1
|
Zhou Y, Cai Y, Tu T, Zhang S, Li T, Fang L, Wang D, Liang Y, Wang Z, Jiang Y, Zhou C, Liang B. Expanded Carbon Nanotube Fiber at the Liquid-Air Interface for High-Performance Fiber-Based Supercapacitors and Electrochemical Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41839-41849. [PMID: 37590959 DOI: 10.1021/acsami.3c06815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Carbon nanotube fibers (CNTFs) are widely utilized in flexible and wearable electronics due to their outstanding electrical and mechanical properties. However, the spinning process of CNTFs has limited the CNTs from exposure, leading to an ultralow usage efficiency of individual CNTs. Here, we propose an electrochemical expansion strategy of a single CNTF at the liquid-air interface, forming a macroscopic spindle-shaped CNTF (SS-CNTF) with an enlarged volume of up to 5000-fold upon the spindle. The obtained spindle-shaped structure endows CNTF with a high specific surface area together with excellent conductivity and good mechanical properties. Therefore, the SS-CNTF-based devices exhibit outstanding performances both in energy storage (electrical double-layer supercapacitor, energy density: 11.22 Wh kg-1, power density: 203.9 kW kg-1) and electrochemical sensing (ascorbic acid: 1.26 μA μM-1 cm-2; dopamine: 103.91 μA μM-1 cm-2; uric acid: 11.53 μA μM-1 cm-2). The novel architecture of SS-CNTF prepared by one-step electrochemical expansion at the liquid-air interface enabled its high performance in multiple applications, providing new insight into the development of CNTF-based devices.
Collapse
Affiliation(s)
- Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tingting Tu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Tianyu Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, P. R. China
| | - Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yitao Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Zhaoyang Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Yu Jiang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Congcong Zhou
- National Engineering Research Center for Innovation and Application of Minimally Invasive Devices, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P. R. China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, P. R. China
| |
Collapse
|
2
|
Facile fabrication of NiFeB deposited flexible carbon cloth electrode towards overall water splitting in alkaline and saline solutions. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
3
|
Recent Trends in Carbon Nanotube Electrodes for Flexible Supercapacitors: A Review of Smart Energy Storage Device Assembly and Performance. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In order to upgrade existing electronic technology, we need simultaneously to advance power supply devices to match emerging requirements. Owing to the rapidly growing wearable and portable electronics markets, the demand to develop flexible energy storage devices is among the top priorities for humankind. Flexible supercapacitors (FSCs) have attracted tremendous attention, owing to their unrivaled electrochemical performances, long cyclability and mechanical flexibility. Carbon nanotubes (CNTs), long recognized for their mechanical toughness, with an elastic strain limit of up to 20%, are regarded as potential candidates for FSC electrodes. Along with excellent mechanical properties, high electrical conductivity, and large surface area, their assemblage adaptability from one-dimensional fibers to two-dimensional films to three-dimensional sponges makes CNTs attractive. In this review, we have summarized various assemblies of CNT structures, and their involvement in various device configurations of FSCs. Furthermore, to present a clear scenario of recent developments, we discuss the electrochemical performance of fabricated flexible devices of different CNT structures and their composites, including additional properties such as compressibility and stretchability. Additionally, the drawbacks and benefits of the study and further potential scopes are distinctly emphasized for future researchers.
Collapse
|
4
|
Rimza T, Saha S, Dhand C, Dwivedi N, Patel SS, Singh S, Kumar P. Carbon-Based Sorbents for Hydrogen Storage: Challenges and Sustainability at Operating Conditions for Renewable Energy. CHEMSUSCHEM 2022; 15:e202200281. [PMID: 35377969 DOI: 10.1002/cssc.202200281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
It is estimated that all fossil fuels will be depleted by 2060 if we continue to use them at the present rate. Therefore, there is an unmet need for an alternative source of energy with high calorific value. In this regard, hydrogen is considered the best alternative renewable fuel that could be used in practical conditions. Accordingly, researchers are looking for an ideal hydrogen storage system under ambient conditions for feasible applications. In many respects, carbon-based sorbents have emerged as the best possible hydrogen storage media. These carbon-based sorbents are cost-effective, eco-friendly, and readily available. In this Review, the present status of carbon-based materials in promoting solid-state hydrogen storage technologies at the operating temperature and pressure was reported. Experimental studies have shown that some carbon-based materials such as mesoporous graphene and doped carbon nanotubes may have hydrogen storage uptake of 3-7 wt %, while some theoretical studies have predicted up to 13.79 wt % of hydrogen uptake at ambient conditions. Also, it was found that different methods used for carbon materials synthesis played a vital role in hydrogen storage performance. Eventually, this Review will be helpful to the scientific community for finding the competent material and methodology to investigate the existing hydrogen uptake issues at operating conditions.
