1
|
Han L, Si J, Guo M, Wang R, Wang K, Yang J, Wang Z, Yang X. An Untethered Soft Crawling Robot Driven by Wireless Power Transfer Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309661. [PMID: 38268235 DOI: 10.1002/smll.202309661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Soft robots based on flexible materials have attracted the attention due to high flexibility and great environmental adaptability. Among the common driving modes, electricity, light, and magnetism have the limitations of wiring, poor penetration capability, and sophisticated equipment, respectively. Here, an emerging wireless driving mode is proposed for the soft crawling robot based on wireless power transfer (WPT) technology. The receiving coil at the robot's tail, as an energy transfer station, receives energy from the transmitting coil and supplies the electrothermal responsiveness to drive the robot's crawling. By regulating the WPT's duration to control the friction between the robot and the ground, bidirectional crawling is realized. Furthermore, the receiving coil is also employed as a sensory organ to equip the robot with localization, ID recognition, and sensing capabilities based on electromagnetic coupling. This work provides an innovative and promising strategy for the design and integration of soft crawling robots, exhibiting great potential in the field of intelligent robots.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jiawei Si
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Miaomiao Guo
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jin Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Ziyuan Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Xiaohan Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Yang W, Wang X, Teng X, Qiao Z, Yu H, Yuan Z. A bionic mimosa soft robot based on a multi-responsive PNIPAM-PEGDA hydrogel composition. BIOMICROFLUIDICS 2024; 18:034102. [PMID: 38726372 PMCID: PMC11078265 DOI: 10.1063/5.0203482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Deformation plays a vital role in the survival of natural organisms. One example is that plants deform themselves to face the sun for sufficient sunlight exposure, which allows them to produce nutrients through photosynthesis. Drawing inspiration from nature, researchers have been exploring the development of 3D deformable materials. However, the traditional approach to manufacturing deformable hydrogels relies on complex technology, which limits their potential applications. In this study, we simulate the stress variations observed in the plant tissue to create a 3D structure from a 2D material. Using UV curing technology, we create a single-layer poly(N-isopropylacrylamide) hydrogel sheet with microchannels that exhibit distinct swelling rates when subjected to stimulation. After a two-step curing process, we produce a poly(N-isopropylacrylamide)-polyethylene glycol diacrylatedouble-layer structure that can be manipulated to change its shape by controlling the light and solvent content. Based on the double-layer structure, we fabricate a dual-response driven bionic mimosa robot that can perform a variety of functions. This soft robot can not only reversibly change its shape but also maintain a specific shape without continuous stimulation. Its capacity for reversible deformation, resulting from internal stress, presents promising application prospects in the biomedical and soft robotics domain. This study delivers an insightful framework for the development of programmable soft materials.
Collapse
Affiliation(s)
- Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Xiangyu Teng
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Zezheng Qiao
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| | - Zheng Yuan
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
3
|
Tian Z, Xue J, Xiao X, Du C, Liu Y. Optomagnetic Coordination Helical Robot with Shape Transformation and Multimodal Motion Capabilities. NANO LETTERS 2024; 24:2885-2893. [PMID: 38407034 DOI: 10.1021/acs.nanolett.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Soft robots with magnetic responsiveness exhibit diverse motion modes and programmable shape transformations. While the fixed magnetization configuration facilitates coupling control of robot posture and motion, it limits individual posture control to some extent. This poses a challenge in independently controlling the robot's transformation and motion, restricting its versatile applications. This research introduces a multifunctional helical robot responsive to both light and magnetism, segregating posture control from movements. Light fields assist in robot shaping, achieving a 78% maximum diameter shift. Magnetic fields guide helical robots in multimodal motions, encompassing rotation, flipping, rolling, and spinning-induced propulsion. By controlling multimodal locomotion and shape transformation on demand, helical robots gain enhanced flexibility. This innovation allows them to tightly grip and wirelessly transport designated payloads, showcasing potential applications in drug delivery, soft grippers, and chemical reaction platforms. The unique combination of structural design and control methods holds promise for intelligent robots in the future.
Collapse
Affiliation(s)
- Zhuangzhuang Tian
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Jingze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Xinze Xiao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Chuankai Du
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130025, P. R. China
- Weihai Institute for Bionics, Jilin University, Weihai, 264402, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
4
|
Wu J, Jiang W, Gu M, Sun F, Han C, Gong H. Flexible Actuators with Hygroscopic Adaptability for Smart Wearables and Soft Grippers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59989-60001. [PMID: 38085924 DOI: 10.1021/acsami.3c16532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Flexible actuators have garnered significant interest in the domains of biomedical devices, human-machine interfaces, and smart wearables. However, the mechanical properties of existing materials are not sufficiently robust, and the expensive and time-consuming pretreatment process and the ambiguous high-degree-of-freedom deformation mechanism make it difficult to meet the demands of industrialized production. Hence, drawing inspiration from the adaptable movement of living organisms in the natural world, this research created and engineered a fully textile-based humidity-sensitive flexible actuator (TbHs-FA) using high-cost-effective viscose/PET fibers as raw materials. The breakthrough development in actuation performance is covered, including substantial contraction force (92.53 cN), high actuation curvature (16.78 cm-1), and fast response (264 cN s-1 and 46.61 cm-1 s-1). Additionally, the programmable stiffness system and weave structure give TbHs-FAs low hysteresis and fatigue resistance, narrowing the gap between the conceptual laboratory-scale design of existing fully textile-based humidity-sensitive flexible actuators and actual textiles. The high-degree-of-freedom and large bending deformation mechanisms are elucidated for the first time by combining microscopic mechanical structure simulation and macroscopic energy conversion analysis. The novel humidity-sensitive flexible actuator possesses strong mechanical qualities, making it suitable for applications such as flexible robots, medicinal devices, and smart wearables.
Collapse
Affiliation(s)
- Jing Wu
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Wenjie Jiang
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Mengshang Gu
- Textile Intelligent Manufacture, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, College of Textiles Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chenchen Han
- MOE Key Laboratory of Eco-textiles, Jiangnan University, Wuxi 214122, China
| | - Hugh Gong
- University of Manchester, Manchester M139PL, U.K
| |
Collapse
|
5
|
Lee GS, Kim JG, Kim JT, Lee CW, Cha S, Choi GB, Lim J, Padmajan Sasikala S, Kim SO. 2D Materials Beyond Post-AI Era: Smart Fibers, Soft Robotics, and Single Atom Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307689. [PMID: 37777874 DOI: 10.1002/adma.202307689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Recent consecutive discoveries of various 2D materials have triggered significant scientific and technological interests owing to their exceptional material properties, originally stemming from 2D confined geometry. Ever-expanding library of 2D materials can provide ideal solutions to critical challenges facing in current technological trend of the fourth industrial revolution. Moreover, chemical modification of 2D materials to customize their physical/chemical properties can satisfy the broad spectrum of different specific requirements across diverse application areas. This review focuses on three particular emerging application areas of 2D materials: smart fibers, soft robotics, and single atom catalysts (SACs), which hold immense potentials for academic and technological advancements in the post-artificial intelligence (AI) era. Smart fibers showcase unconventional functionalities including healthcare/environmental monitoring, energy storage/harvesting, and antipathogenic protection in the forms of wearable fibers and textiles. Soft robotics aligns with future trend to overcome longstanding limitations of hard-material based mechanics by introducing soft actuators and sensors. SACs are widely useful in energy storage/conversion and environmental management, principally contributing to low carbon footprint for sustainable post-AI era. Significance and unique values of 2D materials in these emerging applications are highlighted, where the research group has devoted research efforts for more than a decade.
