1
|
Xu H, Cui Y, Tian Y, Dou M, Sun S, Wang J, Wu D. Nanoparticle-Based Drug Delivery Systems for Enhancing Bone Regeneration. ACS Biomater Sci Eng 2024; 10:1302-1322. [PMID: 38346448 DOI: 10.1021/acsbiomaterials.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The treatment of bone defects has been a long-standing challenge in clinical practice. Among the various bone tissue engineering approaches, there has been substantial progress in the development of drug delivery systems based on functional drugs and appropriate carrier materials owing to technological advances in recent years. A large number of materials based on functional nanocarriers have been developed and applied to improve the complex osteogenic microenvironment, including for promoting osteogenic activity, inhibiting osteoclast activity, and exerting certain antibacterial effects. This Review discusses the physicochemical properties, drug loading mechanisms, advantages and disadvantages of nanoparticles (NPs) used for constructing drug delivery systems. In addition, we provide an overview of the osteogenic microenvironment regulation mechanism of drug delivery systems based on nanoparticle (NP) carriers and the construction strategies of drug delivery systems. Finally, the advantages and disadvantages of NP carriers are summarized along with their prospects and future research trends in bone tissue engineering. This Review thus provides advanced strategies for the design and application of drug delivery systems based on NPs in the treatment of bone defects.
Collapse
Affiliation(s)
- Hang Xu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Minghan Dou
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Shouye Sun
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| |
Collapse
|
2
|
Beitzinger B, Schmid R, Jung C, Tiwary K, Hermann P, Jacob T, Lindén M. Confinement and Polarity Effects on the Peptide Packing Density on Mesoporous Silica Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4294-4305. [PMID: 38346113 PMCID: PMC10905996 DOI: 10.1021/acs.langmuir.3c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
The adsorption of cationic peptide JM21 onto different mesoporous silica nanoparticles (MSNs) from an aqueous solution was studied as a function of pH. In agreement with the literature, the highest loading degrees could be achieved at pH close to the isoelectric point of the peptide where the peptide-peptide repulsion is minimum. However, mesopore size, mesopore geometry, and surface polarity all had an influence on the peptide adsorption in terms of both affinity and maximum loading at a given pH. This adsorption behavior could largely be explained by a combination of pH-dependent electrostatic interactions and confinement effects. It is demonstrated that hydrophobic interactions enhance the degree of peptide adsorption under pH conditions where the electrostatic attraction was absent in the case of mesoporous organosilica nanoparticles (MONs). The lower surface concentration of silanol groups for MON led to a lower level of peptide adsorption under optimum pH conditions compared to all-silica particles. Finally, the study confirmed the protective role of MSNs in preserving the biological activity of JM#21 against enzymatic degradation, even for large-pore MSNs, emphasizing their potential as nanocarriers for therapeutic peptides. By integrating experimental findings with theoretical modeling, this research elucidates the complex interplay of factors that influence peptide-silica interactions, providing vital insights for optimizing peptide loading and stabilization in biomedical applications.
Collapse
Affiliation(s)
- Bastian Beitzinger
- Institute
of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Roman Schmid
- Institute
of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Christoph Jung
- Institute
of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany
| | - Kanishka Tiwary
- Department
of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89070, Germany
| | - Patrick Hermann
- Department
of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89070, Germany
| | - Timo Jacob
- Institute
of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, Ulm 89081, Germany
| | - Mika Lindén
- Institute
of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
3
|
Schmid R, Kaiser J, Willbold R, Walther N, Wittig R, Lindén M. Towards a simple in vitro surface chemistry pre-screening method for nanoparticles to be used for drug delivery to solid tumours. Biomater Sci 2023; 11:6287-6298. [PMID: 37551433 DOI: 10.1039/d3bm00966a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
An efficient nanoparticulate drug carrier intended for chemotherapy based on intravenous administration must exhibit a long enough blood circulation time, a good penetrability into the tumour volume, as well as an efficient uptake by cancer cells. Limiting factors for the therapeutic outcome in vivo are recognition of the nanoparticles as foreign objects, which triggers nanoparticle uptake by defence organs rich in macrophages, e.g. liver and spleen, on the time-scale of accumulation and uptake in/by the tumour. However, the development of nanomedicine towards efficient nanoparticle-based delivery to solid tumours is hampered by the lack of simple, reproducible, cheap, and predictive means for early identification of promising nanoparticle formulations. The surface chemistry of nanoparticles is known to be the most important determinant for the biological fate of nanoparticles, as it influences the extent of serum protein adsorption, and also the relative composition of the protein corona. Here we preliminarily evaluate an extremely simple screening method for nanoparticle surface chemistry pre-optimization based on nanoparticle uptake in vitro by PC-3 cancer cells and THP-1 macrophages. Only when both selectivity for the cancer cells as well as the extent of nanoparticle uptake are taken into consideration do the in vitro results mirror literature results obtained for small animal models. Furthermore, although not investigated here, the screening method does also lend itself to the study of actively targeted nanoparticles.