Collapse
Affiliation(s)
- Tripti Rimza
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sumit Saha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, 751013, India
| | - Chetna Dhand
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neeraj Dwivedi
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Singh Patel
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Singh
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Kumar
- CSIR-Advanced Materials and Processes Research Institute, Bhopal, Madhya Pradesh, 462026, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Zhang Z, Guan T, Zhang X, Shen L, Bao N. High-Strength-Reduced Graphene Oxide/Carboxymethyl Cellulose Composite Fibers for High-Performance Flexible Supercapacitors. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhaorong Zhang
- State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Tuxiang Guan
- State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiaoyan Zhang
- State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Liming Shen
- State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Ningzhong Bao
- State Key Laboratory of Material-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
6
|
Jamali V, Mirri F, Biggers EG, Pinnick RA, Liberman L, Cohen Y, Talmon Y, MacKintosh FC, van der Schoot P, Pasquali M. Enhanced ordering in length-polydisperse carbon nanotube solutions at high concentrations as revealed by small angle X-ray scattering. SOFT MATTER 2021; 17:5122-5130. [PMID: 33735362 DOI: 10.1039/d0sm02253e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.
Collapse
Affiliation(s)
- Vida Jamali
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cao Y, Zhou T, Wu K, Yong Z, Zhang Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv 2021; 11:6628-6643. [PMID: 35423204 PMCID: PMC8694961 DOI: 10.1039/d0ra09482j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Aligned carbon nanotube (CNT) fibers have been considered as one of the ideal candidate electrodes for fiber-shaped energy harvesting and storage devices, due to their merits of flexibility, lightweight, desirable mechanical property, outstanding electrical conductivity as well as high specific surface area. Herein, the recent advancements on the aligned CNT fibers for energy harvesting and storage devices are reviewed. The synthesis, structure, and properties of aligned carbon nanotube fibers are briefly summarized. Then, their applications in fiber-shaped energy harvesting and storage devices (i.e., solar cells, supercapacitors, and batteries) are demonstrated. The remaining challenges are finally discussed to highlight the future research direction in the development of aligned CNT fibers for fiber-shaped energy devices.
Collapse
Affiliation(s)
- Yufang Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 Anhui China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Tao Zhou
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Kunjie Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Yongyi Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 Anhui China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| |
Collapse
|
8
|
Li H, Shi F, An Q, Zhai S, Wang K, Tong Y. Three-dimensional hierarchical porous carbon derived from lignin for supercapacitors: Insight into the hydrothermal carbonization and activation. Int J Biol Macromol 2020; 166:923-933. [PMID: 33152364 DOI: 10.1016/j.ijbiomac.2020.10.249] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Three-dimensional hierarchical porous carbon is prepared by utilizing enzymatic hydrolysis lignin as a carbon source via hydrothermal carbonization and activation. The complicated operational parameters including temperature, time, concentration and pH in the hydrothermal carbonization are systemically investigated. We employed the hydrochar as electrode for supercapacitors. Accordingly, we not only achieve a high-performance specific capacitance for supercapacitors but also rationalize the effects of hydrothermal conditions on the specific capacitance via various characterizations. The activation process of hydrochar is also studied by comparing various activators and the activator/hydrochar ratios. The obtained materials possess a three-dimensional interconnected hierarchical structure with rational pore size distribution and a specific surface area reach up to 1504 m2 g-1. Then the corresponding supercapacitors achieve a large specific capacitance of 324 F g-1 as the current density is 0.5 A g-1. These supercapacitors acquire an outstanding cycling stability with 99.7% capacitance retention after 5000 cycles. The assembled symmetrical supercapacitors also show a high energy density of 17.9 W h kg-1 and can maintain at 5.6 W h kg-1 even at an ultra-high power density of 50,400 W kg-1.