Collapse
Affiliation(s)
- Gang San Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jin Goo Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Jun Tae Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sujin Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Go Bong Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Joonwon Lim
- Department of Information Display, Kyung Hee University, Seoul, 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suchithra Padmajan Sasikala
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Nanocentry, KAIST, Daejeon, 34141, Republic of Korea
- Materials Creation, Seoul, 06179, Republic of Korea
| |
Collapse
|
6
|
Wang X, Gao Y, Ma X, Li W, Yang W. A Bionic Venus Flytrap Soft Microrobot Driven by Multiphysics for Intelligent Transportation. Biomimetics (Basel) 2023; 8:429. [PMID: 37754180 PMCID: PMC10526311 DOI: 10.3390/biomimetics8050429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
With the continuous integration of material science and bionic technology, as well as increasing requirements for the operation of robots in complex environments, researchers continue to develop bionic intelligent microrobots, the development of which will cause a great revolution in daily life and productivity. In this study, we propose a bionic flower based on the PNIPAM-PEGDA bilayer structure. PNIPAM is temperature-responsive and solvent-responsive, thus acting as an active layer, while PEGDA does not change significantly in response to a change in temperature and solvent, thus acting as a rigid layer. The bilayer flower is closed in cold water and gradually opens under laser illumination. In addition, the flower gradually opens after injecting ethanol into the water. When the volume of ethanol exceeds the volume of water, the flower opens completely. In addition, we propose a bionic Venus flytrap soft microrobot with a bilayer structure. The robot is temperature-responsive and can reversibly transform from a 2D sheet to a 3D tubular structure. It is normally in a closed state in both cold (T < 32 °C) and hot water (T > 32 °C), and can be used to load and transport objects to the target position (magnetic field strength < 1 T).
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.W.); (Y.G.); (X.M.)
| | - Yingnan Gao
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.W.); (Y.G.); (X.M.)
| | - Xiaoyang Ma
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.W.); (Y.G.); (X.M.)
| | - Weiqiang Li
- School of Accounting, Shandong Youth University of Political Science, Jinan 250000, China
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China; (X.W.); (Y.G.); (X.M.)
| |
Collapse
|
7
|
Sambyal P, Mahato M, Taseer AK, Yoo H, Garai M, Nguyen VH, Ali SS, Oh IK. Magnetically and Electrically Responsive Soft Actuator Derived from Ferromagnetic Bimetallic Organic Framework. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207140. [PMID: 36908006 DOI: 10.1002/smll.202207140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/27/2023] [Indexed: 06/08/2023]
Abstract
The advancement in smart devices and soft robotics necessitates the use of multiresponsive soft actuators with high actuation stroke and stable reversibility for their use in real-world applications. Here, this work reports a magnetically and electrically dual responsive soft actuator based on neodymium and iron bimetallic organic frameworks (NdFeMOFs@700). The ferromagnetic NdFeMOFs@700 exhibits a porous carbon structure with excellent magnetization saturation (166.96 emu g-1 ) which allows its application to a dual functional material in both magnetoactive and electro-ionic actuations. The electro-ionic soft actuator, which is fabricated using NdFeMOFs@700 and PEDOT-PSS, demonstrates 4.5 times higher ionic charge storage capacity (68.21 mF cm-2 ) and has excellent cycle stability compared with the PEDOT-PSS based actuator. Under a low sinusoidal input voltage of 1 V, the dual-responsive actuator displays bending displacement of 15.46 mm and also generates deflection of 10 mm at 50 mT. Present results show that the ferromagnetic bimetallic organic frameworks can open a new way to make dual responsive soft actuators due to the hierarchically porous structures with its high redox activity, superior magnetic properties, and larger electrochemical capacitance. With the NdFeMOFs@700 based soft actuators, walking movement of a starfish robot is demonstrated by applying both the magnetic and electric fields.
Collapse
Affiliation(s)
- Pradeep Sambyal
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Ashhad Kamal Taseer
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyunjoon Yoo
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Mousumi Garai
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Syed Sheraz Ali
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano-Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Weymann A, Foroughi J, Vardanyan R, Punjabi PP, Schmack B, Aloko S, Spinks GM, Wang CH, Arjomandi Rad A, Ruhparwar A. Artificial Muscles and Soft Robotic Devices for Treatment of End-Stage Heart Failure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207390. [PMID: 36269015 DOI: 10.1002/adma.202207390] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/19/2022] [Indexed: 05/12/2023]
Abstract
Medical soft robotics constitutes a rapidly developing field in the treatment of cardiovascular diseases, with a promising future for millions of patients suffering from heart failure worldwide. Herein, the present state and future direction of artificial muscle-based soft robotic biomedical devices in supporting the inotropic function of the heart are reviewed, focusing on the emerging electrothermally artificial heart muscles (AHMs). Artificial muscle powered soft robotic devices can mimic the action of complex biological systems such as heart compression and twisting. These artificial muscles possess the ability to undergo complex deformations, aiding cardiac function while maintaining a limited weight and use of space. Two very promising candidates for artificial muscles are electrothermally actuated AHMs and biohybrid actuators using living cells or tissue embedded with artificial structures. Electrothermally actuated AHMs have demonstrated superior force generation while creating the prospect for fully soft robotic actuated ventricular assist devices. This review will critically analyze the limitations of currently available devices and discuss opportunities and directions for future research. Last, the properties of the cardiac muscle are reviewed and compared with those of different materials suitable for mechanical cardiac compression.
Collapse
Affiliation(s)
- Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Javad Foroughi
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Robert Vardanyan
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Prakash P Punjabi
- Department of Cardiothoracic Surgery, Hammersmith Hospital, National Heart and Lung Institute, Imperial College London, 72 Du Cane Rd, London, W12 0HS, UK
| | - Bastian Schmack
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Sinmisola Aloko
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- Faculty of Engineering and Information Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Library Rd, Kensington, NSW, 2052, Australia
| | - Arian Arjomandi Rad
- Department of Medicine, Faculty of Medicine, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center, University of Duisburg-Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
9
|
Yang W, Wang X, Wang Z, Yuan Z, Ge Z, Yu H. A multi-stimulus-responsive bionic fish microrobot for remote intelligent control applications. SOFT MATTER 2023; 19:913-920. [PMID: 36625411 DOI: 10.1039/d2sm01468h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In nature, all creatures have their unique characteristics that allow them to adapt to the complex and changeable living environments. In recent years, bionic fish has received increased attention from the research community, and many fish-like microrobots driven by the Marangoni effect have been developed. They are generally characterized by easy operation and rapid driving. However, traditional fish-like microrobots can only be driven by a single stimulus and move on two-dimensional (2D) gas-liquid interfaces, which greatly limits their ability in obstacle avoidance and transportation. In this article, we propose a multi-stimulus-responsive bionic fish microrobot, which is made of temperature-responsive hydrogel poly(N-isopropylacrylamide) (pNIPAM). This microrobot is impregnated with carbon nanotubes (CNTs) and Fe3O4 and therefore has magnetic and photothermal conversion properties. Under the action of optical, magnetic or ethanol molecules, the microrobot can perform complex programmable translational motion on 2D surfaces and controllable rising and sinking, while realizing motion simulation and obstacle avoidance. The microrobot is expected to be used for a wide range of applications in intelligent control systems.
Collapse
Affiliation(s)
- Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Zhen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Zheng Yuan
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai, 264005, China.
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
10
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
11
|
Ding J, Ma H, Xiao X, Li Q, Liu K, Zhang X. Flexible Torsional Photoactuators Based on MXene-Carbon Nanotube-Paraffin Wax Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:57171-57179. [PMID: 36515685 DOI: 10.1021/acsami.2c16838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A flexible actuator, which can convert external stimuli to mechanical motion, is an essential component of every soft robot and determines its performance. As a novel two-dimensional material, MXene has been used to fabricate flexible actuators due to its excellent physical properties. Although MXene-based actuators exhibit excellent actuation performance, their bending deformation is solely due to the in-plane isotropy of the MXene film, and an MXene torsional actuator has not been reported. This study presents a flexible torsional actuator based on an MXene-carbon nanotube (CNT)-paraffin wax (PW) film. In this actuator, the MXene thin film acts as a light absorption layer with wavelength selectivity, superaligned CNT provides structural anisotropy for the composite film, and PW acts as the active layer. The chirality and helical structure of the actuator could be tuned by the orientation of the CNT film. Such an actuator delivers excellent actuation performance, including high work density (∼1.2 J/cm3), low triggering power (77 mW/cm2), high rotational speed (320°/s), long lifetime (30,000 cycles), and wavelength selectivity. Inspired by vines, we used the torsional actuator as a spiral grabber, which lifted an object that weighs 20 times more than the actuator. The high-performance torsional actuator would be potentially used as a noncontact sensor, rotary motor, and grabbing tool in the soft robot system.
