1
|
Krebs J, Brändler L, Krummenacher I, Friedrich A, Braunschweig H, Finze M, Curchod BFE, Marder TB. Synthesis, Photophysical and Electronic Properties of a D-π-A Julolidine-Like Pyrenyl-o-Carborane. Chemistry 2024; 30:e202401704. [PMID: 38758081 DOI: 10.1002/chem.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/18/2024]
Abstract
We synthesized 2-(1-1,2-dicarbadodecaboranyl(12))-6,6,12,12-tetramethyl-7,8,11,12-tetrahydro-6H,10H-phenaleno[1,9-fg]pyrido[3,2,1-ij]quinoline (4), a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and LR-TDDFT calculations, we compare o-carborane and B(Mes)2 (Mes=2,4,6-Me3C6H2) as acceptor groups. Whereas the π-acceptor strength of B(Mes)2 is sufficient to drop the pyrene LUMO+1 below the LUMO, the carborane does not do this. We confirm the π-donor strength of the julolidine-like moiety, however, which raises the pyrene HOMO-1 above the HOMO. In contrast to the analogous pyrene-2-yl-o-carborane, 2-(1-1,2-dicarbadodecaboranyl(12))-pyrene VI, which exhibits dual fluorescence, because the rate of internal conversion between locally-excited (LE) and charge transfer (CT) (from the pyrene to the carborane) states is faster than the radiative decay rate, leading to a thermodynamic equilibrium between the 2 states, 4 shows only single fluorescence, as the CT state involving the carborane as the acceptor moiety in not kinetically accessible, so a more localized CT emission involving the julolidine-like pyrene moiety is observed.
Collapse
Affiliation(s)
- Johannes Krebs
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lisa Brändler
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maik Finze
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Basile F E Curchod
- Centre for Computational Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Todd B Marder
- Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
2
|
Yuhara K, Tanaka K. The Photosalient Effect and Thermochromic Luminescence Based on o-Carborane-Assisted π-Stacking in the Crystalline State. Angew Chem Int Ed Engl 2024; 63:e202319712. [PMID: 38339862 DOI: 10.1002/anie.202319712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Herein, we report the unique multiple-stimuli responsiveness of anthracene-tethered o-carborane derivatives. We designed and synthesized anthracene derivatives with different substitution positions and numbers of the o-carborane units. Two compounds had characteristic crystal structures involving the columnar π-stacking structures of the anthracene units. From the analysis of crystalline-state structure-property relationships, it was revealed that the crystals exhibited the photosalient effect accompanied by photochemical [4+4] cycloaddition reactions and temperature-dependent photophysical dual-emission properties including excimer emission of anthracene. Those properties were considered as non-radiative and radiative deactivation pathways through the excimer formation in the excited state and the formation of excimer species was facilitated by the π-stacking structure of anthracene units. Moreover, we found unusual temperature dependency on the occurrence of the photosalient effect. According to the data from variable temperature X-ray crystallography, a strong correlation between lattice shrinkage and strain accumulation is suggested.
Collapse
Affiliation(s)
- Kazuhiro Yuhara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
3
|
Conformation-Dependent Electron Donation of Nido-Carborane Substituents and Its Influence on Phosphorescence of Tris(2,2′-bipyridyl)ruthenium(II) Complex. CRYSTALS 2022. [DOI: 10.3390/cryst12050688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this work, we report the synthesis of the nido-carborane-substituted ruthenium complexes and the substituent effects of nido-carboranes on the optical properties. Initially, from the optical measurements, it is shown that deep-red phosphorescence was obtained from the synthesized molecule, and the phosphorescent quantum yields were significantly improved by loading onto a polyethylene glycol film. This result represents that nido-carborane can work as a strong electron donor and should be an effective unit for enhancing the solid-state phosphorescence of ruthenium complexes. Further, it is suggested that the electron-donating properties of the nido-carborane units and subsequently the optical properties can be tuned by controlling the conformation of the nido-carborane units with the steric substituents. We demonstrate in this study the potential of nido-carborane as a building block for constructing optical materials as well as fundamental information regarding electronic interactions with π-conjugated systems.