Collapse
Affiliation(s)
- Roman Schmid
- Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm University, 89081 Ulm, Germany.
| | - Juliane Kaiser
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Ramona Willbold
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Nomusa Walther
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology (ILM) at Ulm University, Helmholtzstrasse 12, 89081 Ulm, Germany.
| | - Mika Lindén
- Inorganic Chemistry II, Albert-Einstein-Allee 11, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Schmid R, Neffgen N, Lindén M. Straightforward adsorption-based formulation of mesoporous silia nanoparticles for drug delivery applications. J Colloid Interface Sci 2023; 640:961-974. [PMID: 36907156 DOI: 10.1016/j.jcis.2023.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have emerged as a very promising drug delivery platform. However, multi-step synthesis and surface functionalization protocols rise the hurdle for translation of this promising drug delivery platform to the clinic. Furthermore, surface functionalization aiming at enhancing the blood circulation time, typically through surface functionalization with poly(ethylene glycol) (PEG) (PEGylation), has repeatedly been shown to be detrimental for the drug loading levels that can be achieved. Here, we present results related to sequential adsorptive drug loading and adsorptive PEGylation, where the conditions can be chosen so that the drug desorption during PEGylation is minimized. At the heart of the approach is the high solubility of PEG both in water and in apolar solvents, which makes it possible to use a solvent for PEGylation in which the drug exhibits a low solubility, as demonstrated here for two model drugs, one being water soluble and the other not. Analysis of the influence of PEGylation on the extent of serum protein adsorption underline the promise of the approach, and the results also allow the adsorption mechanisms to be elaborated. Detailed analysis of the adsorption isotherms enables determination of the fractions of PEG residing on the outer particle surfaces in comparison to inside the mesopore systems, and also makes it possible to determine the PEG conformation on the outer particle surfaces. Both parameters are directly reflected in the extent of protein adsorption to the particles. Finally, the PEG coating is shown to be stable on time-scales compatible with intravenous drug administration, which is why we are convinced that the presented approach or modifications thereof will pave the way for faster translation of this drug delivery platform to the clinic.
Collapse
Affiliation(s)
- Roman Schmid
- Department of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Nathalie Neffgen
- Department of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Mika Lindén
- Department of Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
5
|
Tuning Peptide-Based Hydrogels: Co-Assembly with Composites Driving the Highway to Technological Applications. Int J Mol Sci 2022; 24:ijms24010186. [PMID: 36613630 PMCID: PMC9820439 DOI: 10.3390/ijms24010186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Self-assembled peptide-based gels provide several advantages for technological applications. Recently, the co-assembly of gelators has been a strategy to modulate and tune gel properties and even implement stimuli-responsiveness. However, it still comprises limitations regarding the required library of compounds and outcoming properties. Hence, efforts have been made to combine peptide-based gels and (in)organic composites (e.g., magnetic nanoparticles, metal nanoparticles, liposomes, graphene, silica, clay, titanium dioxide, cadmium sulfide) to endow stimuli-responsive materials and achieve suitable properties in several fields ranging from optoelectronics to biomedical. Herein, we discuss the recent developments with composite peptide-based gels including the fabrication, tunability of gels' properties, and challenges on (bio)technological applications.