Collapse
Affiliation(s)
- Jun Ding
- Institute of Information Photonics Technology and Faculty of Sciences, Beijing University of Technology, Beijing100124, China
| | - He Ma
- Institute of Information Photonics Technology and Faculty of Sciences, Beijing University of Technology, Beijing100124, China
| | - Xiao Xiao
- Institute of Information Photonics Technology and Faculty of Sciences, Beijing University of Technology, Beijing100124, China
| | - Qingwei Li
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Material Science and Engineering, Tsinghua University, Beijing100084, China
| | - Xinping Zhang
- Institute of Information Photonics Technology and Faculty of Sciences, Beijing University of Technology, Beijing100124, China
| |
Collapse
|
12
|
Li Q, Jiao Y. Ultrafast Photothermal Actuators with a Large Helical Curvature Based on Ultrathin GO and Biaxially Oriented PE Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55828-55838. [PMID: 36484521 DOI: 10.1021/acsami.2c18478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In nature, there are some amazing superfast actuations (Venus flytrap) and large-curvature helical deformations (the awn of Erodium). Although many bionic actuators have been made (electrothermal, hygroscopic, photoinduced), most of their actuations are slow and small, not comparable to the wonderful ones in nature. Here, we report an ultrafast photothermal actuator with large-curvature curling based on an ultrathin graphene oxide (GO) and biaxially oriented polyethylene (BOPE) bilayer film (thickness ∼11 μm). By virtue of the fast temperature changing rate (peak: 900 °C s-1 during infrared heating and -1200 °C s-1 during cooling) and the great difference in the coefficient of thermal expansion of GO and BOPE layers, the actuator deforms rapidly and greatly. The maximum bending speed and curvature can reach 5300° s-1 and 22 cm-1, respectively, which are comparable to those of wonderful natural actuators and far exceed the performances of the reported artificial actuators. Different from ordinary helical actuators made of uniaxial anisotropic materials, our actuator is based on a typical biaxial anisotropic material of BOPE. However, the morphing behaviors of this type of actuator have not been reported before. So for the first time, we systematically studied this problem through experiments and simulations using the GO-BOPE actuator as a prototype and have drawn clear conclusions. In addition, functional GO-BOPE actuators capable of winding around and manipulating tiny objects were also designed and developed. We think this ultrafast large-curvature photothermal actuator will have wide application prospects in bionic actuations and dexterous robots.
Collapse
Affiliation(s)
- Qingwei Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Yan Jiao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
13
|
Yang K, Cai W, Lan M, Ye Y, Tang Z, Guo Q, Weng M. Multi-responsive and programmable actuators made with nacre-inspired graphene oxide-bacterial cellulose film. SOFT MATTER 2022; 18:9057-9068. [PMID: 36416498 DOI: 10.1039/d2sm01380k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, graphene oxide (GO)-based multi-responsive actuators have attracted great interest due to their board application in soft robots, artificial muscles, and intelligent mechanics. However, most GO-based actuators suffer from low mechanical strength. Inspired by the natural nacre, a graphene oxide-bacterial cellulose (GO-BC) film with a "brick and mortar" structure is constructed. Compared with the pure GO film, the tensile strength of the GO-BC film is increased by about 2 times. Benefiting from the rich oxygen-containing functional groups of GO sheets and BC nanofibers, the cracked GO-BC films can be pasted together with the help of water, which can be used to construct GO-BC films with multi-dimensional complex structures. Subsequently, a GO-BC/polymer actuator capable of responding to various stimuli is successfully developed through a complementary strategy of "active layer and inert layer". Further, based on the water-assisted pasting properties of GO-BC films, a series of GO-BC/polymer actuators with 3D complex deformations can be fabricated by pasting together two or more GO-BC/polymer actuators. Finally, the potential applications of multi-response GO-BC/polymer actuators in flexible robots, artificial muscles, and smart devices are demonstrated through a series of applications such as bionic sunflowers, octopus-inspired soft tentacles, and smart curtains.
Collapse
Affiliation(s)
- Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Wanling Cai
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Minli Lan
- School of Mechanical and Intelligent Manufacturing, Fujian Chuanzheng Communications College, Fuzhou, Fujian 350007, China.
| | - Yuanji Ye
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Zhendong Tang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
14
|
Han L, Wang R, Dong Y, Zhang X, Wu C, Zhao X. A wireless "Janus" soft gripper with multiple tactile sensors. NANOSCALE ADVANCES 2022; 4:4756-4765. [PMID: 36381512 PMCID: PMC9642356 DOI: 10.1039/d2na00208f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Biomimetic properties allow soft robots to complexly interact with the environment. As the bridge between the robot and the operating object, the gripping hand is an important organ for its connection with the outside world, which requires the ability to provide feedback from the grasped object, similar to the human sensory and nervous system. In this work, to cope with the difficulty of integrating complex sensing and communication systems into flexible soft grippers, we propose a GO/PI composite bilayer film-based gripper with two types of tactile sensors and a LC passive wireless transmission module to obtain the grip information and transmit it to the processor. The bilayer film structure demonstrates good photothermal driving performance. Pressure and material sensors are located at the tips of the gripper's fingers to acquire tactile information which is wirelessly transmitted to the processor for analysis via the LC circuit. The grasping and feedback of the gripper are presented through an intelligent display system, realizing the wireless interconnection between the robot terminal and processing system, exhibiting broad application potential.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Yupeng Dong
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Xun Zhang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Chenggen Wu
- Key Laboratory of MEMS of the Ministry of Education, Southeast University Nanjing 210096 China
| | - Xiaoguang Zhao
- Department of Precision Instruments, Tsinghua University Beijing 100084 China
| |
Collapse
|
15
|
Cao J, Wang Y, Guo Q, Cui Q, Su G, Zhou T, Zhang X, Zhang C. Mechano-Regulable and Healable Silk-Based Materials for Adaptive Applications. Biomacromolecules 2022; 23:4296-4307. [PMID: 36059206 DOI: 10.1021/acs.biomac.2c00766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanically adaptive materials responsive to environmental stimuli through changing mechanical properties are highly attractive in intelligent devices. However, it is hard to regulate the mechanical properties of most mechanically adaptive materials in a facile way. Moreover, it remains a challenge to achieve mechano-regulable materials with mechanical properties ranging from high strength to extreme toughness. Here, inspired by the reversible nanofibril network structure of skeletal muscle to achieve muscle strength regulation, we present a mechano-regulable biopolymeric silk fibroin (SF) composite through regulating dynamic metal-ligand coordination bonds by using water molecules as competitive regulators. Efficient interfacial hydrogen bonds between tannic acid-tungsten disulfide nanohybrids and the SF matrix endow the composite with high mechanical strength and self-healing ability. The resulting composite exhibits 837-fold change in Young's modulus (5.77 ± 0.61 GPa to 6.89 ± 0.64 MPa) after water vapor triggering, high mechanical properties (72.5 ± 6.3 MPa), and excellent self-healing efficiency (nearly 100%). The proof-of-concept ultraconformable iontronic skin and smart actuators are demonstrated, thereby providing a direction for future self-adaptive smart device applications.
Collapse
Affiliation(s)
- Jie Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yuting Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Quanquan Guo
- Faculty of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069 Dresden, Germany
| | - Qinke Cui
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Gehong Su
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China.,College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, P. R. China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
16
|
Zhang Y, Zhang C, Wang R, Tan W, Gu Y, Yu X, Zhu L, Liu L. Development and challenges of smart actuators based on water-responsive materials. SOFT MATTER 2022; 18:5725-5741. [PMID: 35904079 DOI: 10.1039/d2sm00519k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water-responsive (WR) materials, due to their controllable mechanical response to humidity without energy actuation, have attracted lots of attention to the development of smart actuators. WR material-based smart actuators can transform natural humidity to a required mechanical motion and have been widely used in various fields, such as soft robots, micro-generators, smart building materials, and textiles. In this paper, the development of smart actuators based on different WR materials has been reviewed systematically. First, the properties of different biological WR materials and the corresponding actuators are summarized, including plant materials, animal materials, and microorganism materials. Additionally, various synthetic WR materials and their related applications in smart actuators have also been introduced in detail, including hydrophilic polymers, graphene oxide, carbon nanotubes, and other synthetic materials. Finally, the challenges of the WR actuator are analyzed from the three perspectives of actuator design, control methods, and compatibility, and the potential solutions are also discussed. This paper may be useful for the development of not only soft actuators that are based on WR materials, but also smart materials applied to renewable energy.
Collapse
Affiliation(s)
- Yiwei Zhang
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Chuang Zhang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Ruiqian Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjun Tan
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyu Gu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xiaobin Yu
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China.
