1
|
Hong Y, Venkateshalu S, Jeong S, Tomboc GM, Jo J, Park J, Lee K. Galvanic replacement reaction to prepare catalytic materials. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yongju Hong
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Sangyeon Jeong
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Gracita M. Tomboc
- Green Hydrogen Lab (GH2Lab) Institute for Hydrogen Research (IHR), Université du Québec à Trois−Rivières (UQTR) Québec Canada
| | - Jinhyoung Jo
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| | - Jongsik Park
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences Korea University Seoul Republic of Korea
| |
Collapse
|
2
|
Evaluating the total gold concentration in metallic nanoparticles with a high content of organic matter through microwave-assisted decomposition platform and plasma-based spectrometric techniques (ICP-MS and ICP OES). Talanta 2021; 224:121808. [DOI: 10.1016/j.talanta.2020.121808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022]
|
3
|
Chen AN, Endres EJ, Ashberry HM, Bueno SLA, Chen Y, Skrabalak SE. Galvanic replacement of intermetallic nanocrystals as a route toward complex heterostructures. NANOSCALE 2021; 13:2618-2625. [PMID: 33491702 DOI: 10.1039/d0nr08255d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Galvanic replacement reactions are a reliable method for transforming monometallic nanotemplates into bimetallic products with complex nanoscale architectures. When replacing bimetallic nanotemplates, even more complex multimetallic products can be made, with final nanocrystal shapes and architectures depending on multiple processes, including Ostwald ripening and the Kirkendall effect. Galvanic replacement, therefore, is a promising tool in increasing the architectural complexity of multimetallic templates, especially if we can identify and control the relevant processes in a given system and apply them more broadly. Here, we study the transformation of intermetallic PdCu nanoparticles in the presence of HAuCl4 and H2PtCl6, both of which are capable of oxidizing both Pd and Cu. Replacement products consistently lost Cu more quickly than Pd, preserved the crystal structure of the original intermetallic template, and grew a new phase on the sacrificial template. In this way, atomic and nanometer-scale architectures are integrated within individual nanocrystals. Product morphologies included faceting of the original spherical particles as well as formation of core@shell and Janus-style particles. These variations are rationalized in terms of differing diffusion behaviors. Overall, galvanic replacement of multimetallic templates is shown to be a route toward increasingly exotic particle architectures with control exerted on both Angstrom and nanometer-scale features, while inviting further consideration of template and oxidant choices.
Collapse
Affiliation(s)
- Alexander N Chen
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Emma J Endres
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Hannah M Ashberry
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Sandra L A Bueno
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Yifan Chen
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, USA.
| |
Collapse
|
4
|
Naseem F, Lu P, Zeng J, Lu Z, Ng YH, Zhao H, Du Y, Yin Z. Solid Nanoporosity Governs Catalytic CO 2 and N 2 Reduction. ACS NANO 2020; 14:7734-7759. [PMID: 32539341 DOI: 10.1021/acsnano.0c02731] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Global demand for green and clean energy is increasing day by day owing to ongoing developments by the human race that are changing the face of the earth at a rate faster than ever. Exploring alternative sources of energy to replace fossil fuel consumption has become even more vital to control the growing concentration of CO2, and reduction of CO2 into CO or other useful hydrocarbons (e.g., C1 and C≥2 products), as well as reduction of N2 into ammonia, can greatly help in this regard. Various materials have been developed for the reduction of CO2 and N2. The introduction of pores in these materials by porosity engineering has been demonstrated to be highly effective in increasing the efficiency of the involved redox reactions, over 40% increment for CO2 reduction to date, by providing an increased number of exposed facets, kinks, edges, and catalytically active sites of catalysts. By shaping the surface porous structure, the selectivity of the redox reaction can also be enhanced. In order to better understand this area benefiting rational design for future solutions, this review systematically summarizes and constructively discusses the porosity engineering in catalytic materials, including various synthesis methods, characterization of porous materials, and the effects of porosity on performance of CO2 reduction and N2 reduction.
