed Boujtita
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Sébastien G. Gouin
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR des Sciences et des Techniques, Université de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
10
|
Stabilization of 4-phenylurazole by electrografting on a nano-fibrillated mesoporous carbon modified electrode. Reactivity of anchored triazolinedione groups against Michael-type addition at electrode/electrolyte interface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|