1
|
Sun X, Chen Z, Shen Y, Lu J, Shi Y, Cui Y, Guo F, Shi W. Plasmonic coupling-boosted photothermal nanoreactor for efficient solar light-driven photocatalytic water splitting. J Colloid Interface Sci 2023; 652:1016-1027. [PMID: 37639924 DOI: 10.1016/j.jcis.2023.08.133] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Photothermal nanoreactor with rapid charge transfer and improved spectral utilization is a key point in photocatalysis research. Herein, silver sulfide quantum dots (Ag2S QDs) were coating on the surface of porous graphitic carbon nitride nano vesicles (PCNNVs) to form Ag2S/PCNNVs nanoreactors by a simple calcination method for obtaining efficient photothermal-assisted photocatalytic hydrogen (H2) evolution under simulated/real sunlight irradiation. In particularly, the as-prepared optimal 3% Ag2S/PCNNVs sample exhibited the H2 production rate of 34.8 mmol h-1 g-1, which was 3.5 times higher than that of bare PCNNVs. The enhancement of photothermal-assisted activity over the Ag2S/PCNNVs composite system is mainly attributed to the coupling of the photothermal conversion performance of Ag2S QDs and the thermal insulation performance of PCNNVs based on the plasmonic coupling-boosted photothermal nanoreactor. This study presents a promising strategy for the development of high-efficient photothermal-assisted photocatalysts.
Collapse
Affiliation(s)
- Xinhai Sun
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Zhouze Chen
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yu Shen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Jialin Lu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yuxing Shi
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Yanhua Cui
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| |
Collapse
|
2
|
Wu C, Xing Z, Yang S, Li Z, Zhou W. Nanoreactors for photocatalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Optimizing the shape anisotropy of gold nanoparticles for enhanced light harvesting and photocatalytic applications. Photochem Photobiol Sci 2022; 22:773-781. [PMID: 36508140 DOI: 10.1007/s43630-022-00351-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
AbstractHybrid nanoparticles (NP) of bismutite nanodisks (BSC ND) with gold nanoparticles (Au NP) of different aspect ratios (AR), such as spheres, rods and etched rods were synthesized via a facile sonochemical method. To better control the shapes of Au NP deposited on the substrate, these were pre-synthesized prior to the deposition using a modified seed mediated growth method by altering the pH and supersaturation of the growth solution. The shift in the peak position and shape of the localized surface plasmon resonance (LSPR) absorption band associated with fine-tuning of the shape of Au NP, led to enhanced light harvesting capabilities of the hybrid. Introducing shape anisotropy in the NP brought about narrowing of bandgap and lowering of PL intensity in the hybrids, suggesting better electronic contact of the NP with BSC, and effective suppression of recombination effects. Hybrids of BSC with Au nanorods showed 14% improved degradation of methylene blue (MB) dye compared to the hybrids with nanospheres. With this study, we provide a novel promising strategy to maximize the light harvesting capacity of semiconductors by tailoring the AR of Au NP, for improved solar to chemical energy conversion.
Graphical abstract
Collapse
|
4
|
Saeed AA, Abbas MN, El-Hawary WF, Issa YM, Singh B. A Core–Shell Au@TiO2 and Multi-Walled Carbon Nanotube-Based Sensor for the Electroanalytical Determination of H2O2 in Human Blood Serum and Saliva. BIOSENSORS 2022; 12:bios12100778. [PMID: 36290916 PMCID: PMC9599508 DOI: 10.3390/bios12100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
A hydrogen peroxide (H2O2) sensor was developed based on core–shell gold@titanium dioxide nanoparticles and multi-walled carbon nanotubes modified glassy carbon electrode (Au@TiO2/MWCNTs/GCE). Core–shell Au@TiO2 material was prepared and characterized using a scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray diffraction (XRD) and Zeta-potential analyzer. The proposed sensor (Au@TiO2/MWCNTs/GCE) was investigated electrochemically using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The analytical performance of the sensor was evaluated towards H2O2 using differential pulse voltammetry (DPV). The proposed sensor exhibited excellent stability and sensitivity with a linear concentration range from 5 to 200 µM (R2 = 0.9973) and 200 to 6000 µM (R2 = 0.9994), and a limit of detection (LOD) of 1.4 µM achieved under physiological pH conditions. The practicality of the proposed sensor was further tested by measuring H2O2 in human serum and saliva samples. The observed response and recovery results demonstrate its potential for real-world H2O2 monitoring. Additionally, the proposed sensor and detection strategy can offer potential prospects in electrochemical sensors development, indicative oxidative stress monitoring, clinical diagnostics, general cancer biomarker measurements, paper bleaching, etc.