Collapse
Affiliation(s)
- Fizza Naseem
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Peilong Lu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jianping Zeng
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Ziyang Lu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Haitao Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300071, P. R. China
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Abstract
Single-molecule-level measurements are bringing about a revolution in our understanding of chemical and biochemical processes. Conventional measurements are performed on large ensembles of molecules. Such ensemble-averaged measurements mask molecular-level dynamics and static and dynamic fluctuations in reactivity, which are vital to a holistic understanding of chemical reactions. Watching reactions on the single-molecule level provides access to this otherwise hidden information. Sub-diffraction-limited spatial resolution fluorescence imaging methods, which have been successful in the field of biophysics, have been applied to study chemical processes on single-nanoparticle and single-molecule levels, bringing us new mechanistic insights into physiochemical processes. However, the scope of chemical processes that can be studied using fluorescence imaging is considerably limited; the chemical reaction has to be designed such that it involves fluorophores or fluorogenic probes. In this article, we review optical imaging modalities alternative to fluorescence imaging, which expand greatly the range of chemical processes that can be probed with nanoscale or even single-molecule resolution. First, we show that the luminosity, wavelength, and intermittency of solid-state photoluminescence (PL) can be used to probe chemical transformations on the single-nanoparticle-level. Next, we highlight case studies where localized surface plasmon resonance (LSPR) scattering is used for tracking solid-state, interfacial, and near-field-driven chemical reactions occurring in individual nanoscale locations. Third, we explore the utility of surface- and tip-enhanced Raman scattering to monitor individual bond-dissociation and bond-formation events occurring locally in chemical reactions on surfaces. Each example has yielded some new understanding about molecular mechanisms or location-to-location heterogeneity in chemical activity. The review finishes with new and complementary tools that are expected to further enhance the scope of knowledge attainable through nanometer-scale resolution chemical imaging.
Collapse
Affiliation(s)
- Andrew J Wilson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Dinumol Devasia
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Prashant K Jain
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. and Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Materials Research Lab, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Feng J, Yin Y. Self-Templating Approaches to Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802349. [PMID: 30155924 DOI: 10.1002/adma.201802349] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This current research progress on the fabrication of hollow nanostructures by using self-templating methods is reviewed. After a brief introduction to the unique properties and applications of hollow nanostructures and the three general fabrication routes, the discussions are focused on the five main self-templating strategies, including galvanic replacement, the Kirkendall effect, Ostwald ripening, dissolution-regrowth, and the surface-protected hollowing process. Some newly developed synthetic routes are selected and discussed in detail. In conclusion, a summary and the perspectives on the directions that might lead the future development of this exciting field are presented.