Collapse
Affiliation(s)
- Hongsheng Li
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Feiyan Shi
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Shangru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kai Wang
- Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yao Tong
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
9
|
Pan M, Zeng W, Quan H, Cui J, Guo Y, Wang Y, Chen D. Low-crystalline Ni/Co-oxyhydroxides nanoarrays on carbon cloth with high mass loading and hierarchical structure as cathode for supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
|
11
|
Shi H, Wen G, Nie Y, Zhang G, Duan H. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. NANOSCALE 2020; 12:5261-5285. [PMID: 32091524 DOI: 10.1039/c9nr09785f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-performance energy storage and conversion devices with high energy density, power density and long-term cycling life are of great importance in current consumer electronics, portable electronics and electric vehicles. Carbon materials have been widely investigated and utilized in various energy storage and conversion devices due to their excellent conductivity, mechanical and chemical stability, and low cost. Abundant excellent reviews have summarized the most recent progress and future outlooks for most of the current prime carbon materials used in energy storage and conversion devices, such as carbon nanotubes, fullerene, graphene, porous carbon and carbon fibers. However, the significance of three-dimensional (3D) commercial carbon cloth (CC), one of the key carbon materials with outstanding mechanical stability, high conductivity and flexibility, in the energy storage and conversion field, especially in wearable electronics and flexible devices, has not been systematically summarized yet. In this review article, we present a careful investigation of flexible CC in the energy storage and conversion field. We first give a general introduction to the common properties of CC and the roles it has played in energy storage and conversion systems. Then, we meticulously investigate the crucial role of CC in typical electrochemical energy storage systems, including lithium-ion batteries, sodium-ion batteries, lithium-sulfur batteries and supercapacitors. Following a description of the wide application potential of CC in electrocatalytic hydrogen evolution, oxygen evolution/reduction, full-water splitting, etc., we will give a brief introduction to the application of CC in the areas of photocatalytically and photoelectrochemically induced solar energy conversion and storage. The review will end with a brief summary of the typical superiorities that CC has in current energy conversion and storage systems, as well as providing some perspectives and outlooks on its future applications in the field. Our main interest will be focused on CC-based flexible devices due to the inherent superiority of CC and the increasing demand for flexible and wearable electronics.
Collapse
Affiliation(s)
- Huimin Shi
- Center for Research on Leading Technology of Special Equipment, School of Mechanical and Electric Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Talebian S, Mehrali M, Raad R, Safaei F, Xi J, Liu Z, Foroughi J. Electrically Conducting Hydrogel Graphene Nanocomposite Biofibers for Biomedical Applications. Front Chem 2020; 8:88. [PMID: 32175306 PMCID: PMC7056842 DOI: 10.3389/fchem.2020.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
Conductive biomaterials have recently gained much attention, specifically owing to their application for electrical stimulation of electrically excitable cells. Herein, flexible, electrically conducting, robust fibers composed of both an alginate biopolymer and graphene components have been produced using a wet-spinning process. These nanocomposite fibers showed better mechanical, electrical, and electrochemical properties than did single fibers that were made solely from alginate. Furthermore, with the aim of evaluating the response of biological entities to these novel nanocomposite biofibers, in vitro studies were carried out using C2C12 myoblast cell lines. The obtained results from in vitro studies indicated that the developed electrically conducting biofibers are biocompatible to living cells. The developed hybrid conductive biofibers are likely to find applications as 3D scaffolding materials for tissue engineering applications.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Mehdi Mehrali
- Department of Mechanical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Raad Raad
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Farzad Safaei
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Jiangtao Xi
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Zhoufeng Liu
- School of Textile Engineering, Zhongyuan University of Technology, Zhengzhou, China
| | - Javad Foroughi
- Intelligent Polymer Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- School of Electrical, Computer and Telecommunications Engineering, Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
Zhou Q, Teng W, Jin Y, Sun L, Hu P, Li H, Wang L, Wang J. Highly-conductive PEDOT:PSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135530] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Jang Y, Kim SM, Spinks GM, Kim SJ. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902670. [PMID: 31403227 DOI: 10.1002/adma.201902670] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Smart systems are those that display autonomous or collaborative functionalities, and include the ability to sense multiple inputs, to respond with appropriate operations, and to control a given situation. In certain circumstances, it is also of great interest to retain flexible, stretchable, portable, wearable, and/or implantable attributes in smart electronic systems. Among the promising candidate smart materials, carbon nanotubes (CNTs) exhibit excellent electrical and mechanical properties, and structurally fabricated CNT-based fibers and yarns with coil and twist further introduce flexible and stretchable properties. A number of notable studies have demonstrated various functions of CNT yarns, including sensors, actuators, and energy storage. In particular, CNT yarns can operate as flexible electronic sensors and electrodes to monitor strain, temperature, ionic concentration, and the concentration of target biomolecules. Moreover, a twisted CNT yarn enables strong torsional actuation, and coiled CNT yarns generate large tensile strokes as an artificial muscle. Furthermore, the reversible actuation of CNT yarns can be used as an energy harvester and, when combined with a CNT supercapacitor, has promoted the next-generation of energy storage systems. Here, progressive advances of CNT yarns in electrical sensing, actuation, and energy storage are reported, and the future challenges in smart electronic systems considered.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Sung Min Kim