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| | - Lizhong Zhu
- School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, Liaoning, China.
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
| |
Collapse
|
17
|
|
18
|
Su X, Pandey RK, Ma J, Lim WC, Ao CK, Liu C, Nakanishi H, Soh S. Self-assembly of graphene oxide flakes for smart and multifunctional coating with reversible formation of wrinkling patterns. SOFT MATTER 2022; 18:3546-3556. [PMID: 35445678 DOI: 10.1039/d1sm01834e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
One of the main purposes of smart and multifunctional coatings is to have the versatility to be applied in a wide range of applications. However, the functions of smart materials are often highly limited. In particular, the stimuli-responsive lateral expansion of coatings based on 2D materials has not been reported before. This manuscript describes small two-dimensional graphene oxide (GO) flakes (e.g., thin sheets with a thickness of a few nanometers and much larger lateral dimensions) that act as elementary agents for the formation of smart and multifunctional coatings. The coating can be self-assembled from the GO flakes and disassembled flexibly when required. The coating is stimuli-responsive: upon localized contact with water, it expands and forms wrinkling patterns throughout its whole surface. Evaporating the water allows the wrinkles to disappear; hence, the process is reversible. This stimuli-responsiveness can be controlled to be reduced or completely switched off by temperature or pressure. These features are fundamentally due to the reversible intermolecular interactions among the flakes and favorable packing structure of the coating. The smart coating is shown to be useful for patterned fluidic systems of the desired shapes and the development of channels between fluidic reservoirs via the shortest path. Importantly, these results showed that a simple collection of uniquely 2D elementary agents with small nanoscale thickness can self-assemble into macroscopic materials that perform interactive and multifunctional operations.
Collapse
Affiliation(s)
- Xinran Su
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Rakesh K Pandey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| | - Junhao Ma
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Wei Chun Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Chi Kit Ao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Changhui Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan.
| | - Siowling Soh
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
19
|
Peng Z, Yu C, Zhong W. Facile Preparation of a 3D Porous Aligned Graphene-Based Wall Network Architecture by Confined Self-Assembly with Shape Memory for Artificial Muscle, Pressure Sensor, and Flexible Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17739-17753. [PMID: 35389612 DOI: 10.1021/acsami.2c00987] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of a novel preparation strategy for 3D porous network structures with an aligned channel or wall is always in challenge. Herein, a 3D porous network composed of an aligned graphene-based wall is fabricated by a confined self-assembly strategy in which holey reduced graphene oxide (HrGO)/lignin sulfonate (Lig) composites are orientedly anchored on the framework of the Lig/single-wall carbon nanotube (Lig/SWCNT) hydrogel by vacuum-assisted filtration accompanied with confined self-assembly and followed with hydrothermal treatment. After freeze drying, the obtained ultralight Lig/SWCNT/HrGOal aerogel exhibits excellent shape memory properties and can roll back to the original shape even if suffering from a high compressive strain of 86.2%. Furthermore, the as-prepared aerogel used as a water-driven artificial muscle shows powerful driving force and can lift ultrahigh weight cargo that is 1030.6 times its own weight. When the prepared Lig/SWCNT/HrGOal aerogel is used as a pressure sensor, it also exhibits high sensitivity (2.28 kPa-1) and a wide detection region of 0.27-14.1 kPa. Additionally, the symmetric flexible supercapacitor assembled with as-prepared aerogel films shows superior stored energy performance that can tolerate 5000 cycles of bending. The present work not only fabricates a high-performance multifunctional material but also develops a new strategy for the preparation a wood-like 3D porous aligned wall network structure.
Collapse
Affiliation(s)
- Zhiyuan Peng
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P.R. China
| | - Chuying Yu
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P.R. China
| | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
20
|
Lv Y, Li Q, Shi J, Qin Z, Lei Q, Zhao B, Zhu L, Pan K. Graphene-Based Moisture Actuator with Oriented Microstructures Prepared by One-Step Laser Reduction for Accurately Controllable Responsive Direction and Position. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12434-12441. [PMID: 35254054 DOI: 10.1021/acsami.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Actuators with fast and precise controllable responses are highly in demand for implementing agilely accurate mechanical movements in smart robots, intelligent sensors, biomimetic devices, and so on. Here, we report a graphene-based moisture actuator with accurately controllable direction and position responses achieved by a fast, controlled, and even programmable one-step laser reduction method. The laser reduction-induced oriented microstructures help to precisely guide the direction and location of the moisture response in graphene-based Janus films. The excellent moisture-mechanical response behaviors in these novel moisture actuators originate from the Janus structures and the periodic microstructures of a line-scanned layer. Our customized complex intelligent devices such as drums, bands, and three-dimensional wave humidity drives can highly match and verify the finite element simulations, which will inspire the creation of further smart robot designs for accurate deformation.
Collapse
Affiliation(s)
- Yuhuan Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qicong Li
- Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jiaxin Shi
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Qin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianjin Lei
- Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Biao Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linli Zhu
- Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Kai Pan
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Wang M, Zhou L, Deng W, Hou Y, He W, Yu L, Sun H, Ren L, Hou X. Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators. ACS NANO 2022; 16:2672-2681. [PMID: 35040625 DOI: 10.1021/acsnano.1c09477] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
External-stimuli-driven soft actuators overcome several limitations inherent in traditional mechanical-driven technology considering the coming age of flexible robots, which might face harsh working conditions and rigorous multifunctional requirements. However, how to achieve multi-external-stimuli response, fast speed, and precise control of the position and angle of the actuator, especially working in a toxic liquid or vapor environment, still requires long-term efforts. Here, we report a multi-external-stimuli-driven sandwich actuator with aligned carbon nanotubes as the constructive subject, which can respond to various types of liquids (organic solvents), vapor, and solar light. The actuator has an ultrafast response speed (<10 ms) and can accurately adjust the bending angle range from 0° to 180°. Through manipulating the stimuli positions, actuators can be wound into varied turns when simulating a flexible robotic arm. Hence, liquid/vapor/light-driven actuators are able to support diverse programmable motions, such as periodic blooming, gesture variations, caterpillar crawling, toxic surface evading, and bionic phototaxis. We believe that this multifunctional actuator is promising in supporting a complex scenario to complete a variety of tasks in the fields of healthcare, bioengineering, chip technology, and mobile sensors.
Collapse
Affiliation(s)
- Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Lei Zhou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Wenyan Deng
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, 422 Siming Nan Road, Xiamen 361005, China
| | - Xu Hou
- Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Collaborative Innovation Centre of Chemistry for Energy Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
22
|
Chang L, Wang D, Jiang A, Hu Y. Soft Actuators Based On Carbon Nanomaterials. Chempluschem 2022; 87:e202100437. [PMID: 35103423 DOI: 10.1002/cplu.202100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/14/2022] [Indexed: 02/21/2024]
Abstract
Inspired by the sophisticated design of biological systems, interest in soft intelligent actuators has increased significantly in recent years, providing attractive strategies for the design of elaborate soft mechanical systems. For the construction of those soft actuators, carbon nanomaterials were extensively and successfully explored for the properties of highly conductive, electrothermal, and photothermal conversion. This review aims to trace the recent achievements for the material and structural design as well as the general mechanisms of the soft actuators, paying particular attention to the contribution of carbon nanomaterials resulted from their diversified interplaying properties, which realized the flexible and dexterous deformation responding to various environmental stimuli, including light, electricity and humidity. The properties and mechanisms of soft actuators are summarized and the potential for future applications and research are presented.