Collapse
|
6
|
Optimization of an Injectable Hydrogel Depot System for the Controlled Release of Retinal-Targeted Hybrid Nanoparticles. Pharmaceutics 2022; 15:pharmaceutics15010025. [PMID: 36678654 PMCID: PMC9862926 DOI: 10.3390/pharmaceutics15010025] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
A drawback in the development of treatments that can reach the retina is the presence of barriers in the eye that restrain compounds from reaching the target. Intravitreal injections hold promise for retinal delivery, but the natural defenses in the vitreous can rapidly degrade or eliminate therapeutic molecules. Injectable hydrogel implants, which act as a reservoir, can allow for long-term drug delivery with a single injection into the eye, but still suffer due to the fast clearance of the released drugs when traversing the vitreous and random diffusion that leads to lower pharmaceutic efficacy. A combination with HA-covered nanoparticles, which can be released from the gel and more readily pass through the vitreous to increase the delivery of therapeutic agents to the retina, represents an advanced and elegant way to overcome some of the limitations in eye drug delivery. In this article, we developed hybrid PLGA-Dotap NPs that, due to their hyaluronic acid coating, can improve in vivo distribution throughout the vitreous and delivery to retinal cells. Moreover, a hydrogel implant was developed to act as a depot for the hybrid NPs to better control and slow their release. These results are a first step to improve the treatment of retinal diseases by protecting and transporting the therapeutic treatment across the vitreous and to improve treatment options by creating a depot system for long-term treatments.
Collapse
|
7
|
Application of Hydrogels as Sustained-Release Drug Carriers in Bone Defect Repair. Polymers (Basel) 2022; 14:polym14224906. [PMID: 36433033 PMCID: PMC9695274 DOI: 10.3390/polym14224906] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Large bone defects resulting from trauma, infection and tumors are usually difficult for the body's repair mechanisms to heal spontaneously. Generally, various types of bones and orthopedic implants are adopted to enhance bone repair and regeneration in the clinic. Due to the limitations of traditional treatments, bone defect repair is still a compelling challenge for orthopedic surgeons. In recent years, bone tissue engineering has become a potential option for bone repair and regeneration. Amidst the various scaffolds for bone tissue engineering applications, hydrogels are considered a new type of non-toxic, non-irritating and biocompatible materials, which are widely used in the biomedicine field currently. Some studies have demonstrated that hydrogels can provide a three-dimensional network structure similar to a natural extracellular matrix for tissue regeneration and can be used to transport cells, biofactors, nutrients and drugs. Therefore, hydrogels may have the potential to be multifunctional sustained-release drug carriers in the treatment of bone defects. The recent applications of different types of hydrogels in bone defect repair were briefly reviewed in this paper.
Collapse
|
8
|
van Rijt S, de Groot K, Leeuwenburgh SCG. Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Eng Part A 2022; 28:461-477. [PMID: 35107351 DOI: 10.1089/ten.tea.2021.0218] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bulk calcium phosphates and silicate-based bioglasses have been extensively studied since the early 1970s due to their unique capacity to bind to host bone, which led to their clinical translation and commercialization in the 1980s. Since the mid-1990s, researchers have synthesized nanoscale calcium phosphate and silicate-based particles of increased specific surface area, chemical reactivity and solubility which offer specific advantages as compared to their bulk counterparts. This review provides a critical perspective on the history and emerging trends of these two classes of ceramic nanoparticles. Their synthesis and functional properties in terms of particle composition, size, shape, charge, dispersion, and toxicity are discussed as a function of relevant processing parameters. Specifically, emerging trends such as the influence of ion doping and mesoporosity on the biological and pharmaceutical performance of these nanoparticles are reviewed in more detail. Finally, a broad comparative overview is provided on the physicochemical properties and applicability of calcium phosphate and silicate-based nanoparticles within the fields of i) local delivery of therapeutic agents, ii) functionalization of biomaterial scaffolds or implant coatings, and iii) bio-imaging applications.
