1
|
Coulibaly PMA, Ziki E, Bisseyou YBM, Camara TE, Coulibaly S, Sissouma D. Synthesis, non-spherical structure refinement and Hirshfeld surface analysis of racemic 2,2'-diisobut-oxy-1,1'-bi-naphthalene. Acta Crystallogr E Crystallogr Commun 2024; 80:1044-1048. [PMID: 39372174 PMCID: PMC11451481 DOI: 10.1107/s2056989024009101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
In the racemic title compound, C28H30O2, the naphthyl ring systems subtend a dihedral angle of 68.59 (1)° and the mol-ecular conformation is consolidated by a pair of intra-molecular C-H⋯π contacts. The crystal packing features a weak C-H⋯π contact and van der Waals forces. A Hirshfeld surface analysis of the crystal structure reveals that the most significant contributions are from H⋯H (73.2%) and C⋯H/H⋯C (21.2%) contacts.
Collapse
Affiliation(s)
- Pénayori Marie-Aimée Coulibaly
- Laboratoire de Constitution et de Réaction de la Matière, Equipe Synthèse Organique, UFR de Sciences des Structures de la Matière et Technologie, Université, Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
| | - Eric Ziki
- Laboratoire des Sciences de la Matière,de l’Environnement et de l’Energie Solaire, Equipe de Recherche de Cristallographie et Physique Moléculaire, Université Félix Houphouët-Boigny, 08 BP 582, Abidjan 22, Côte d’Ivoire
| | - Yvon Bibila Mayaya Bisseyou
- Laboratoire des Sciences de la Matière,de l’Environnement et de l’Energie Solaire, Equipe de Recherche de Cristallographie et Physique Moléculaire, Université Félix Houphouët-Boigny, 08 BP 582, Abidjan 22, Côte d’Ivoire
| | - Tchambaga Etienne Camara
- Laboratoire de Constitution et de Réaction de la Matière, Equipe Synthèse Organique, UFR de Sciences des Structures de la Matière et Technologie, Université, Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
| | - Souleymane Coulibaly
- Laboratoire de Constitution et de Réaction de la Matière, Equipe Synthèse Organique, UFR de Sciences des Structures de la Matière et Technologie, Université, Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
| | - Drissa Sissouma
- Laboratoire de Constitution et de Réaction de la Matière, Equipe Synthèse Organique, UFR de Sciences des Structures de la Matière et Technologie, Université, Félix Houphouët Boigny, 22 BP 582 Abidjan 22, Côte d’Ivoire
| |
Collapse
|
2
|
Demonti L, Joven-Sancho D, Nebra N. Cross-Coupling Reactions Enabled by Well-Defined Ag(III) Compounds: Main Focus on Aromatic Fluorination and Trifluoromethylation. CHEM REC 2023; 23:e202300143. [PMID: 37338273 DOI: 10.1002/tcr.202300143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Indexed: 06/21/2023]
Abstract
AgIII compounds are considered strong oxidizers of difficult handling. Accordingly, the involvement of Ag catalysts in cross-coupling via 2e- redox sequences is frequently discarded. Nevertheless, organosilver(III) compounds have been authenticated using tetradentate macrocycles or perfluorinated groups as supporting ligands, and since 2014, first examples of cross-coupling enabled by AgI /AgIII redox cycles saw light. This review collects the most relevant contributions to this field, with main focus on aromatic fluorination/perfluoroalkylation and the identification of AgIII key intermediates. Pertinent comparison between the activity of AgIII RF compounds in aryl-F and aryl-CF3 couplings vs. the one shown by its CuIII RF and AuIII RF congeners is herein disclosed, thus providing a more profound picture on the scope of these transformations and the pathways commonly associated to C-RF bond formations enabled by coinage metals.