Collapse
Affiliation(s)
- Longfei Chang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Dongping Wang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ajuan Jiang
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ying Hu
- Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, P. R. China
- Anhui Province Key Lab of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
23
|
Yang K, Tang Z, Ye Y, Ding M, Zhang P, Zhu Y, Guo Q, Chen G, Weng M. Dual‐responsive and bidirectional bending actuators based on a graphene oxide composite for bionic soft robotics. J Appl Polym Sci 2021. [DOI: 10.1002/app.52014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kaihuai Yang
- School of Mechanical and Intelligent Manufacturing Fujian Chuanzheng Communications College Fuzhou Fujian China
| | - Zhendong Tang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Yuanji Ye
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Min Ding
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Peiqian Zhang
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Yongkang Zhu
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
| | - Guiqing Chen
- School of Mechanical and Intelligent Manufacturing Fujian Chuanzheng Communications College Fuzhou Fujian China
| | - Mingcen Weng
- School of Materials Science and Engineering, Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou Fujian China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials Fujian Normal University Fuzhou Fujian China
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials Fujian Agriculture and Forestry University Fuzhou Fujian China
| |
Collapse
|
24
|
Tabassian R, Mahato M, Nam S, Nguyen VH, Rajabi‐Abhari A, Oh I. Electro-Active and Photo-Active Vanadium Oxide Nanowire Thermo-Hygroscopic Actuators for Kirigami Pop-up. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102064. [PMID: 34693658 PMCID: PMC8655174 DOI: 10.1002/advs.202102064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/08/2021] [Indexed: 05/08/2023]
Abstract
Emerging technologies such as soft robotics, active biomedical devices, wearable electronics, haptic feedback systems, and healthcare systems require high-fidelity soft actuators showing reliable responses under multi-stimuli. In this study, the authors report an electro-active and photo-active soft actuator based on a vanadium oxide nanowire (VONW) hybrid film with greatly improved actuation performances. The VONWs directly grown on a cellulose fiber network increase the surface area up to 30-fold and boost the hydrophilicity owing to the presence of oxygen-rich functional groups in the nanowire surfaces. Taking advantage of the high surface area and hydrophilicity of VONWs, a soft thermo-hygroscopic VONW actuator capable of being controlled by both light and electric sources shows greatly enhanced actuation deformation by almost 70% and increased actuation speed over 3 times during natural convection cooling. Most importantly, the proposed VONW actuator exhibits a remarkably improved blocking force of up to 200% compared with a bare paper actuator under light stimulation, allowing them to realize a complex kirigami pop-up and to accomplish repeatable shape transformation from a 2D planar surface to a 3D configuration.
Collapse
Affiliation(s)
- Rassoul Tabassian
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Manmatha Mahato
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Sanghee Nam
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Van Hiep Nguyen
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Araz Rajabi‐Abhari
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Il‐Kwon Oh
- National Creative Research Initiative for Functionally Antagonistic Nano‐EngineeringDepartment of Mechanical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
25
|
Abstract
Electro-responsive actuators (ERAs) hold great promise for cutting-edge applications in e-skins, soft robots, unmanned flight, and in vivo surgery devices due to the advantages of fast response, precise control, programmable deformation, and the ease of integration with control circuits. Recently, considering the excellent physical/chemical/mechanical properties (e.g., high carrier mobility, strong mechanical strength, outstanding thermal conductivity, high specific surface area, flexibility, and transparency), graphene and its derivatives have emerged as an appealing material in developing ERAs. In this review, we have summarized the recent advances in graphene-based ERAs. Typical the working mechanisms of graphene ERAs have been introduced. Design principles and working performance of three typical types of graphene ERAs (e.g., electrostatic actuators, electrothermal actuators, and ionic actuators) have been comprehensively summarized. Besides, emerging applications of graphene ERAs, including artificial muscles, bionic robots, human-soft actuators interaction, and other smart devices, have been reviewed. At last, the current challenges and future perspectives of graphene ERAs are discussed.
Collapse
|
26
|
He Y, Guo J, Yang X, Guo B, Shen H. Highly sensitive humidity-driven actuators based on metal-organic frameworks incorporating thermoplastic polyurethane with gradient polymer distribution. RSC Adv 2021; 11:37744-37751. [PMID: 35498101 PMCID: PMC9043914 DOI: 10.1039/d1ra08174h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Ambient humidity plays an important role in the fields of industrial and agricultural production, food and drug storage, climate monitoring, and maintenance of precision instruments. To sense and control humidity, humidity-responsive actuators that mimick humidity responsive behavior existing in nature, have attracted intense attention. The most common and important class of humidity actuators is active bilayer structures. However, such bilayer structures generally show weak interfacial adhesion, tending to delaminate during frequent bending and restoration cycles. In this work, to address this problem, a novel monolayer humidity-driven actuator with no adhesive issue is developed by integrating the swellable metal-organic frameworks (MIL-88A) into thermoplastic polyurethane films. The proposed actuators display excellent humidity response that under the conditions of relative humidity simulated with saturated salt solution, the MIL-88A/polyurethane composite films show good self-folding response and stability for recycling use. In addition, a deep insight into the self-folding of the composite films is also provided and a new response mechanism is proposed. In this case, the results show that both the preparation method and response properties of the humidity actuators are improved. Therefore, it suggests a new promising way to develop and design flexible humidity actuators.
Collapse
Affiliation(s)
- Yi He
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| | - Jiayu Guo
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| | - Xiazhen Yang
- The Institute of Industrial Catalysis, Zhejiang University of Technology Hangzhou 310032 PR China
| | - Bing Guo
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| | - Hangyan Shen
- College of Materials and Chemistry, China Jiliang University Hangzhou 310018 PR China
| |
Collapse
|
27
|
Liu B, Zhang Q, Huang Y, Liu D, Pan W, Mu Y, Cheng X, Qin Y. Bifunctional flexible fabrics with excellent Joule heating and electromagnetic interference shielding performance based on copper sulfide/glass fiber composites. NANOSCALE 2021; 13:18558-18569. [PMID: 34730151 DOI: 10.1039/d1nr03550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible and wearable electronic technology is in great demand with the rise of smart electronic systems. Among these, multifunctional systems with high performance at low cost have attracted extensive attention of scholars from the practical application perspective. However, the fabrication of devices with multifunctionality without sacrificing their connatural flexibility advantages remains a huge challenge. In this study, a CuS-modified glass fiber first acts as a bifunctional wearable electronic device for superior thermal management and electromagnetic interference (EMI) shielding. Specifically, the inherent glass fiber was initially modified with a silane coupling agent for the amino group (-NH2) functionalization followed by further CuS deposition via a facile electroless plating technology. Interestingly, due to the strong interaction between CuS and the glass fiber through the coordinate -NH2 and Cu2+, the prepared copper sulfide/glass fibers (CuS/GFs) not only keep the inherent flexibility and lightness of the fiber substrate, but also have excellent electrothermal conversion performance accompanied by a wide temperature range (38 °C-209 °C), low working voltage (0.3 V-1.5 V), and rapid response time (reaching 209 °C within 10 s at 1.5 V). Moreover, the prepared CuS/GF textile also exhibits interesting electromagnetic interference shielding efficiency (EMI SE) of 61 dB as well as a high specific shielding effectiveness up to 6130.65 dB cm2 g-1 with a CuS mass loading of 9.95 mg cm-2. These features confirm the potential of CuS/GFs as a flexible, wearable, and efficient electrical heater and EMI shielding material for the new type of intelligent electronic devices.
Collapse
Affiliation(s)
- Binguo Liu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.
| | - Qi Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanhui Huang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.
| | - Dong Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Pan
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 451191, China
| | - Yunchao Mu
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.
| | - Xiaozhe Cheng
- School of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 451191, China.
| | - Yajie Qin
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 451191, China
| |
Collapse
|
28
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
29
|
Dong Y, Ramey-Ward AN, Salaita K. Programmable Mechanically Active Hydrogel-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006600. [PMID: 34309076 PMCID: PMC8595730 DOI: 10.1002/adma.202006600] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| |
Collapse
|
30
|
Yin C, Wei F, Fu S, Zhai Z, Ge Z, Yao L, Jiang M, Liu M. Visible Light-Driven Jellyfish-like Miniature Swimming Soft Robot. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47147-47154. [PMID: 34436851 DOI: 10.1021/acsami.1c13975] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soft actuators that exhibit large deformation and can move at a fast speed in response to external stimuli have been in high demand for biomimetic applications. In this paper, we propose a convenient approach to fabricate a reversible and thermal-responsive composite hydrogel. Under the irradiation of visible light, the striped hydrogel can bend at a speed of up to 65.72°/s with carbon nanotubes loaded at a concentration of 3 mg/mL. A jellyfish-like miniature soft robot is made using this hydrogel. When driven by visible light, the robot can move at a maximum speed of 3.37 mm/s. Besides swimming, other motion modes, including walking and jumping, are also achieved by the robot. In addition, the robot can perform directional transportation of tiny objects. As a new actuation approach for the research of jellyfish-like miniature soft robots, this work is of great significance to the development of flexible bionic robots. Moreover, this work also offers some important insights into the research of biomimetic robots driven by visible light.