Collapse
Affiliation(s)
- Sabine van Rijt
- Maastricht University, 5211, MERLN Institute-Instructive Biomaterial Engineering, Maastricht, Limburg, Netherlands;
| | - Klaas de Groot
- Vrije Universiteit Amsterdam, 1190, Academic Center for Dentistry Amsterdam (ACTA)-Department of Oral Implantology and Prosthetic Dentistry, Amsterdam, Noord-Holland, Netherlands;
| | - Sander C G Leeuwenburgh
- Radboudumc, 6034, Dept. of Dentistry-Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands;
| |
Collapse
|
9
|
Gerstenberg M, Stürzel CM, Weil T, Kirchhoff F, Lindén M. Modular Hydrogel−Mesoporous Silica Nanoparticle Constructs for Therapy and Diagnostics. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Melanie Gerstenberg
- Institute of Inorganic Chemistry II University Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Christina M. Stürzel
- Institute of Molecular Virology Ulm University Medical Center Meyerhofstrasse 1 89081 Ulm Germany
| | - Tanja Weil
- Department for Synthesis of Macromolecules Max-Planck-Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology Ulm University Medical Center Meyerhofstrasse 1 89081 Ulm Germany
| | - Mika Lindén
- Institute of Inorganic Chemistry II University Ulm Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
10
|
Wu Y, Chen F, Huang N, Li J, Wu C, Tan B, Liu Y, Li L, Yang C, Shao D, Liao J. Near-infrared light-responsive hybrid hydrogels for the synergistic chemo-photothermal therapy of oral cancer. NANOSCALE 2021; 13:17168-17182. [PMID: 34636386 DOI: 10.1039/d1nr04625j] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Light-stimulus-responsive therapies have been recognized as a promising strategy for the efficient and safe treatment of oral squamous cell carcinoma (OSCC). Hydrogels have emerged as a promising multifunctional platform combining localized drug delivery and sustained drug release with multimodal properties for combined OSCC therapy. However, inaccurate drug release and limited light-absorption efficiency have hindered their on-demand chemo-photothermal applications. To tackle these problems, an injectable and near-infrared (NIR) light-responsive hybrid system was developed by incorporating light-responsive mesoporous silica nanoparticles (MSNs) as doxorubicin (DOX) carriers into the IR820/methylcellulose hydrogel networks for chemophotothermal therapy. Under NIR radiation, the incorporated IR820, a new green cyanine dye, was excited to induce photothermal effects against tumor cells. Meanwhile, MSNs achieved self-degradation-controlled DOX release via the cleavage of diselenide bonds induced by reactive oxygen species. Through the combination of chemotherapy and phototherapy, a long-lasting synergistic anti-tumor effect was achieved in vitro and in vivo with less toxicity. These findings demonstrate the potential of light-responsive hydrogels as a multifunctional platform for accurate synergistic chemophotothermal treatment of OSCC.
Collapse
Affiliation(s)
- Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China.
| | - Nengwen Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Jinjin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Bowen Tan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yunkun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China.
| | - Dan Shao
- Institutes for Life Sciences, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Kumar A. Self Assemblies of Poly(ether ether ketone) Block Copolymers for Biomedical Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202102238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Avneesh Kumar
- International Center for Materials Science JNCASR, Jakkur Bangalore 560064
- Center for Environmentally Friendly Materials 27-1 Muroran Institute of Technology Muroran Hokkaido 050-8585 Japan
| |
Collapse
|
12
|
Leroux G, Neumann M, Meunier CF, Voisin V, Habsch I, Caron N, Michiels C, Wang L, Su BL. Alginate@TiO 2 hybrid microcapsules with high in vivo biocompatibility and stability for cell therapy. Colloids Surf B Biointerfaces 2021; 203:111770. [PMID: 33894650 DOI: 10.1016/j.colsurfb.2021.111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022]
Abstract
Designing new materials to encapsulate living therapeutic cells for the treatment of the diseases caused by protein or hormone deficiencies is a great challenge. The desired materials need to be biocompatible towards both entrapped cells and host organisms, have long-term in vivo stability after implantation, allow the diffusion of nutrients and metabolites, and ensure perfect immune-isolation. The current work investigates the in vivo biocompatibility and stability of alginate@TiO2 hybrid microcapsules and the immune-isolation of entrapped HepG2 cells, to assess their potential for cell therapy. A comparison was made with alginate-silica hybrid microcapsules (ASA). These two hybrid microcapsules are implanted subcutaneously in female Wistar rats. The inflammatory responses of the rats are monitored by the histological examination of the implants and the surrounding tissues, to indicate their in vivo biocompatibility towards the hosts. The in vivo stability of the microcapsules is evaluated by the recovery rate of the intact microcapsules after implantation. The immune-isolation of the entrapped cells is assessed by their morphology, membrane integrity and intracellular enzymatic activity. The results show high viability of the entrapped cells and insignificant inflammation of the hosts, suggesting the excellent biocompatibility of alginate@TiO2 and ASA microcapsules towards both host organisms and entrapped cells. Compared to the ASA microcapsules, more intact alginate@TiO2 hybrid microcapsules are recovered 2-day and 2-month post-implantation and more cells remain alive, proving their better in vivo biocompability, stability, and immune-isolation. The present study demonstrates that the alginate@TiO2 hybrid microcapsule is a highly promising implantation material for cell therapy.