Collapse
Affiliation(s)
- Luca Demonti
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA)., Université Paul Sabatier, CNRS., 118 Route de Narbonne, 31062, Toulouse, France)
| |
Collapse
|
3
|
Di Terlizzi L, Scaringi S, Raviola C, Pedrazzani R, Bandini M, Fagnoni M, Protti S. Visible Light-Driven, Gold(I)-Catalyzed Preparation of Symmetrical (Hetero)biaryls by Homocoupling of Arylazo Sulfones. J Org Chem 2022; 87:4863-4872. [PMID: 35316603 PMCID: PMC8981317 DOI: 10.1021/acs.joc.2c00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Indexed: 01/02/2023]
Abstract
The preparation of symmetrical (hetero)biaryls via arylazo sulfones has been successfully carried out upon visible light irradiation in the presence of PPh3AuCl as the catalyst. The present protocol led to the efficient synthesis of a wide range of target compounds in an organic-aqueous solvent under photocatalyst-free conditions.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simone Scaringi
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
- Department
of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Carlotta Raviola
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Riccardo Pedrazzani
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Bandini
- Dipartimento
di Chimica ″Giacomo Ciamician″, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Maurizio Fagnoni
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Stefano Protti
- PhotoGreen
Lab, Department of Chemistry, University
of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
4
|
Zhang C, Lv S, Wang Y, Zhang J, Wang XN, Chang J. Metal-free intramolecular hydroarylation of alkynes. Org Chem Front 2022. [DOI: 10.1039/d1qo01831k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient metal-free intramolecular hydroarylation reaction of alkynes is described here. A series of aryl and N-group attached alkynes generated the intramolecular hydroarylation products in high yields.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Songkui Lv
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanru Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingyi Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiao-Na Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Junbiao Chang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
5
|
Jassas RS, Mughal EU, Sadiq A, Alsantali RI, Al-Rooqi MM, Naeem N, Moussa Z, Ahmed SA. Scholl reaction as a powerful tool for the synthesis of nanographenes: a systematic review. RSC Adv 2021; 11:32158-32202. [PMID: 35495486 PMCID: PMC9041733 DOI: 10.1039/d1ra05910f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Nanographenes, or extended polycyclic aromatic hydrocarbons, have been attracting increasing attention owing to their widespread applications in organic electronics. However, the atomically precise fabrication of nanographenes has thus far been achieved only through synthetic organic chemistry. Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, rigid planar structure, and characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated research interest in this area. Chemists working with nanographene and heterocyclic analogs thereof have chosen it as their preferred tool for the assembly of large and complex architectures. The Scholl reaction has maintained significant relevance in contemporary organic synthesis with many advances in recent years and now ranks among the most useful C-C bond-forming processes for the generation of the π-conjugated frameworks of nanographene or their heterocyclic analogs. A broad range of oxidants and Lewis acids have found use in Scholl-type processes, including Cu(OTf)2/AlCl3, FeCl3, MoCl5, PIFA/BF3-Et2O, and DDQ, in combination with Brønsted or Lewis acids, and the surface-mediated reaction has found especially wide applications in PAH synthesis. Undoubtedly, the utility of the Scholl reaction is supreme in the construction of nanographene and their heterocyclic analogues. The detailed analysis of the progress achieved in this field reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted cyclodehydrogenation and developing new reagents. In this review, we highlight and discuss the recent modifications in the Scholl reaction for nanographene synthesis using numerous oxidant systems. In addition, the merits or demerits of each oxidative reagent is described herein.