Collapse
Affiliation(s)
- Chao Yin
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Shihan Fu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Zhushan Zhai
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Zhixing Ge
- Shenyang Institute of Automation, Chinese Academy of Sciences, No. 114, Nanta Street, Shenyang, Liaoning 110016, China
| | - Ligang Yao
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| | - Minlin Jiang
- Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ming Liu
- School of Mechanical Engineering and Automation, Fuzhou University, Minhou County, Fuzhou, Fujian 350108, China
| |
Collapse
|
31
|
Cheng M, Li Q. Left-Handed or Right-Handed? Determinants of the Chirality of Helically Deformable Soft Actuators. Soft Robot 2021; 9:850-860. [PMID: 34582707 DOI: 10.1089/soro.2021.0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Helical curling and spiral structure are very common in nature, which inspire researchers to create various forms of helical configurations and actuators. The helically deformable actuators perform asymmetric deformations and show different chirality, which means that they can be left handed or right handed. However, the mechanism of helical curling and especially how the key factors influence the chirality of the actuator have not been systematically explained and well understood. In this study, we focus on the typical double-layer soft actuator composed of an active (expansion) layer and a passive (supporting) layer and investigate the effect of key factors (expansion coefficient, Young's modulus, relative thickness) on the chirality of the helical actuation or morphing by comprehensive finite element analyses. It was found that (i) the anisotropic expansion of the active layer or (ii) the anisotropic Young's modulus of the active or the passive layer is indispensable for helical curling. In Case (i), the actuator curls along the direction of greater expansion of the active layer. In Case (ii), the actuator curls along the direction of closer moduli match of the active and passive layers, and their relative thickness also affects the helical morphing of the actuator. In practice, the above two factors may cooperate or compete with each other, and the dominant one determines the chirality. This work gives the general rules for helical morphing forms and can provide guidance for the design and preparation of spiral actuators and soft robots in the future.
Collapse
Affiliation(s)
- Mingxing Cheng
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| | - Qingwei Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
32
|
|
33
|
Shim YH, Ahn H, Lee S, Kim SO, Kim SY. Universal Alignment of Graphene Oxide in Suspensions and Fibers. ACS NANO 2021; 15:13453-13462. [PMID: 34324294 DOI: 10.1021/acsnano.1c03954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) has become a key component for high-performance carbon-based films or fibers based on its dispersibility and liquid crystallinity in an aqueous suspension. While the superior performance of GO-based fiber relies on their alignment at the submicrometer level, fine control of the microstructure is often hampered, in particular, under dynamic nature of GO-processing involving shear. Here, we systemically studied the structural variation of GO suspensions under shear conditions via in situ rheo-scattering and shear-polarized optical microscope analysis. The evolution of GO alignment under shear is indeed complex. However, we found that the shear-dependent structural equilibrium exists. GO showed a nonlinear structural transition with shear, yet there is a "universal" shear threshold for the best alignment, resulting in graphene fiber achieved an improvement in mechanical properties by ∼54% without any chemical modification. This finding challenges the conventional concept that high shear stress is required for the good alignment of particles and their best performance.
Collapse
Affiliation(s)
- Yul Hui Shim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Hyungju Ahn
- Pohang Accelerator Lab, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sangsul Lee
- Pohang Accelerator Lab, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science & Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - So Youn Kim
- School of Chemical and Biological Engineering, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
34
|
Zheng Q, Xu C, Jiang Z, Zhu M, Chen C, Fu F. Smart Actuators Based on External Stimulus Response. Front Chem 2021; 9:650358. [PMID: 34136462 PMCID: PMC8200850 DOI: 10.3389/fchem.2021.650358] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Smart actuators refer to integrated devices that are composed of smart and artificial materials, and can provide actuation and dampening capabilities in response to single/multi external stimuli (such as light, heat, magnetism, electricity, humidity, and chemical reactions). Due to their capability of dynamically sensing and interaction with complex surroundings, smart actuators have attracted increasing attention in different application fields, such as artificial muscles, smart textiles, smart sensors, and soft robots. Among these intelligent material, functional hydrogels with fiber structure are of great value in the manufacture of smart actuators. In this review, we summarized the recent advances in stimuli-responsive actuators based on functional materials. We emphasized the important role of functional nano-material-based additives in the preparation of the stimulus response materials, then analyzed the driving response medium, the preparation method, and the performance of different stimuli responses in detail. In addition, some challenges and future prospects of smart actuators are reported.
Collapse
Affiliation(s)
- Qinchao Zheng
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chen Chen
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Fanfan Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Liu Y, Chen Z, Han D, Mao J, Ma J, Zhang Y, Sun H. Bioinspired Soft Robots Based on the Moisture-Responsive Graphene Oxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002464. [PMID: 34026430 PMCID: PMC8132057 DOI: 10.1002/advs.202002464] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 05/04/2023]
Abstract
Graphene oxide (GO), which has many oxygen functional groups, is a promising candidate for use in moisture-responsive sensors and actuators due to the strong water-GO interaction and the ultrafast transport of water molecules within the stacked GO sheets. In the last 5 years, moisture-responsive actuators based on GO have shown distinct advantages over other stimuli-responsive materials and devices. Particularly, inspired by nature organisms, various moisture-enabled soft robots have been successfully developed via rational assembly of the GO-based actuators. Herein, the milestones in the development of moisture-responsive soft robots based on GO are summarized. In addition, the working mechanisms, design principles, current achievement, and prospects are also comprehensively reviewed. In particular, the GO-based soft robots are at the forefront of the advancement of automatable smart devices.
Collapse
Affiliation(s)
- Yu‐Qing Liu
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Zhao‐Di Chen
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Dong‐Dong Han
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Jiang‐Wei Mao
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Jia‐Nan Ma
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Yong‐Lai Zhang
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
| | - Hong‐Bo Sun
- State Key Laboratory of Integrated OptoelectronicsCollege of Electronic Science and EngineeringJilin University2699 Qianjin StreetChangchun130012China
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityHaidian DistrictBeijing100084China
| |
Collapse
|
36
|
Dallinger A, Kindlhofer P, Greco F, Coclite AM. Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene. ACS APPLIED POLYMER MATERIALS 2021; 3:1809-1818. [PMID: 33860232 PMCID: PMC8042638 DOI: 10.1021/acsapm.0c01385] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The method of converting insulating polymers into conducting 3D porous graphene structures, so-called laser-induced graphene (LIG) with a commercially available CO2 laser engraving system in an ambient atmosphere, resulted in several applications in sensing, actuation, and energy. In this paper, we demonstrate a combination of LIG and a smart hydrogel (poly(N-vinylcaprolactam)-pNVCL) for multiresponsive actuation in a humid environment. Initiated chemical vapor deposition (iCVD) was used to deposit a thin layer of the smart hydrogel onto a matrix of poly(dimethylsiloxane) (PDMS) and embedded LIG tracks. An intriguing property of smart hydrogels, such as pNVCL, is that the change of an external stimulus (temperature, pH, magnetic/electric fields) induces a reversible phase transition from a swollen to a collapsed state. While the active smart hydrogel layer had a thickness of only 300 nm (compared to the 500 times thicker actuator matrix), it was possible to induce a reversible bending of over 30° in the humid environment triggered by Joule heating. The properties of each material were investigated by means of scanning electron microscopy (SEM), Raman spectroscopy, tensile testing, and ellipsometry. The actuation performances of single-responsive versions were investigated by creating a thermoresponsive PDMS/LIG actuator and a humidity-responsive PDMS/pNVCL actuator. These results were used to tune the properties of the multiresponsive PDMS/LIG/pNVCL actuator. Furthermore, its self-sensing capabilities were investigated. By getting a feedback from the piezoresistive change of the PMDS/LIG composite, the bending angle could be tracked by measuring the change in resistance. To highlight the possibilities of the processing techniques and the combination of materials, a demonstrator in the shape of an octopus with four independently controllable arms was developed.
Collapse
|
37
|
Song X, Qiu X, Huang X, Tu Y, Zhao Q, Sun R, Zhang L. Waxy rice amylopectin towards stretchable elastic conductive hydrogel for human motion detection. NEW J CHEM 2021. [DOI: 10.1039/d0nj05258b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Dynamic hydrogen-bonding interaction brings waxy rice amylopectin element into polyacrylamide network to elicit a stretchable elastic composite hydrogel for sensing application.