Collapse
Affiliation(s)
- Ji Feng
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
7
|
Wang X, Chen S, Reggiano G, Thota S, Wang Y, Kerns P, Suib SL, Zhao J. Au–Cu–M (M = Pt, Pd, Ag) nanorods with enhanced catalytic efficiency by galvanic replacement reaction. Chem Commun (Camb) 2019; 55:1249-1252. [DOI: 10.1039/c8cc08083f] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports a general wet-chemistry method to produce Au–Cu–X (X = Pt, Pd, and Ag) trimetallic nanorods using galvanic replacement reaction with Au–Cu nanorods as the templates.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Shutang Chen
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | | | - Sravan Thota
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Yongchen Wang
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Peter Kerns
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
| | - Steven L. Suib
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Institute of Material Science
| | - Jing Zhao
- Department of Chemistry
- University of Connecticut
- Storrs
- USA
- Institute of Material Science
| |
Collapse
|
8
|
Tailoring multi-metallic nanotubes by copper nanowires with platinum and gold via galvanic replacement route for the efficient methanol oxidation reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.094] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Jiang Z, Jiang Q, Huang R, Sun M, Wang K, Kuang Q, Zhu ZZ, Xie Z. Chemically initiated liquid-like behavior and fabrication of periodic wavy Cu/CuAu nanocables with enhanced catalytic properties. NANOSCALE 2018; 10:9012-9020. [PMID: 29717313 DOI: 10.1039/c8nr01174e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solid crystalline materials have long range order in their atomic arrangement while liquids have short range order, and the transition between them is usually caused by heat and/or pressure. Herein, we report the finding that chemical processes may play a similar role as heat and initiate liquid-like behavior of crystalline nanomaterials at a temperature far below their melting points. When the straight Cu/CuAu crystalline nanocables are dispersed in organic amine at 80 °C under ambient conditions, the continuous oxidation of Cu atoms on the surface and diffusion of Cu atoms from the core to the surface would break up the long-range ordered arrangement of atoms and lead to the transformation of an anisotropic crystal into an isotropic liquid-like state, which resulted in the evolution of the straight morphology of the nanocables into periodic wavy structures following the Rayleigh instability. It was also demonstrated that periodic wavy Cu@CuAu nanocables exhibit much better catalytic activity than straight Cu@CuAu nanocables towards the reduction of p-nitrophenol into p-aminophenol by NaBH4. Our results not only provide new insights into the transition between a solid crystal and a liquid-like state at the nanoscale, but also facilitate the development of new strategies for the synthesis of functional nanomaterials.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- State Key Laboratory of Physical Chemistry of Solid Surface, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Li GG, Sun M, Villarreal E, Pandey S, Phillpot SR, Wang H. Galvanic Replacement-Driven Transformations of Atomically Intermixed Bimetallic Colloidal Nanocrystals: Effects of Compositional Stoichiometry and Structural Ordering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:4340-4350. [PMID: 29566338 DOI: 10.1021/acs.langmuir.8b00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Galvanic replacement reactions dictated by deliberately designed nanoparticulate templates have emerged as a robust and versatile approach that controllably transforms solid monometallic nanocrystals into a diverse set of architecturally more sophisticated multimetallic hollow nanostructures. The galvanic atomic exchange at the nanoparticle/liquid interfaces induces a series of intriguing structure-transforming processes that interplay over multiple time and length scales. Using colloidal Au-Cu alloy and intermetallic nanoparticles as structurally and compositionally fine-tunable bimetallic sacrificial templates, we show that atomically intermixed bimetallic nanocrystals undergo galvanic replacement-driven structural transformations remarkably more complicated than those of their monometallic counterparts. We interpret the versatile structure-transforming behaviors of the bimetallic nanocrystals in the context of a unified mechanistic picture that rigorously interprets the interplay of three key structure-evolutionary pathways: dealloying, Kirkendall diffusion, and Ostwald ripening. By deliberately tuning the compositional stoichiometry and atomic-level structural ordering of the Au-Cu bimetallic nanocrystals, we have been able to fine-maneuver the relative rates of dealloying and Kirkendall diffusion with respect to that of Ostwald ripening through which an entire family of architecturally distinct complex nanostructures are created in a selective and controllable manner upon galvanic replacement reactions. The insights gained from our systematic comparative studies form a central knowledge framework that allows us to fully understand how multiple classic effects and processes interplay within the confinement by a colloidal nanocrystal to synergistically guide the structural transformations of complex nanostructures at both the atomic and nanoparticulate levels.
Collapse
Affiliation(s)
- Guangfang Grace Li
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Mengqi Sun
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Esteban Villarreal
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| | - Shubham Pandey
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Simon R Phillpot
- Department of Materials Science and Engineering , University of Florida , Gainesville , Florida 32611 , United States
| | - Hui Wang
- Department of Chemistry and Biochemistry, Center for Hierarchical Waste Form Materials , University of South Carolina , Columbia , South Carolina 29208 , United States
| |
Collapse
|