Collapse
Affiliation(s)
- Ayman Ali Saeed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Mohammed Nooredeen Abbas
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | | | | | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway & Centre of Applied Science for Health, Technological University Dublin (TU Dublin), D24 FKT9 Dublin 24, Ireland
- Correspondence: ; Tel.: +353-12-207-863
| |
Collapse
|
5
|
Lai TH, Tsao CW, Fang MJ, Wu JY, Chang YP, Chiu YH, Hsieh PY, Kuo MY, Chang KD, Hsu YJ. Au@Cu 2O Core-Shell and Au@Cu 2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40771-40783. [PMID: 36040289 DOI: 10.1021/acsami.2c07145] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.
Collapse
Affiliation(s)
- Ting-Hsuan Lai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Wen Tsao
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mei-Jing Fang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhen-Yang Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Peng Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Chiu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ping-Yen Hsieh
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Yu Kuo
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kao-Der Chang
- Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
6
|
Rostami M, Badiei A, Ganjali MR, Rahimi-Nasrabadi M, Naddafi M, Karimi-Maleh H. Nano-architectural design of TiO 2 for high performance photocatalytic degradation of organic pollutant: A review. ENVIRONMENTAL RESEARCH 2022; 212:113347. [PMID: 35513059 DOI: 10.1016/j.envres.2022.113347] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
In the past several decades, significant efforts have been paid toward photocatalytic degradation of organic pollutants in environmental research. During the past years, titanium dioxide nano-architectures (TiO2 NAs) have been widely used in water purification applications with photocatalytic degradation processes under Uv/Vis light illumination. Photocatalysis process with nano-architectural design of TiO2 is viewed as an efficient procedure for directly channeling solar energy into water treatment reactions. The considerable band-gap values and the subsequent short life time of photo-generated charge carriers are showed among the limitations of this approach. One of these effective efforts is the using of oxidation processes with advance semiconductor photocatalyst NAs for degradation the organic pollutants under UV/Vis irradiation. Among them, nano-architectural design of TiO2 photocatalyst (such as Janus, yolk-shell (Y@S), hollow microspheres (HMSs) and nano-belt) is an effective way to improve oxidation processes for increasing photocatalytic activity in water treatment applications. In the light of the above issues, this study tends to provide a critical overview of the used strategies for preparing TiO2 photocatalysts with desirable physicochemical properties like enhanced absorption of light, low density, high surface area, photo-stability, and charge-carrier behavior. Among the various nanoarchitectural design of TiO2, the Y@S and HMSs have created a great appeal given their considerable large surface area, low density, homogeneous catalytic environment, favorable light harvesting properties, and enhanced molecular diffusion kinetics of the particles. In this review was summarized the developments that have been made for nano-architectural design of TiO2 photocatalyst. Additional focus is placed on the realization of interfacial charge and the possibility of achieving charge carriers separation for these NAs as electron migration is the extremely important factor for increasing the photocatalytic activity.
Collapse
Affiliation(s)
- Mojtaba Rostami
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Rahimi-Nasrabadi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran; Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Freiberg, 09599, Germany
| | - Mastoureh Naddafi
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran; Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus 2028, Johannesburg, 17011, South Africa.
| |
Collapse
|
7
|
Ninakanti R, Dingenen F, Borah R, Peeters H, Verbruggen SW. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications. Top Curr Chem (Cham) 2022; 380:40. [PMID: 35951165 DOI: 10.1007/s41061-022-00390-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022]
Abstract
(Sun)Light is an abundantly available sustainable source of energy that has been used in catalyzing chemical reactions for several decades now. In particular, studies related to the interaction of light with plasmonic nanostructures have been receiving increased attention. These structures display the unique property of localized surface plasmon resonance, which converts light of a specific wavelength range into hot charge carriers, along with strong local electromagnetic fields, and/or heat, which may all enhance the reaction efficiency in their own way. These unique properties of plasmonic nanoparticles can be conveniently tuned by varying the metal type, size, shape, and dielectric environment, thus prompting a research focus on rationally designed plasmonic hybrid nanostructures. In this review, the term "hybrid" implies nanomaterials that consist of multiple plasmonic or non-plasmonic materials, forming complex configurations in the geometry and/or at the atomic level. We discuss the synthetic techniques and evolution of such hybrid plasmonic nanostructures giving rise to a wide variety of material and geometric configurations. Bimetallic alloys, which result in a new set of opto-physical parameters, are compared with core-shell configurations. For the latter, the use of metal, semiconductor, and polymer shells is reviewed. Also, more complex structures such as Janus and antenna reactor composites are discussed. This review further summarizes the studies exploiting plasmonic hybrids to elucidate the plasmonic-photocatalytic mechanism. Finally, we review the implementation of these plasmonic hybrids in different photocatalytic application domains such as H2 generation, CO2 reduction, water purification, air purification, and disinfection.