Collapse
Affiliation(s)
- Xiaodong Song
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Xiaxin Qiu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Xiaowen Huang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Yaqing Tu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- People's Republic of China
| |
Collapse
|
38
|
Weng M, Xiao Y, Yao L, Zhang W, Zhou P, Chen L. Programmable and Self-Healing Light-Driven Actuators through Synergetic Use of Water-Shaping and -Welding Methods. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55125-55133. [PMID: 33253523 DOI: 10.1021/acsami.0c14380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shape programming is critical for the fabrication of a light-driven actuator with complex shape morphing, which demonstrates potential applications in remote-controlled light-driven soft robots. However, it remains a huge challenge to obtain light-driven actuators having advantages of complex shape morphing, self-healing function, and facile fabrication simultaneously. Here, we report a facile strategy to obtain programmable and self-healing light-driven actuators with complex shape morphing. Various initial shapes of actuators can be programmed by synergetic use of water-shaping and -welding methods, which provides unlimited opportunities for fabricating actuators with predesigned shapes and subsequently demonstrating complex shape morphing. A template transfer method is used to prepare a single-layer graphene oxide (GO) film with asymmetric surface structures, which acts as the basic actuator and has the self-healing function based on the hydrophilic property of GO. It shows bending morphing under near-infrared (NIR) light irradiation due to the photothermal effect and asymmetric morphology on the opposite surfaces. Four more types of actuators are programmed from the basic actuator through the water-shaping method, which exhibits bending, unbending, twisting, and untwisting, respectively, under NIR light illumination. In addition, an S-shape actuator and a flower-shape actuator are programmed from the basic actuators through the water-welding method. By simply turning over the S-shape actuator, it can perform a bidirectional crawling motion. Finally, two intricate bionic light-driven actuators (tendril-shape and octopus-shape) are constructed, which are unattainable from conventional fabrication methods of actuators. We believe that this study will unlock a new way to programmable, self-healing, and light-driven soft robots with tunable and complex shape morphing.
Collapse
Affiliation(s)
- Mingcen Weng
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Yiwen Xiao
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Liqiang Yao
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Peidi Zhou
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou 350117, China
| |
Collapse
|
39
|
Lee J, Sroda MM, Kwon Y, El-Arid S, Seshadri S, Gockowski LF, Hawkes EW, Valentine MT, Read de Alaniz J. Tunable Photothermal Actuation Enabled by Photoswitching of Donor-Acceptor Stenhouse Adducts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54075-54082. [PMID: 33210539 DOI: 10.1021/acsami.0c15116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a visible light-responsive bilayer actuator driven by the photothermal properties of a unique molecular photoswitch: donor-acceptor Stenhouse adduct (DASA). We demonstrate a synthetic platform to chemically conjugate DASA to a load-bearing poly(hexyl methacrylate) (PHMA) matrix via Diels-Alder click chemistry that enables access to stimuli-responsive materials on scale. By taking advantage of the negative photochromism and switching kinetics of DASA, we can tune the thermal expansion and actuation performance of DASA-PHMA under constant light intensity. This extends the capabilities of currently available responsive soft actuators for which mechanical response is determined exclusively by light intensity and enables the use of abundant broadband light sources to trigger tunable responses. We demonstrate actuation performance using a visible light-powered cantilever capable of lifting weight against gravity as well as a simple crawler. These results add a new strategy to the toolbox of tunable photothermal actuation by using the molecular photoswitch DASA.
Collapse
Affiliation(s)
- Jaejun Lee
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Miranda M Sroda
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Younghoon Kwon
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Sara El-Arid
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Serena Seshadri
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Luke F Gockowski
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Elliot W Hawkes
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
40
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
41
|
Abstract
Hybrid stimuli-responsive soft robots have been extensively developed by incorporating multi-functional materials, such as carbon-based nanoparticles, nanowires, low-dimensional materials, and liquid crystals. In addition to the general functions of conventional soft robots, hybrid stimuli-responsive soft robots have displayed significantly advanced multi-mechanical, electrical, or/and optical properties accompanied with smart shape transformation in response to external stimuli, such as heat, light, and even biomaterials. This review surveys the current enhanced scientific methods to synthesize the integration of multi-functional materials within stimuli-responsive soft robots. Furthermore, this review focuses on the applications of hybrid stimuli-responsive soft robots in the forms of actuators and sensors that display multi-responsive and highly sensitive properties. Finally, it highlights the current challenges of stimuli-responsive soft robots and suggests perspectives on future directions for achieving intelligent hybrid stimuli-responsive soft robots applicable in real environments.
Collapse
|
42
|
Qiu X, Guo Q, Wang Y, Huang X, Cao J, Zheng Z, Zhang X. Self-Healing and Reconfigurable Actuators Based on Synergistically Cross-Linked Supramolecular Elastomer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41981-41990. [PMID: 32835472 DOI: 10.1021/acsami.0c11708] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stimulus-responsive soft actuators show great potential in intelligent robot systems for their various virtues, such as arbitrary shape morphing, outstanding adaptability to environment, and multidegrees of freedom. However, it is extremely challenging to achieve a combination of excellent actuating performance and robust mechanical strength as well as self-healing property. Herein we report a near-infrared light-responsive soft actuator based on the synergistic effects of a crystalline physical cross-linked network and a hydrogen bonding supramolecular network. The actuator exhibits outstanding comprehensive performance including fast and reliable light-responsive behavior (bending angle over 90° within 1.6 s), robust mechanical strength (12.52 MPa), superfast self-healing speed (2 s), and satisfactory self-healing efficiency in both mechanical (87.68%) and actuating (99.50%) performance. In addition, it is convenient to fabricate and reconfigure the actuators by a mild-temperature molding strategy to acquire various three-dimensional structures, thus achieving diverse actuating locomotion. This work provides a powerful and facile strategy to prepare soft actuators with intriguing performance, allowing significant progress in broadening their practical application.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Quanquan Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuyan Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xin Huang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jie Cao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Xinxing Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
43
|
Tian Y, Li YT, Tian H, Yang Y, Ren TL. Recent Progress of Soft Electrothermal Actuators. Soft Robot 2020; 8:241-250. [PMID: 32668187 DOI: 10.1089/soro.2019.0164] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Developing soft electrothermal actuators (ETAs) has drawn extensive concern in recent years. This article presents a comprehensive review on recent progress of soft ETAs through five sections: device design on structure and materials, property, fabrication methods, applications, and prospects. It's found that the fabrication process can be divided into standard surface complementary metal oxide semiconductor technology, novel laser scribing, and inkjet printing method. Moreover, current applications involve three aspects: mechanical applications, optical applications, and biomimetic applications. It will develop in the direction of increasing electrothermal efficiency and response speed emphatically. This review encourages achievement of its higher performance and broad applications in the future.
Collapse
Affiliation(s)
- Ye Tian
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yu-Tao Li
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - He Tian
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing, China.,Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| |
Collapse
|
44
|
Zhao J, Li Q, Miao B, Pi H, Yang P. Controlling Long-Distance Photoactuation with Protein Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000043. [PMID: 32307812 DOI: 10.1002/smll.202000043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/14/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Long-distance wireless actuation indicates precise remote control over materials, sensors, and devices that are widely utilized in biomedical, defence, disaster relief, deep ocean, and outer space applications to replace human work. Unlike radio frequency (RF) control, which has low tolerance toward electromagnetic interference (EMI), light control represents a promising method to overcome EMI. Nonetheless, long-distance light-controlled wireless actuation able to compete with RF control has not been achieved until now due to the lack of highly light-sensitive actuator designs. Here, it is demonstrate that amyloid-like protein aggregates can organize photomodule single-layer reduced graphene oxide (rGO) into a well-defined multilayer stack to display long-distance photoactuation. The amyloid-like proteinaceous component docks the rGO layers together to form a hybrid film, which can reliably adhere onto various material surfaces with robust interfacial adhesion. The sensitive photothermal effect and a fast bending in 1 s to switch a circuit are achieved after forming the film on a plastic substrate and irradiating the bilayer film with a blue laser from 100 m away. A photoactuation distance of 50 km can be further extrapolated based on a commercial high-power laser. This study reveals the great potential of amyloid-like aggregates in remote light control of robots and devices.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Qian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Bianliang Miao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Hemu Pi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
45
|
Gao D, Lin MF, Xiong J, Li S, Lou SN, Liu Y, Ciou JH, Zhou X, Lee PS. Photothermal actuated origamis based on graphene oxide-cellulose programmable bilayers. NANOSCALE HORIZONS 2020; 5:730-738. [PMID: 32065179 DOI: 10.1039/c9nh00719a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The design and construction of 3D architectures enabled by stimuli-responsive soft materials can yield novel functionalities for next generation soft-bodied actuating devices. Apart from additive manufacturing processes, origami inspired technology offers an alternative approach to fabricate 3D actuators from planar materials. Here we report a class of near-infrared (NIR) responsive 3D active origamis that deploy, actuate and transform between multistable structural equilibria. By exploiting the nonlinear coefficient of thermal expansion (CTE) of graphene oxide (GO), graphene oxide/ethylene cellulose (GO/EC) bilayers are readily fabricated to deliver precise origami structure control, and rapid low-temperature-triggered photothermal actuation. Complexity in 3D shapes is produced through heterogeneously patterning GO domains on 2D EC thin films, which allows us to customize 3D architectures that adapt to various robotic functions. The strategy also enables the construction of material systems possessing naturally inaccessible properties, such as remotely controlled mechanical metamaterials with auxetic behavior and bionic flowers with a rapid blooming rate. Harnessing deformability with multiple degrees of freedom (DOF) upon light irradiation, this work leads to breakthroughs in the design and implementation of shape-morphing functions with soft origamis.