- Department of Physical Education, Department of Active Aging Industry, Hanyang University, Seoul, 04763, South Korea
| | - Geoffrey M Spinks
- Australian Institute for Innovative Materials, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
15
|
Lyu J, Kudiiarov V, Lider A. An Overview of the Recent Progress in Modifications of Carbon Nanotubes for Hydrogen Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E255. [PMID: 32024092 PMCID: PMC7075146 DOI: 10.3390/nano10020255] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 11/26/2022]
Abstract
Many researchers have carried out experimental research and theoretical analysis on hydrogen storage in carbon nanotubes (CNTs), but the results are very inconsistent. The present paper reviewed recent progress in improving the hydrogen storage properties of CNTs by various modifications and analyzed the hydrogen storage mechanism of CNTs. It is certain that the hydrogen storage in CNTs is the result of the combined action of physisorption and chemisorption. However, H2 adsorption on metal-functionalized CNTs still lacks a consistent theory. In the future, the research of CNTs for hydrogen adsorption should be developed in the following three directions: (1) A detailed study of the optimum number of metal atoms without aggregation on CNT should be performed, at the same time suitable preparation methods for realizing controllable doping site and doped configurations should be devised; (2) The material synthesis, purification, and activation methods have to be optimized; (3) Active sites, molecular configurations, effectively accessible surface area, pore size, surface topology, chemical composition of the surface, applied pressure and temperature, defects and dopant, which are some of the important factors that strongly affect the hydrogen adsorption in CNTs, should be better understood.
Collapse
Affiliation(s)
- Jinzhe Lyu
- Division for Experimental Physics, School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, Lenin Ave. 43, Tomsk 634034, Russia; (V.K.); (A.L.)
| | | | | |
Collapse
|
16
|
Liu Y, Guo N, Yin P, Zhang C. Facile growth of carbon nanotubes using microwave ovens: the emerging application of highly efficient domestic plasma reactors. NANOSCALE ADVANCES 2019; 1:4546-4559. [PMID: 36133146 PMCID: PMC9416814 DOI: 10.1039/c9na00538b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/16/2019] [Indexed: 06/14/2023]
Abstract
The facile growth of carbon nanotubes (CNTs) using microwave radiation reveals a new way for the cost-effective synthesis of CNTs for a wide range of applications. In this regard, domestic microwave ovens can be used as convenient plasma reactors to grow CNTs in a very fast, simple, energy-saving and solvent-free manner. The special heating mechanism of microwaves can not only accomplish the fast growth of high-density CNT brushes within tens of seconds, but also eliminate the need for a flammable gaseous carbon source and an expensive furnace. By carefully selecting the substrate and catalyst, low-temperature growth of CNTs can also be achieved on low-melting point organic polymers at atmospheric pressure. Highly localized heating near the catalyst nanoparticles was observed under microwave irradiation, and this phenomenon can be utilized to grow CNTs at desired locations on the substrate to fabricate CNT-based nanoelectronics in situ. Finally, the microwave growth of CNTs is highly adaptive to different carbon sources, substrates and catalysts, showing enormous potential to generate functionalized CNT-based composites for emerging advanced applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Sun Yat-sen University Guangzhou China 510006
| | - Naishun Guo
- Department of Biomedical Engineering, Sun Yat-sen University Guangzhou China 510006
| | - Pengfei Yin
- Department of Biomedical Engineering, Sun Yat-sen University Guangzhou China 510006
| | - Chao Zhang
- Department of Biomedical Engineering, Sun Yat-sen University Guangzhou China 510006
| |
Collapse
|
17
|
Yuan H, Pan H, Meng X, Zhu C, Liu S, Chen Z, Ma J, Zhu S. Assembly of MnO/CNC/rGO fibers from colloidal liquid crystal for flexible supercapacitors via a continuous one-process method. NANOTECHNOLOGY 2019; 30:465702. [PMID: 31408856 DOI: 10.1088/1361-6528/ab3aaf] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flexible supercapacitors based on fiber shaped electrodes exhibit great potential for practical applications in smart fabrics owing to their light weight, good flexibility, and excellent weaveability. Herein, manganosite/carbonized cellulose nanocrystal/reduced graphene oxide (MnO/CNC/rGO) ternary composite fibers were fabricated from liquid crystal spinning dopes through a continuous one-process method. The assembly of CNC and manganese oxide nanoparticles in GO aqueous dispersion not only prevents GO nanosheets from restacking, but also ensures a uniform intercalation of nanoparticles. After a chemical and thermal reduction, the carbonized CNC contributes for additional electrical double layer capacitance while the MnO for faradaic pseudocapacitance. A fiber supercapacitor was assembled by arranging two MnO/CNC/rGO ternary composite fibers coated with PVA/H3PO4 gel electrolyte in parallel and it exhibited an energy density of 0.14 mWh cm-3 at 4 mW cm-3 and the maximum power density of 40 mW cm-3. The fiber supercapacitor also demonstrated a good cycling stability (retains 82% of its initial capacitance after 6000 cycles) and bending robustness. This assembly approach is facile and scalable. More importantly the homogeneous dispersion of the nanoparticles in the ternary composite fibers shows promise for the future spreading of wearable electronic products.