Collapse
|
4
|
Ji L, Riese S, Schmiedel A, Holzapfel M, Fest M, Nitsch J, Curchod BFE, Friedrich A, Wu L, Al Mamari HH, Hammer S, Pflaum J, Fox MA, Tozer DJ, Finze M, Lambert C, Marder TB. Thermodynamic equilibrium between locally excited and charge-transfer states through thermally activated charge transfer in 1-(pyren-2'-yl)- o-carborane. Chem Sci 2022; 13:5205-5219. [PMID: 35655553 PMCID: PMC9093154 DOI: 10.1039/d1sc06867a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/24/2022] [Indexed: 02/02/2023] Open
Abstract
Reversible conversion between excited-states plays an important role in many photophysical phenomena. Using 1-(pyren-2'-yl)-o-carborane as a model, we studied the photoinduced reversible charge-transfer (CT) process and the thermodynamic equilibrium between the locally-excited (LE) state and CT state, by combining steady state, time-resolved, and temperature-dependent fluorescence spectroscopy, fs- and ns-transient absorption, and DFT and LR-TDDFT calculations. Our results show that the energy gaps and energy barriers between the LE, CT, and a non-emissive 'mixed' state of 1-(pyren-2'-yl)-o-carborane are very small, and all three excited states are accessible at room temperature. The internal-conversion and reverse internal-conversion between LE and CT states are significantly faster than the radiative decay, and the two states have the same lifetimes and are in thermodynamic equilibrium.
Collapse
Affiliation(s)
- Lei Ji
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University 127 West Youyi Road Xi'an Shaanxi China
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Stefan Riese
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Alexander Schmiedel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Maximillian Fest
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jörn Nitsch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Basile F E Curchod
- Department of Chemistry, University of Durham South Road Durham DH1 3LE UK
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lin Wu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University 127 West Youyi Road Xi'an Shaanxi China
| | - Hamad H Al Mamari
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
- Department of Chemistry, College of Science, Sultan Qaboos University PO Box 36, Al Khoudh 123 Muscat Sultanate of Oman
| | - Sebastian Hammer
- Experimentelle Physik VI, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jens Pflaum
- Experimentelle Physik VI, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Mark A Fox
- Department of Chemistry, University of Durham South Road Durham DH1 3LE UK
| | - David J Tozer
- Department of Chemistry, University of Durham South Road Durham DH1 3LE UK
| | - Maik Finze
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
5
|
Yamada S, Sato M, Uto E, Kataoka M, Morita M, Konno T. Fluorinated tolane-based fluorophores bearing a branched flexible unit with aggregation-induced emission enhancement characteristics. NEW J CHEM 2022. [DOI: 10.1039/d1nj05822c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise molecular design of fluorinated tolane-based fluorophores can control both the electron density and molecular aggregated structures.