Collapse
Affiliation(s)
- Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Research Laboratories Unit, Faculty of Applied Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
6
|
Leszczyński PJ, Jaroń T, Malinowski PJ, Gawraczyński J, Mazej Z, Grochala W. Polycyclic Aromatic Hydrocarbons and their Adducts with Solvents from Ag(II)SO 4-Based Oxidative C-C Coupling. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2019.1622134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - T. Jaroń
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| | - P. J. Malinowski
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| | - J. Gawraczyński
- Center of New Technologies, University of Warsaw, Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Z. Mazej
- Department of Inorganic Chemistry and Technology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - W. Grochala
- Center of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl 2020; 59:2998-3027. [PMID: 31342599 PMCID: PMC7027897 DOI: 10.1002/anie.201904934] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Oxidative aromatic coupling occupies a fundamental place in the modern chemistry of aromatic compounds. It is a method of choice for the assembly of large and bewildering architectures. Considerable effort was also devoted to applications of the Scholl reaction for the synthesis of chiral biphenols and natural products. The ability to form biaryl linkages without any prefunctionalization provides an efficient pathway to many complex structures. Although the chemistry of this process is only now becoming fully understood, this reaction continues to both fascinate and challenge researchers. This is especially true for heterocoupling, that is, oxidative aromatic coupling with the chemoselective formation of a C-C bond between two different arenes. Analysis of the progress achieved in this field since 2013 reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted (cyclo)dehydrogenation, and developing new reagents.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Holger Butenschön
- Institut für Organische ChemieLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
8
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904934] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
9
|
Nawrocka EK, Kasprzak P, Zawada K, Sadło J, Grochala W, Kazimierczuk K, Leszczyński PJ. Nonstationary Two-Dimensional Nuclear Magnetic Resonance: A Method for Studying Reaction Mechanisms in Situ. Anal Chem 2019; 91:11306-11315. [PMID: 31387347 DOI: 10.1021/acs.analchem.9b02414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear magnetic resonance spectroscopy (NMR) is a versatile tool of chemical analysis allowing one to determine structures of molecules with atomic resolution. Particularly informative are two-dimensional (2D) experiments that directly identify atoms coupled by chemical bonds or a through-space interaction. Thus, NMR could potentially be powerful tool to study reactions in situ and explain their mechanisms. Unfortunately, 2D NMR is very time-consuming and thus often cannot serve as a "snapshot" technique for in situ reaction monitoring. Particularly difficult is the case of spectra, in which resonance frequencies vary in the course of reaction. This leads to resolution and sensitivity loss, often hindering the detection of transient products. In this paper we introduce a novel approach to correct such nonstationary 2D NMR signals and raise the detection limits over 10 times. We demonstrate success of its application for studying the mechanism of the reaction of AgSO4-induced synthesis of diphenylmethane-type compounds. Several reactions occur in the studied mixture of benzene and toluene, all with rather low yield and leading to compounds with similar chemical shifts. Nevertheless, with the use of a proposed 2D NMR approach we were able to describe complex mechanisms of diphenylmethane formation involving AgSO4-induced toluene deprotonation and formation of benzyl carbocation, followed by nucleophilic attacks.
Collapse
Affiliation(s)
- Ewa Klaudia Nawrocka
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-089 Warsaw , Poland.,Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | - Paweł Kasprzak
- Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland.,Department of Mathematical Methods in Physics, Faculty of Physics , University of Warsaw , Pasteura 5 , 02-093 Warsaw , Poland
| | - Katarzyna Zawada
- Department of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine Division , Medical University of Warsaw , Banacha 1 , 02-097 Warsaw , Poland
| | - Jarosław Sadło
- Institute of Nuclear Chemistry and Technology , Dorodna 16 , 03-195 Warsaw , Poland
| | - Wojciech Grochala
- Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | | | | |
Collapse
|
10
|
Gaber AM, Aly MMM, Mekhemer IMA. Investigation of Thermolysis Products of Some
N
‐Arylthiophene‐2‐carboxamidoximes by Analytical and Spectroscopic Analyses. ChemistrySelect 2019. [DOI: 10.1002/slct.201900978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abdel‐Aal M. Gaber
- Chemistry DepartmentFaculty of ScienceAssiut University, Assiut 71516 Egypt
| | - Morsy M. M. Aly
- Chemistry DepartmentFaculty of ScienceAssiut University, Assiut 71516 Egypt
| | | |
Collapse
|
11
|
Leszczyński P, Budniak A, Grzeszkiewicz M, Gawraczyński J, Dobrzycki Ł, Malinowski P, Jaroń T, Cyrański M, Szarek P, Mazej Z, Grochala W. Insights into reactivity patterns of Ag(II)SO4 with respect to fluoro- and trifluoromethyl-substituted aromatics. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2018.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|