Collapse
Affiliation(s)
- Hao Yuan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang X, Pei Z, Wang C, Yuan Z, Wei L, Pan Y, Mahmood A, Shao Q, Chen Y. Flexible Zinc-Ion Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903817. [PMID: 31609075 DOI: 10.1002/smll.201903817] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Indexed: 05/20/2023]
Abstract
Emerging wearable electronics require flexible energy storage devices with high volumetric energy and power densities. Fiber-shaped capacitors (FCs) offer high power densities and excellent flexibility but low energy densities. Zn-ion capacitors have high energy density and other advantages, such as low cost, nontoxicity, reversible Faradaic reaction, and broad operating voltage windows. However, Zn-ion capacitors have not been applied in wearable electronics due to the use of liquid electrolytes. Here, the first quasisolid-state Zn-ion hybrid FC (ZnFC) based on three rationally designed components is demonstrated. First, hydrothermally assembled high surface area and conductive reduced graphene oxide/carbon nanotube composite fibers serve as capacitor-type positive electrodes. Second, graphite fibers coated with a uniform Zn layer work as battery-type negative electrodes. Third, a new neutral ZnSO4 -filled polyacrylic acid hydrogel act as the quasisolid-state electrolyte, which offers high ionic conductivity and excellent stretchability. The assembled ZnFC delivers a high energy density of 48.5 mWh cm-3 at a power density of 179.9 mW cm-3 . Further, Zn dendrite formation that commonly happens under high current density is efficiently suppressed on the fiber electrode, leading to superior cycling stability. Multiple ZnFCs are integrated as flexible energy storage units to power wearable devices under different deformation conditions.
Collapse
Affiliation(s)
- Xinshi Zhang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zengxia Pei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Chaojun Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ziwen Yuan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yuqi Pan
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Asif Mahmood
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
19
|
Lee T, Park KT, Ku BC, Kim H. Carbon nanotube fibers with enhanced longitudinal carrier mobility for high-performance all-carbon thermoelectric generators. NANOSCALE 2019; 11:16919-16927. [PMID: 31490468 DOI: 10.1039/c9nr05757a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
With the increase in practical interest in flexible thermoelectric (TE) generators, the demand for high-performance alternatives to brittle TE materials is growing. Herein, we have demonstrated wet-spun CNT fibers with high TE performance by systematically controlling the longitudinal carrier mobility without a significant change in the carrier concentration. The carrier mobility optimized by CNT alignment increases the electrical conductivity without decreasing the thermopower, thus improving the power factor. On further adjusting the charge carriers via mild annealing, the CNT fibers exhibit a high power factor of 432 μW m-1 K-2. Based on the excellent TE performance and shape advantages for modular design of the CNT fiber, the all-carbon based flexible TE generator without an additional metal electrode has been fabricated. The flexible TE generator based on 40 pairs of p- and n-type CNT fibers shows the maximum power density of 15.4 and 259 μW g-1 at temperature differences (ΔT) of 5 and 20 K, respectively, currently one of the highest values reported for TE generators based on flexible materials. The strategy proposed here can improve the performance of flexible TE fibers by optimizing the carrier mobility without a change in the carrier concentration, and shows great potential for flexible TE generators.