Collapse
Affiliation(s)
- Shigeyuki Yamada
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masaya Sato
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eiji Uto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Mitsuki Kataoka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Masato Morita
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tsutomu Konno
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
6
|
Ochi J, Tanaka K, Chujo Y. Experimental proof for emission annihilation through bond elongation at the carbon-carbon bond in o-carborane with fused biphenyl-substituted compounds. Dalton Trans 2020; 50:1025-1033. [PMID: 33367426 DOI: 10.1039/d0dt03618h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because of their unique luminescence properties, such as aggregation-induced emission (AIE), intense solid-state luminescence and stimuli-responsive luminochromism, aryl-substituted o-carboranes have attracted attention as a platform for developing functional optoelectronic materials. However, there still remains one fundamental issue with the detailed mechanism of solution quenching in AIE behaviors. Aryl-modified o-carboranes with AIE properties exhibit intense emission not in solution but in the solid state. According to quantum calculations and many experimental results, the elongation at the carbon-carbon bond in o-carborane in the excited state, followed by nonradiative decay, has been proposed as a main path for emission annihilation in solution. However, intramolecular rotation would simultaneously occur, and there is a possibility that emission annihilation could be induced by the combination of both bond elongation and rotation. In this study, we designed two types of biphenyl-substituted o-carboranes having fused structures at the neighbor carbon and boron atoms for fixing molecular conformation. In these molecules, bond elongation is allowed, while rotation would be prohibited. From the series of optical measurements and theoretical investigations, we proved that emission annihilation can occur through bond elongation in the absence of rotation. Moreover, we show that bond elongation could be suppressed by introducing a bulky substituent at the adjacent carbon, and emission color tuning was achieved. This is the first example, to the best of our knowledge, to prove that excitation decay can proceed only through bond elongation without electronic perturbation caused by rotation.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | |
Collapse
|
7
|
Recent Progress in the Development of Solid‐State Luminescent
o
‐Carboranes with Stimuli Responsivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916666] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Ochi J, Tanaka K, Chujo Y. Recent Progress in the Development of Solid-State Luminescent o-Carboranes with Stimuli Responsivity. Angew Chem Int Ed Engl 2020; 59:9841-9855. [PMID: 32009291 DOI: 10.1002/anie.201916666] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Indexed: 12/20/2022]
Abstract
o-Carborane, a cluster compound containing boron and adjacent carbon atoms, displays intriguing luminescent properties. Recently, compounds containing o-carborane units were found to show suppressed aggregation-induced quenching and intense solid-state emission; they also show potential for the development of stimuli-responsive luminochromic materials. In this Minireview, we introduce three kinds of fundamental photochemical properties: aggregation-induced emission, twisted intramolecular charge transfer in crystals, and environment-sensitive excimer formation in solids. Based on these properties, several types of luminochromism, such as thermos-, vapo-, and mechanochromism, have been discovered. Based mainly on results from recent studies, we illustrate these mechanisms as well as unique luminescent behaviors of o-carborane derivatives.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
9
|
Zhao A, Cai W, Yan X, Zhang H, Wang J, Shen W. Theoretical insights into the effect of ligands on platinum(ii) complexes with a bidentate bis(o-carborane) ligand structure. Photochem Photobiol Sci 2019; 18:2421-2429. [PMID: 31369026 DOI: 10.1039/c9pp00251k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carboranes feature a wealth of unique structures and properties in phosphorescent transition-metal complexes (PTMCs). Herein, we identify the influence between the electronic structure in carboranes and the main ligand based on the density functional theory (DFT) and time-dependent density functional theory (TD-DFT), which affects the phosphorescence properties of carborane-containing Pt compounds. Furthermore, the mechanism, including singlet-triplet splitting energies ΔE(Sn - T1), transition dipole moment for S0 - Sn transitions, the zero-field splitting (ZFS), the radiative decay rate constant (kr), the Huang-Rhys factor (S), and the spin-orbit coupling (SOC) matrix elements <T1|HSOC|Sn> have been carefully investigated. The results presented here reveal the functional action 1,1'-bis(o-carborane) contributes to the emission process owing to the manipulation of main ligand dtb-bpy and complex 1a shows promising prospects for achieving highly efficient phosphorescence via engineering the conjugation of the main ligand dtb-bpy.
Collapse
Affiliation(s)
- Ancong Zhao
- School of Chemistry and Chemical Engineering, Southwest University, Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, Chongqing, 400715, China.