Collapse
Affiliation(s)
- Grégory Leroux
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Myriam Neumann
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Christophe F Meunier
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Virginie Voisin
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Isabelle Habsch
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Li Wang
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
13
|
Qu L, Dubey N, Ribeiro JS, Bordini EAF, Ferreira JA, Xu J, Castilho RM, Bottino MC. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J Mech Behav Biomed Mater 2021; 116:104293. [PMID: 33588247 PMCID: PMC8275125 DOI: 10.1016/j.jmbbm.2020.104293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
The aim of this investigation was to engineer metformin (MF)-loaded mesoporous silica nanospheres (MSNs)-laden gelatin methacryloyl (GelMA) photocrosslinkable hydrogels and test their effects on the mechanical properties, swelling ratio, drug release, cytocompatibility, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). As-received and carboxylated MSNs (MSNs-COOH) were characterized by scanning and transmission electron microscopies (SEM and TEM), as well as Fourier-transform infrared spectroscopy (FTIR) prior to hydrogel modification. MF-MSNs-COOH were obtained by loading MF into MSNs at a 1:1 mass ratio. Upon MSNs-COOH laden-hydrogels fabrication, the mechanical properties, swelling ratio and MF release were evaluated. SHEDs were seeded on the hydrogels and cytocompatibility was examined. The effects of the MF-MSNs-COOH/GelMA on the osteogenic differentiation of SHEDs were measured by ALP activity, Alizarin Red assay, and Real-time PCR. Statistics were performed using one-way ANOVA (α = 0.05). Morphological (SEM and TEM) analyses of pristine and carboxylated MSNs revealed a mean particle size of 200 nm and 218 nm, respectively. Importantly, an intrinsic nanoporous structure was noticed. Incorporation of MSNs-COOH at 1.5 mg/mL in GelMA led to the highest compressive modulus and swelling ratio. The addition of MSNs-COOH (up to 3 mg/mL) in GelMA did not impact cell viability. The presence of MF in MSNs-COOH/GelMA significantly promoted cell proliferation. Significant upregulation of osteogenic-related genes (except OCN) were seen for modified (MSNs-COOH and MF-MSNs-COOH) hydrogels when compared to GelMA. Altogether, the engineered MF-MSNs-COOH/GelMA shows great promise in craniomaxillofacial applications as an injectable, cell-free and bioactive therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Liu Qu
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ester A F Bordini
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jinping Xu
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Zengin A, Castro JPO, Habibovic P, van Rijt SH. Injectable, self-healing mesoporous silica nanocomposite hydrogels with improved mechanical properties. NANOSCALE 2021; 13:1144-1154. [PMID: 33400753 PMCID: PMC8100892 DOI: 10.1039/d0nr07406c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/18/2020] [Indexed: 05/08/2023]
Abstract
Self-healing hydrogels have emerged as promising biomaterials in regenerative medicine applications. However, an ongoing challenge is to create hydrogels that combine rapid self-healing with high mechanical strength to make them applicable to a wider range of organs/tissues. Incorporating nanoparticles within hydrogels is a popular strategy to improve the mechanical properties as well as to provide additional functionalities such as stimuli responsiveness or controlled drug delivery, further optimizing their use. In this context, mesoporous silica nanoparticles (MSNs) are promising candidates as they are bioactive, improve mechanical properties, and can controllably release various types of cargo. While commonly nanoparticles are added to hydrogels as filler component, in the current study we developed thiol surface-functionalized MSNs capable of acting as chemical crosslinkers with a known hydrophilic polymer, polyethylene glycol (PEG), through dynamic thiol-disulfide covalent interactions. Due to these dynamic exchange reactions, mechanically strong nanocomposites with a storage modulus of up to 32 ± 5 kPa compared to 1.3 ± 0.3 kPa for PEG hydrogels alone, with rapid