Collapse
Affiliation(s)
- Rajeshreddy Ninakanti
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fons Dingenen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Rituraj Borah
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Hannelore Peeters
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air and Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
8
|
Navakoteswara Rao V, Ravi P, Sathish M, Vijayakumar M, Sakar M, Karthik M, Balakumar S, Reddy KR, Shetti NP, Aminabhavi TM, Shankar MV. Metal chalcogenide-based core/shell photocatalysts for solar hydrogen production: Recent advances, properties and technology challenges. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125588. [PMID: 33756202 DOI: 10.1016/j.jhazmat.2021.125588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Metal chalcogenides play a vital role in the conversion of solar energy into hydrogen fuel. Hydrogen fuel technology can possibly tackle the future energy crises by replacing carbon fuels such as petroleum, diesel and kerosene, owning to zero emission carbon-free gas and eco-friendliness. Metal chalcogenides are classified into narrow band gap (CdS, Cu2S, Bi2S3, MoS2, CdSe and MoSe2) materials and wide band gap materials (ZnS, ZnSe and ZnTe). Composites of these materials are fabricated with different architectures in which core-shell is one of the unique composites that drastically improve the photo-excitons separation, where chalcogenides in the core can be well protected for sustainable uses. Thus,the core-shell structures promote the design and fabrication of composites with the required characteristics. Interestingly, the metal chalcogenides as a core-shell photocatalyst can be classified into type-I, reverse type-I, type-II and S-type nanocomposites, which can effectively influence and significantly enhance the rate of hydrogen production. In this direction, this review is undertaken to provide a comprehensive overview of the advanced preparation processes, properties of metal chalcogenides, and in particular, photocatalytic performance of the metal chalcogenides as a core-shell photocatalysts for solar hydrogen production.
Collapse
Affiliation(s)
- Vempuluru Navakoteswara Rao
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| | - Parnapalle Ravi
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Marappan Sathish
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi 630003, Tamil Nadu, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manavalan Vijayakumar
- Global Innovative Centre for Advanced (GICAN), Nanomaterials, Collage of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mohan Sakar
- Centre for Nano and Material Sciences, Jain University, Bangalore 562112, Karnataka, India
| | - Mani Karthik
- Centre for Nanomaterials, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Balapur, Hyderabad 500005, India
| | - Subramanian Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Nagaraj P Shetti
- Department of Chemistry, K. L. E. Institute of Technology, Gokul, Hubballi 580027, Karnataka, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad 580007, Karnataka, India.
| | - Muthukonda Venkatakrishnan Shankar
- Nanocatalysis and Solar Fuels Research Laboratory, Department of Materials Science & Nanotechnology, Yogi Vemana University, Kadapa 516005, Andhra Pradesh, India
| |
Collapse
|
9
|
Chen YA, Wang YT, Moon HS, Yong K, Hsu YJ. Yolk-shell nanostructures: synthesis, photocatalysis and interfacial charge dynamics. RSC Adv 2021; 11:12288-12305. [PMID: 35423745 PMCID: PMC8696994 DOI: 10.1039/d1ra00803j] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Solar energy has long been regarded as a promising alternative and sustainable energy source. In this regard, photocatalysts emerge as a versatile paradigm that can practically transform solar energy into chemical energy. At present, unsatisfactory conversion efficiency is a major obstacle to the widespread deployment of photocatalysis technology. Many structural engineering strategies have been proposed to address the issue of insufficient activity for semiconductor photocatalysts. Among them, creation of yolk-shell nanostructures which possess many beneficial features, such as large surface area, efficient light harvesting, homogeneous catalytic environment and enhanced molecular diffusion kinetics, has attracted particular attention. This review summarizes the developments that have been made for the preparation and photocatalytic applications of yolk-shell nanostructures. Additional focus is placed on the realization of interfacial charge dynamics and the possibility of achieving spatial separation of charge carriers for this unique nanoarchitecture as charge transfer is the most critical factor determining the overall photocatalytic efficiency. A future perspective that can facilitate the advancement of using yolk-shell nanostructures in sophisticated photocatalytic systems is also presented.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan
| | - Yu-Ting Wang
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hyun Sik Moon
- Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 790-784 Korea
| | - Kijung Yong
- Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 790-784 Korea
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University Hsinchu 30010 Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
10
|
Recent Advances in the Design and Photocatalytic Enhanced Performance of Gold Plasmonic Nanostructures Decorated with Non-Titania Based Semiconductor Hetero-Nanoarchitectures. Catalysts 2020. [DOI: 10.3390/catal10121459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plasmonic photocatalysts combining metallic nanoparticles and semiconductors have been aimed as versatile alternatives to drive light-assisted catalytic chemical reactions beyond the ultraviolet (UV) regions, and overcome one of the major drawbacks of the most exploited photocatalysts (TiO2 or ZnO). The strong size and morphology dependence of metallic nanostructures to tune their visible to near-infrared (vis-NIR) light harvesting capabilities has been combined with the design of a wide variety of architectures for the semiconductor supports to promote the selective activity of specific crystallographic facets. The search for efficient heterojunctions has been subjected to numerous studies, especially those involving gold nanostructures and titania semiconductors. In the present review, we paid special attention to the most recent advances in the design of gold-semiconductor hetero-nanostructures including emerging metal oxides such as cerium oxide or copper oxide (CeO2 or Cu2O) or metal chalcogenides such as copper sulfide or cadmium sulfides (CuS or CdS). These alternative hybrid materials were thoroughly built in past years to target research fields of strong impact, such as solar energy conversion, water splitting, environmental chemistry, or nanomedicine. Herein, we evaluate the influence of tuning the morphologies of the plasmonic gold nanostructures or the semiconductor interacting structures, and how these variations in geometry, either individual or combined, have a significant influence on the final photocatalytic performance.