| | | | | | | | | | | |
Collapse
|
10
|
Nishino K, Tanaka K, Chujo Y. Tuning of Sensitivity in Thermochromic Luminescence by Regulating Molecular Rotation Based on Triphenylamine‐Substituted
o
‐Carboranes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900537] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kenta Nishino
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku, Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku, Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku, Kyoto 615-8510 Japan
| |
Collapse
|
11
|
Yang Z, Zhao W, Liu W, Wei X, Chen M, Zhang X, Zhang X, Liang Y, Lu C, Yan H. Metal‐Free Oxidative B−N Coupling of
nido
‐Carborane with N‐Heterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongming Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weijia Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
12
|
Yang Z, Zhao W, Liu W, Wei X, Chen M, Zhang X, Zhang X, Liang Y, Lu C, Yan H. Metal‐Free Oxidative B−N Coupling of
nido
‐Carborane with N‐Heterocycles. Angew Chem Int Ed Engl 2019; 58:11886-11892. [DOI: 10.1002/anie.201904940] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongming Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Weijia Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Wei Liu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing Wei
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Meng Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiao Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaolei Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
13
|
Cho Y, Kim S, Lee J, Han W, Kim CH, Son H, Kang SO. Solid‐State Photochromism by Molecular Assembly of Bis‐
o
‐carboranyl Siloles. Chemistry 2019; 25:8149-8156. [DOI: 10.1002/chem.201901305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Yang‐Jin Cho
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - So‐Yoen Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Jie‐Won Lee
- Department of ChemistrySeoul Women's University Seoul 01797 South Korea
| | - Won‐Sik Han
- Department of ChemistrySeoul Women's University Seoul 01797 South Korea
| | - Chul Hoon Kim
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Ho‐Jin Son
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| | - Sang Ook Kang
- Department of Advanced Materials ChemistryKorea University Sejong 30019 South Korea
| |
Collapse
|
14
|
Zhang K, Shen Y, Yang X, Liu J, Jiang T, Finney N, Spingler B, Duttwyler S. Atomically Defined Monocarborane Copper(I) Acetylides with Structural and Luminescence Properties Tuned by Ligand Sterics. Chemistry 2019; 25:8754-8759. [DOI: 10.1002/chem.201900584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Kang Zhang
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Yunjun Shen
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Xiaoli Yang
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Jiyong Liu
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Tao Jiang
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| | - Nathaniel Finney
- School of Pharmaceutical Science and TechnologyTianjin University 92 Weijin Road 300072 Tianjin P. R. China
| | - Bernhard Spingler
- Department of ChemistryUniversity of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Simon Duttwyler
- Department of ChemistryZhejiang University 38 Zheda Road 310027 Hangzhou P. R. China
| |
Collapse
|
15
|
Shen Y, Zhang K, Liang X, Dontha R, Duttwyler S. Highly selective palladium-catalyzed one-pot, five-fold B-H/C-H cross coupling of monocarboranes with alkenes. Chem Sci 2019; 10:4177-4184. [PMID: 31057746 PMCID: PMC6471670 DOI: 10.1039/c9sc00078j] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/03/2019] [Indexed: 01/07/2023] Open
Abstract
Palladium-catalyzed dehydrogenative B-H/C-H cross coupling of monocarborane anions with alkenes is reported, allowing for the first time the isolation of selectively penta-alkenylated boron clusters. The reaction cascade is regioselective for the cage positions, leading directly to B2-6 functionalization. Under mild and convenient conditions, styrenes, benzylic alkenes and aliphatic alkenes are demonstrated to be viable coupling partners with exclusive vinyl-type B-C bond formation. Multiple subsequent transformations provide access to directing group-free products, chiral derivatives and penta-alkylated cages. The five-fold coupling, combined with the latter reactions, represents a powerful methodology for the straightforward synthesis of new classes of boron clusters.
Collapse
Affiliation(s)
- Yunjun Shen
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Kang Zhang
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Xuewei Liang
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Rakesh Dontha
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| | - Simon Duttwyler
- Department of Chemistry , Zhejiang University , 310027 Hangzhou , Zhejiang , P. R. China .