self-healing capabilities, could be formed. When non-surface modified MSNs were used, the increase in storage modulus of the hydrogels was significantly lower (3.4 ± 0.7 kPa). In addition, the nanocomposites were shown to degrade slowly over 6 weeks upon exposure to glutathione while remaining intact at physiological conditions. Together, the data argue that creating nanocomposites using MSNs as dynamic crosslinkers is a promising strategy to confer mechanical strength and rapid self-healing capabilities to hydrogels. This approach offers new possibilities for creating multifunctional self-healing biomaterials for a wider range of applications in regenerative medicine.
Collapse
Affiliation(s)
- A Zengin
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| | - J P O Castro
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| | - P Habibovic
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| | - S H van Rijt
- Department of Instructive Biomaterials Engineering (IBE), MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands.
| |
Collapse
|
15
|
Colloids-at-surfaces: Physicochemical approaches for facilitating cell adhesion on hybrid hydrogels. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125185] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Yu P, Chen Y, Wang Y, Liu Y, Zhang P, Guo Q, Li S, Xiao H, Xie J, Tan H, Li J. Pentapeptide-decorated silica nanoparticles loading salmon calcitonin for in vivo osteoporosis treatment with sustained hypocalcemic effect. MATERIALS TODAY CHEMISTRY 2019; 14:100189. [DOI: 10.1016/j.mtchem.2019.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2024]
|
17
|
Andrée L, Barata D, Sutthavas P, Habibovic P, van Rijt S. Guiding mesenchymal stem cell differentiation using mesoporous silica nanoparticle-based films. Acta Biomater 2019; 96:557-567. [PMID: 31284095 DOI: 10.1016/j.actbio.2019.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/26/2022]
Abstract
The development of smart interfaces that can guide tissue formation is of great importance in the field of regenerative medicine. Nanoparticles represent an interesting class of materials that can be used to enhance regenerative treatments by enabling close control over surface properties and directing cellular responses. Moreover, nanoparticles can be used to provide temporally controlled delivery of (multiple) biochemical compounds. Here, we exploited the cargo loading and surface functionalization properties of mesoporous silica nanoparticles (MSNs) to design films that can guide human mesenchymal stem cell (hMSC) differentiation towards the osteogenic lineage. We developed biocompatible MSN-based films that support stem cell adhesion and proliferation and demonstrated that these MSN films simultaneously allowed efficient local delivery of biomolecules without effecting film integrity. Films loaded with the osteogenesis-stimulating drug dexamethasone (Dex) were able to induce osteogenic differentiation of hMSCs in vitro. Dex delivery from the films led to increased alkaline phosphatase levels and matrix mineralization compared to directly supplementing Dex to the medium. Furthermore, we demonstrated that Dex release kinetics can be modulated using surface modifications with supported lipid bilayers. Together, these data demonstrate that MSN films represent an interesting approach to create biomaterial interfaces with controllable biomolecule release and surface properties to improve the bioactivity of biomaterials. STATEMENT OF SIGNIFICANCE: Engineering surfaces that can control cell and tissue responses is one of the major challenges in biomaterials-based regenerative therapies. Here, we demonstrate the potential of mesoporous silica nanoparticles (MSNs) as drug-delivering surface coatings. First, we show differentiation of mesenchymal stem cells towards the bone lineage when in contact with MSN films loaded with dexamethasone. Furthermore, we demonstrate that modification of MSNs with supported lipid bilayer allows control over drug release dynamics and cell shape. Given the range of loadable cargos and the tunability of release kinetics, MSN coatings can be used to mimic the sequential appearance of bioactive factors during tissue regeneration, which will ultimately lead to biomaterials with improved bioactivity.