Collapse
Affiliation(s)
- Taemin Lee
- Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | | | | | | |
Collapse
|
20
|
Guan T, Shen L, Bao N. Hydrophilicity Improvement of Graphene Fibers for High-Performance Flexible Supercapacitor. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02504] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tuxiang Guan
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Liming Shen
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
| | - Ningzhong Bao
- College of Chemical Engineering, State Key Laboratory of Material-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. China
- Institute of Graphene, Jiangsu Industrial Technology Research Institute, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
21
|
Gusmão R, Browne MP, Sofer Z, Pumera M. The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2019.04.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
22
|
Garcia-Torres J, Roberts AJ, Slade RC, Crean C. One-step wet-spinning process of CB/CNT/MnO2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
23
|
Gao K, Wang S, Liu W, Yue Y, Rao J, Su J, Li L, Zhang Z, Liu N, Xiong L, Gao Y. All Fiber Based Electrochemical Capacitor towards Wearable AC Line Filters with Outstanding Rate Capability. ChemElectroChem 2019. [DOI: 10.1002/celc.201801593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaifei Gao
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Siliang Wang
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Weijie Liu
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Yang Yue
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Jiangyu Rao
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Jun Su
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Luying Li
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Zhi Zhang
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Nishuang Liu
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| | - Lun Xiong
- School of ScienceWuhan Institute of Technology Wuhan 430073 P.R. China
| | - Yihua Gao
- Center for Nanoscale Characterization & Devices (CNCD)School of Physics & Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and Technology (HUST) Luoyu Road 1037 Wuhan 430074 P. R. China
| |
Collapse
|
24
|
Zhang Q, Liu H, Xu Y, Wang L. 3D nanoflower-like zinc hydroxyl carbonates for high performance asymmetric supercapacitors. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Chen X, Zhou Z, Karahan HE, Shao Q, Wei L, Chen Y. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801929. [PMID: 30160051 DOI: 10.1002/smll.201801929] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/23/2018] [Indexed: 05/14/2023]
Abstract
The century-old zinc-air (Zn-air) battery concept has been revived in the last decade due to its high theoretical energy density, environmental-friendliness, affordability, and safety. Particularly, electrically rechargeable Zn-air battery technologies are of great importance for bulk applications like electric vehicles, grid management, and portable electronic devices. Nevertheless, Zn-air batteries are still not competitive enough to realize widespread practical adoption because of issues in efficiency, durability, and cycle life. Here, following an introduction to the fundamentals and performance testing techniques, the latest research progress related to electrically rechargeable Zn-air batteries is compiled, particularly new key findings in the last five years (2013-2018). The strategies concerning the development of Zn and air electrodes are in focus. The design of other battery components, namely electrolytes and separators are also discussed. Poor performance of O2 electrocatalysts and the lack of the long-term stability of Zn electrodes and electrolytes remain major challenges. Finally, recommendations regarding the testing routines and materials design are provided. It is hoped that this up-to-date account will help to shape the future research activities toward the development of practical electrically rechargeable Zn-air batteries with extended lifetime and superior performance.
Collapse
Affiliation(s)
- Xuncai Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, 2006, Australia
| | - Zheng Zhou
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, 2006, Australia
| | - Huseyin Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Li Wei
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, 2006, Australia
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
26
|
Fabrication of super-stretchable and electrical conductive membrane of spandex/multi-wall carbon nanotube/reduced graphene oxide composite. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1597-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Yao J, Ji P, Sheng N, Guan F, Zhang M, Wang B, Chen S, Wang H. Hierarchical core-sheath polypyrrole@carbon nanotube/bacterial cellulose macrofibers with high electrochemical performance for all-solid-state supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Zhai S, Wang C, Karahan HE, Wang Y, Chen X, Sui X, Huang Q, Liao X, Wang X, Chen Y. Nano-RuO 2 -Decorated Holey Graphene Composite Fibers for Micro-Supercapacitors with Ultrahigh Energy Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800582. [PMID: 29882370 DOI: 10.1002/smll.201800582] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/11/2018] [Indexed: 05/03/2023]
Abstract
Compactness and versatility of fiber-based micro-supercapacitors (FMSCs) make them promising for emerging wearable electronic devices as energy storage solutions. But, increasing the energy storage capacity of microscale fiber electrodes, while retaining their high power density, remains a significant challenge. Here, this issue is addressed by incorporating ultrahigh mass loading of ruthenium oxide (RuO2 ) nanoparticles (up to 42.5 wt%) uniformly on nanocarbon-based microfibers composed largely of holey reduced graphene oxide (HrGO) with a lower amount of single-walled carbon nanotubes as nanospacers. This facile approach involes (1) space-confined hydrothermal assembly of highly porous but 3D interconnected carbon structure, (2) impregnating wet carbon structures with aqueous Ru3+ ions, and (3) anchoring RuO2 nanoparticles on HrGO surfaces. Solid-state FMSCs assembled using those fibers demonstrate a specific volumetric capacitance of 199 F cm-3 at 2 mV s-1 . Fabricated FMSCs also deliver an ultrahigh energy density of 27.3 mWh cm-3 , the highest among those reported for FMSCs to date. Furthermore, integrating 20 pieces of FMSCs with two commercial flexible solar cells as a self-powering energy system, a light-emitting diode panel can be lit up stably. The current work highlights the excellent potential of nano-RuO2 -decorated HrGO composite fibers for constructing micro-supercapacitors with high energy density for wearable electronic devices.