| |
Collapse
|
16
|
Nishino K, Yamamoto H, Ochi J, Tanaka K, Chujo Y. Time‐Dependent Emission Enhancement of the Ethynylpyrene‐
o
‐Carborane Dyad and Its Application as a Luminescent Color Sensor for Evaluating Water Contents in Organic Solvents. Chem Asian J 2019; 14:1577-1581. [DOI: 10.1002/asia.201900396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kenta Nishino
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Hideki Yamamoto
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Junki Ochi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| |
Collapse
|
17
|
Ochi J, Tanaka K, Chujo Y. Improvement of Solid-State Excimer Emission of the Aryl-Ethynyl-o
-Carborane Skeleton by Acridine Introduction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
18
|
Ali MO, Lasseter JC, Żurawiński R, Pietrzak A, Pecyna J, Wojciechowski J, Friedli AC, Pociecha D, Kaszyński P. Thermal and Photophysical Properties of Highly Quadrupolar Liquid-Crystalline Derivatives of the [closo-B 12 H 12 ] 2- Anion. Chemistry 2019; 25:2616-2630. [PMID: 30560574 DOI: 10.1002/chem.201805392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/11/2018] [Indexed: 11/06/2022]
Abstract
Two series of 1,12-bis-zwitterionic derivatives of the [closo-B12 H12 ]2- anion (B), containing either two 4-alkoxypyridinium groups (1B[n]-p) or one 4-alkoxypyridinium and one 4-pentylthianium groups (2B[n]-p), were prepared and their structural (XRD, DFT), thermal, and photophysical properties were compared with those of the analogous derivatives of the [closo-B10 H10 ]2- anion (1A[n]-p and 2A[n]-p). Some 1,7-derivatives of B were isolated and investigated. Both series 1[n] and 2[n] exhibit nematic and crystalline polymorphism; the 12-vertex derivatives (B) have higher transition temperatures than those of the 10-vertex analogues (A). All compounds fluoresce with quantum yields higher for 1B (ΦF =0.37 for 1B[7]-p and ΦF =0.27 for 2B[7]-p) than those for the 10-vertex analogues (ΦF =0.04 for 2A[5]-p). DFT calculations demonstrate an order of magnitude lower first hyperpolarizability, β(-ω,ω,0) , for 2B[7]-p than that for the 10-vertex analogue 2A[7]-p (1.7×10-30 vs. 18.9×10-30 esu at ω=0).
Collapse
Affiliation(s)
- Muhammad O Ali
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - John C Lasseter
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Remigiusz Żurawiński
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland
| | - Anna Pietrzak
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.,Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Jacek Pecyna
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jakub Wojciechowski
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Andrienne C Friedli
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Damian Pociecha
- Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Piotr Kaszyński
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, TN, 37132, USA.,Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Łódź, Poland.,Faculty of Chemistry, University of Łódź, Tamka 12, 91-403, Łódź, Poland
| |
Collapse
|
19
|
Gon M, Tanaka K, Chujo Y. Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180245] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
20
|
Nishino K, Morisaki Y, Tanaka K, Chujo Y. Design of Thermochromic Luminescent Dyes Based on the Bis(
ortho
‐carborane)‐Substituted Benzobithiophene Structure. Chem Asian J 2018; 14:789-795. [DOI: 10.1002/asia.201801529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Kenta Nishino
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Yasuhiro Morisaki
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
- Present address: Department of Applied Chemistry for EnvironmentSchool of Science and TechnologyKwansei Gakuin University 2-1 Gakuen Sanda Hyogo 669-1337 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
21
|
Nishino K, Hashimoto K, Tanaka K, Morisaki Y, Chujo Y. Comparison of luminescent properties of helicene-like bibenzothiophenes with o-carborane and 5,6-dicarba-nido-decaborane. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9258-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Naito H, Uemura K, Morisaki Y, Tanaka K, Chujo Y. Enhancement of Luminescence Efficiencies by Thermal Rearrangement fromortho- tometa-Carborane in Bis-Carborane-Substituted Acenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800151] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hirofumi Naito
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Kyoya Uemura
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Yasuhiro Morisaki
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry; Graduate School of Engineering; Kyoto University; Katsura 615-8510 Nishikyo-ku, Kyoto Japan
| |
Collapse
|