Collapse
|
11
|
Li A, Zhu W, Li C, Wang T, Gong J. Rational design of yolk–shell nanostructures for photocatalysis. Chem Soc Rev 2019; 48:1874-1907. [DOI: 10.1039/c8cs00711j] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Yolk–shell structures provide an ideal platform for the rational regulation and effective utilization of charge carriers because of their void space and large surface areas. Furthermore, the efficiency of charge behavior in every step can be further improved by many strategies. This review describes the synthesis of yolk–shell structures and their effect for the enhancement of heterogeneous photocatalysis.
Collapse
Affiliation(s)
- Ang Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Wenjin Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Chengcheng Li
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Tuo Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University; Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)
- Tianjin
- China
| |
Collapse
|
12
|
Peng J, Lu Z, Lu J, Ma Z, Song M, Liu X, Huo P, Dong H, Qiu X, Han S. Enhanced selectivity for photodegrading ciprofloxacin by a magnetic photocatalyst modified with a POPD–CdS heterojunction embedded imprinted layer. NEW J CHEM 2019. [DOI: 10.1039/c8nj05710a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A POPD–CdS heterojunction embedded magnetic imprinted photocatalyst achieves the purpose of selective photodegradation of ciprofloxacin and effectively suppresses the secondary pollution caused by CdS photocorrosion.
Collapse
|
13
|
Synthesis of edge-site selectively deposited Au nanocrystals on TiO2 nanosheets: An efficient heterogeneous catalyst with enhanced visible-light photoactivity. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Hua C, Dong X, Wang Y, Zheng N, Ma H, Zhang X. Synthesis of a BiOCl1−xBrx@AgBr heterostructure with enhanced photocatalytic activity under visible light. RSC Adv 2018; 8:16513-16520. [PMID: 35540515 PMCID: PMC9080307 DOI: 10.1039/c8ra02971g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022] Open
Abstract
We present a facile approach to preparing a BiOCl1−xBrx@AgBr heterostructure using a two-step solvothermal method. Multiple characterisation techniques have been employed to investigate its morphology, structure, optical and electronic properties and photocatalytic performance. The photocatalytic activity of the BiOCl1−xBrx@AgBr heterostructure was sufficiently evaluated by adopting Reactive Blue KN-R as the target organic pollutant under visible light irradiation. The as-prepared BiOCl1−xBrx@AgBr exhibited much higher photocatalytic activity than BiOCl1−xBrx and BiOCl, which was ascribed to the movement of photogenerated electrons from AgBr to BiOCl1−xBrx, resulting in effective charge separation and transfer. Moreover, the modification of BiOCl1−xBrx with AgBr broadened the light absorption range, making the composite suitable for visible light excitation. The excellent photocatalytic performance provides potential opportunities to utilize BiOCl1−xBrx@AgBr for environmental purification and organic pollution treatment of water. BiOCl1−xBrx nanosheets are covered by a thin layer of AgBr that forms BiOCl1−xBrx@AgBr heterostucture with high photocatalytic activity.![]()
Collapse
Affiliation(s)
- Chenghe Hua
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Xiaoli Dong
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Yu Wang
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Nan Zheng
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Hongchao Ma
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| | - Xiufang Zhang
- School of Light Industry and Chemical Engineering
- Dalian Polytechnic University
- Dalian 116034
- PR China
| |
Collapse
|