Collapse
Affiliation(s)
- Shengli Zhai
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chaojun Wang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Huseyin Enis Karahan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yanqing Wang
- Faculty of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Xuncai Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xiao Sui
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Qianwei Huang
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xiaozhou Liao
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Xin Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
29
|
Headrick RJ, Tsentalovich DE, Berdegué J, Bengio EA, Liberman L, Kleinerman O, Lucas MS, Talmon Y, Pasquali M. Structure-Property Relations in Carbon Nanotube Fibers by Downscaling Solution Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704482. [PMID: 29322634 DOI: 10.1002/adma.201704482] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/11/2017] [Indexed: 05/23/2023]
Abstract
At the microscopic scale, carbon nanotubes (CNTs) combine impressive tensile strength and electrical conductivity; however, their macroscopic counterparts have not met expectations. The reasons are variously attributed to inherent CNT sample properties (diameter and helicity polydispersity, high defect density, insufficient length) and manufacturing shortcomings (inadequate ordering and packing), which can lead to poor transmission of stress and current. To efficiently investigate the disparity between microscopic and macroscopic properties, a new method is introduced for processing microgram quantities of CNTs into highly oriented and well-packed fibers. CNTs are dissolved into chlorosulfonic acid and processed into aligned films; each film can be peeled and twisted into multiple discrete fibers. Fibers fabricated by this method and solution-spinning are directly compared to determine the impact of alignment, twist, packing density, and length. Surprisingly, these discrete fibers can be twice as strong as their solution-spun counterparts despite a lower degree of alignment. Strength appears to be more sensitive to internal twist and packing density, while fiber conductivity is essentially equivalent among the two sets of samples. Importantly, this rapid fiber manufacturing method uses three orders of magnitude less material than solution spinning, expanding the experimental parameter space and enabling the exploration of unique CNT sources.
Collapse
Affiliation(s)
- Robert J Headrick
- Department of Chemistry, Department of Chemical and Biomolecular Engineering and Department of Materials Science and NanoEngineering, The Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Dmitri E Tsentalovich
- Department of Chemistry, Department of Chemical and Biomolecular Engineering and Department of Materials Science and NanoEngineering, The Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Julián Berdegué
- Department of Chemistry, Department of Chemical and Biomolecular Engineering and Department of Materials Science and NanoEngineering, The Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Elie Amram Bengio
- Department of Chemistry, Department of Chemical and Biomolecular Engineering and Department of Materials Science and NanoEngineering, The Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Lucy Liberman
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Olga Kleinerman
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Matthew S Lucas
- Universal Technology Corporation, 1270 North Fairfield Road, Dayton, OH, 45432, USA
- Air Force Research Laboratory, Wright-Patterson AFB, OH, 45433, USA
| | - Yeshayahu Talmon
- Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Matteo Pasquali
- Department of Chemistry, Department of Chemical and Biomolecular Engineering and Department of Materials Science and NanoEngineering, The Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
30
|
Zhang Q, Han K, Li S, Li M, Li J, Ren K. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors. NANOSCALE 2018; 10:2427-2437. [PMID: 29335695 DOI: 10.1039/c7nr07158b] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A three-dimensional hierarchical porous carbon is synthesized via a facile chemical activation route with garlic skin as the precursor and KOH as the activating agent. The as-obtained carbon presents a high specific surface area of 2818 m2 g-1 and a hierarchical porous architecture containing macroporous frameworks, mesopores (2-4 nm), and micropores (0.6-1.0 nm). As the electrode material for a supercapacitor, due to its unique interconnected porous structure, this garlic skin-derived carbon exhibits excellent electrochemical performance and cycling stability. At a current density of 0.5 A g-1, the capacitance is up to 427 F g-1 (162 F cm-3). Even at a high current density of 50 A g-1, the capacitance can be maintained to a high value of 315 F g-1 (120 F cm-3). After charging-discharging at a current density of 4.5 A g-1 for 5000 cycles, the capacitance retention is as high as 94%. The results suggest that this garlic skin-derived 3D hierarchical porous carbon is a promising electrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Qing Zhang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, China.