Collapse
Affiliation(s)
- Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Meng-Fang Lin
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Jiaqing Xiong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Shaohui Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Shi Nee Lou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Yizhi Liu
- Department of Astronautic Science and Mechanics, Harbin Institute of Technology, Harbin 150001, China
| | - Jing-Hao Ciou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Xinran Zhou
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
46
|
Smart Devices Based on the Soft Actuator with Nafion-Polypropylene-PDMS/Graphite Multilayer Structure. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The demand for multi-functional soft actuators with simple fabrication and fast response to multiple stimuli is increasing in the field of smart devices. However, for existing actuators that respond to a single stimulus, it is difficult to meet the requirements of application diversity. Herein, a type of multi-stimulus responsive soft actuator based on the Nafion-Polypropylene-polydimethylsiloxane (PDMS)/Graphite multilayer membranes is proposed. Such actuators have an excellent reversible response to optical/thermal and humidity stimulation, which can reach a 224.56° bending angle in a relative humidity of 95% within 5 s and a maximum bending angle of 324.65° in 31 s when the platform temperature is 80 °C, and has a faster response (<0.5 s) to optical stimuli, as an asymmetric structure allows it to bend in both directions. Based on such an actuator, some applications like flexible grippers and switches to carry items or control circuits, bionic flytraps to capture and release “prey”, have also been developed and studied. These provide potential applications in the fields of soft sensors, artificial skin and flexible robots.
Collapse
|
47
|
Dong X, Xu J, Xu X, Dai S, Zhou X, Ma C, Cheng G, Yuan N, Ding J. Sunlight-Driven Continuous Flapping-Wing Motion. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6460-6470. [PMID: 31942793 DOI: 10.1021/acsami.9b20250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Light-driven actuators that directly convert light into mechanical work have attracted significant attention due to their wireless advantage and ability to be easily controlled. However, a fundamental impediment to their application is that the continuous motion of light-driven flexible actuators usually requires a periodically switching light source or the coordination of other additional hardware. Here, for the first time, continuous flapping-wing motion under sunlight is realized through the utilization of a simple nanocrystalline metal polymer bilayer structure without the coordination of additional hardware. The light-driven performance can be controlled by adjusting the grain size of the upper nanocrystalline metallic layer or selecting metals with different thermodynamic parameters. The achieved highest frequency of flapping-wing motion is 4.49 Hz, which exceeds the frequency of real butterfly wings, thus informing the further development of sunlight-driven bionic flying animal robotics without external energy consumption. The flapping-wing motion has been used to realize a light-driven whirligig, a light-driven sailboat, and photoelectric energy harvesting. Furthermore, the flexible bilayer actuator features the ability to be driven by light and electricity, low-power actuation, a large deflection, fast actuation speed, long-time stability, strong design ability, and large-area facile fabrication. The bilayer film considered herein represents a simple, general, and effective strategy for preparing photoelectric-driven flexible actuators with target performances and informs the standardization and industrial application of flexible actuators in the future.
Collapse
Affiliation(s)
| | - Jiawei Xu
- Institute of Intelligent Flexible Mechatronics , Jiangsu University , Zhenjiang 212013 , P. R. China
| | - Xiuzhu Xu
- Institute of Intelligent Flexible Mechatronics , Jiangsu University , Zhenjiang 212013 , P. R. China
| | | | | | | | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics , Jiangsu University , Zhenjiang 212013 , P. R. China
| | | | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics , Jiangsu University , Zhenjiang 212013 , P. R. China
| |
Collapse
|
48
|
Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.
Collapse
Affiliation(s)
- Jidong Shi
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Su Liu
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bao Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lin Shu
- School of Electronic and Information Engineering, Southern China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ying Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ming Ren
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Chai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
49
|
Li Q, Wang X, Dong L, Liu C, Fan S. Spirally deformable soft actuators and their designable helical actuations based on a highly oriented carbon nanotube film. SOFT MATTER 2019; 15:9788-9796. [PMID: 31746933 DOI: 10.1039/c9sm01966a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spiral configurations and helical curlings of plant tendrils and seed pods are very common in nature. Many researchers have tried to develop spirally deformable actuators to mimic these natural spirals through several approaches, such as preforming helical shapes, processing diagonal stripes and employing anisotropic organic layers. However, these methods are usually complex and time-consuming. Here, we used an efficient method to produce a highly oriented carbon nanotube (CNT) film and develop a series of spirally deformable soft actuators which perform various controllable helical actuations. The actuator consists of a CNT layer with strong anisotropy and a silicone layer. By simply adjusting the orientations of the aligned CNTs, the prepared actuators can accomplish left- or right-handed spiral deformations with different helical forms when driven by electricity. Finite element analyses and simulations were conducted to investigate the mechanism. It is confirmed that it is the anisotropic moduli of the CNT film that regulate the internal stress distributions of the actuators and lead to helical actuations. Moreover, complex actuator designs and functional applications were also carried out. A V-shaped actuator can simultaneously achieve left- and right-handed curling with large angles (630°), which vividly imitates the spiral winding of a tendril. A Y-shaped actuator performed three-dimensional movements, which can manipulate lightweight objects deftly. By virtue of easy preparation and flexible function design, the spirally deformable actuators based on the oriented CNT film will be very promising in artificial muscles and bionic soft robots.
Collapse
Affiliation(s)
- Qingwei Li
- Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
50
|
Meder F, Naselli GA, Sadeghi A, Mazzolai B. Remotely Light-Powered Soft Fluidic Actuators Based on Plasmonic-Driven Phase Transitions in Elastic Constraint. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905671. [PMID: 31682053 DOI: 10.1002/adma.201905671] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Materials capable of actuation through remote stimuli are crucial for untethering soft robotic systems from hardware for powering and control. Fluidic actuation is one of the most applied and versatile actuation strategies in soft robotics. Here, the first macroscale soft fluidic actuator is derived that operates remotely powered and controlled by light through a plasmonically induced phase transition in an elastomeric constraint. A multiphase assembly of a liquid layer of concentrated gold nanoparticles in a silicone or styrene-ethylene-butylene-styrene elastic pocket forms the actuator. Upon laser excitation, the nanoparticles convert light of specific wavelength into heat and initiate a liquid-to-gas phase transition. The related pressure increase inflates the elastomers in response to laser wavelength, intensity, direction, and on-off pulses. During laser-off periods, heating halts and condensation of the gas phase renders the actuation reversible. The versatile multiphase materials actuate-like soft "steam engines"-a variety of soft robotic structures (soft valve, pnue-net structure, crawling robot, pump) and are capable of operating in different environments (air, water, biological tissue) in a single configuration. Tailored toward the near-infrared window of biological tissue, the structures actuate also through animal tissue for potential medical soft robotic applications.
Collapse
Affiliation(s)
- Fabian Meder
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Giovanna Adele Naselli
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Ali Sadeghi
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| | - Barbara Mazzolai
- Istituto Italiano di Tecnologia, Center for Micro-BioRobotics, Viale Rinaldo Piaggio 34, Pontedera, 56025, Pisa, Italy
| |
Collapse
|