| | | | | | | | | | | |
Collapse
|
31
|
Mirri F, Ashkar R, Jamali V, Liberman L, Pinnick RA, van der Schoot P, Talmon Y, Butler PD, Pasquali M. Quantification of Carbon Nanotube Liquid Crystal Morphology via Neutron Scattering. Macromolecules 2018; 51:10.1021/acs.macromol.8b01017. [PMID: 38855633 PMCID: PMC11160348 DOI: 10.1021/acs.macromol.8b01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid phase assembly is among the most industrially attractive routes for scalable carbon nanotube (CNT) processing. Chlorosulfonic acid (CSA) is known to be an ideal solvent for CNTs, spontaneously dissolving them without compromising their properties. At typical processing concentrations, CNTs form liquid crystals in CSA; however, the morphology of these phases and their concentration dependence are only qualitatively understood. Here, we use small-angle neutron scattering (SANS), combined with polarized light microscopy and cryogenic transmission electron microscopy to study solution morphology over a range of concentrations and two different CNT lengths. Our results show that at the highest concentration studied the long CNTs form a highly ordered fully nematic phase, while short CNTs remain in a biphasic regime. Upon dilution, long CNTs undergo a 2D lattice expansion, whereas short CNTs seem to have an intermediate expansion between 2D and 3D probably due to the biphasic nature of the system. The average spacing between the CNTs scaled by the CNT diameter is the same in both systems, as expected for infinitely long aligned rods.
Collapse
Affiliation(s)
- Francesca Mirri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Rana Ashkar
- NIST Center for Neutron Research, National Institute of Standard and Technology (NIST), Gaithersburg, Maryland 20899, United States
- Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, United States
- Physics Department, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Vida Jamali
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Lucy Liberman
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Robert A. Pinnick
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Paul van der Schoot
- Theory of Polymers and Soft Matter Group, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Paul D. Butler
- NIST Center for Neutron Research, National Institute of Standard and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Matteo Pasquali
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
32
|
Tsentalovich DE, Headrick RJ, Mirri F, Hao J, Behabtu N, Young CC, Pasquali M. Influence of Carbon Nanotube Characteristics on Macroscopic Fiber Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36189-36198. [PMID: 28937741 DOI: 10.1021/acsami.7b10968] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We study how intrinsic parameters of carbon nanotube (CNT) samples affect the properties of macroscopic CNT fibers with optimized structure. We measure CNT diameter, number of walls, aspect ratio, graphitic character, and purity (residual catalyst and non-CNT carbon) in samples from 19 suppliers; we process the highest quality CNT samples into aligned, densely packed fibers, by using an established wet-spinning solution process. We find that fiber properties are mainly controlled by CNT aspect ratio and that sample purity is important for effective spinning. Properties appear largely unaffected by CNT diameter, number of walls, and graphitic character (determined by Raman G/D ratio) as long as the fibers comprise thin few-walled CNTs with high G/D ratio (above ∼20). We show that both strength and conductivity can be improved simultaneously by assembling high aspect ratio CNTs, producing continuous CNT fibers with an average tensile strength of 2.4 GPa and a room temperature electrical conductivity of 8.5 MS/m, ∼2 times higher than the highest reported literature value (∼15% of copper's value), obtained without postspinning doping. This understanding of the relationship of intrinsic CNT parameters to macroscopic fiber properties is key to guiding CNT synthesis and continued improvement of fiber properties, paving the way for CNT fiber introduction in large-scale aerospace, consumer electronics, and textile applications.
Collapse
Affiliation(s)
- Dmitri E Tsentalovich
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Robert J Headrick
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Francesca Mirri
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Junli Hao
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Natnael Behabtu
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Colin C Young
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| | - Matteo Pasquali
- Department of Chemical & Biomolecular Engineering, Department of Chemistry, Department of Materials Science & NanoEngineering, The Smalley-Curl Institute, Rice University , Houston, Texas 77005, United States
| |
Collapse
|