Collapse
|
18
|
Ong W, Pinese C, Chew SY. Scaffold-mediated sequential drug/gene delivery to promote nerve regeneration and remyelination following traumatic nerve injuries. Adv Drug Deliv Rev 2019; 149-150:19-48. [PMID: 30910595 DOI: 10.1016/j.addr.2019.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/27/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
Neural tissue regeneration following traumatic injuries is often subpar. As a result, the field of neural tissue engineering has evolved to find therapeutic interventions and has seen promising outcomes. However, robust nerve and myelin regeneration remain elusive. One possible reason may be the fact that tissue regeneration often follows a complex sequence of events in a temporally-controlled manner. Although several other fields of tissue engineering have begun to recognise the importance of delivering two or more biomolecules sequentially for more complete tissue regeneration, such serial delivery of biomolecules in neural tissue engineering remains limited. This review aims to highlight the need for sequential delivery to enhance nerve regeneration and remyelination after traumatic injuries in the central nervous system, using spinal cord injuries as an example. In addition, possible methods to attain temporally-controlled drug/gene delivery are also discussed for effective neural tissue regeneration.
Collapse
|
19
|
Delpiano G, Casula MF, Piludu M, Corpino R, Ricci PC, Vallet-Regí M, Sanjust E, Monduzzi M, Salis A. Assembly of Multicomponent Nano-Bioconjugates Composed of Mesoporous Silica Nanoparticles, Proteins, and Gold Nanoparticles. ACS OMEGA 2019; 4:11044-11052. [PMID: 31460202 PMCID: PMC6647957 DOI: 10.1021/acsomega.9b01240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
The purpose of this work was the assembly of multicomponent nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (bovine serum albumin, BSA, or lysozyme, LYZ), and gold nanoparticles (GNPs). These nano-bioconjugates may find applications in nanomedicine as theranostic devices. Indeed, MSNs can act as drug carriers, proteins stabilize MSNs within the bloodstream, or may have therapeutic or targeting functions. Finally, GNPs can either be used as contrast agents for imaging or for photothermal therapy. Here, amino-functionalized MSNs (MSN-NH2) were synthesized and characterized through various techniques (small angle X-rays scattering TEM, N2 adsorption/desorption isotherms, and thermogravimetric analysis (TGA)). BSA or lysozyme were then grafted on the external surface of MSN-NH2 to obtain MSN-BSA and MSN-LYZ bioconjugates, respectively. Protein immobilization on MSNs surface was confirmed by Fourier transform infrared spectroscopy, ζ-potential measurements, and TGA, which also allowed the estimation of protein loading. The MSN-protein samples were then dispersed in a GNP solution to obtain MSN-protein-GNPs nano-bioconjugates. Transmission electron microscopy (TEM) analysis showed the occurrence of GNPs on the MSN-protein surface, whereas almost no GNPs occurred in the protein-free control samples. Fluorescence and Raman spectroscopies suggested that proteins-GNP interactions involve tryptophan residues.
Collapse
Affiliation(s)
- Giulia
Rossella Delpiano
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Maria F. Casula
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Marco Piludu
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Riccardo Corpino
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Pier Carlo Ricci
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - María Vallet-Regí
- Departamento
de Quimica Inorganica y Bioinorganica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigacion
Sanitaria Hospital 12 de Octubre i+12, and Centro de Investigacion
Biomedica en Red de Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Plaza Ramon y Cajal S/N, 28040 Madrid, Spain
| | - Enrico Sanjust
- Department of Biomedical
Sciences and Department of Physics, University of Cagliari,
Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Maura Monduzzi
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | - Andrea Salis
- Department
of Chemical and Geological Sciences, University
of Cagliari, CSGI, INSTM and CNBS, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, CA, Italy
| |
Collapse
|
20
|
Wang R, Wang Z, Guo Y, Li H, Chen Z. Design of a RADA16-based self-assembling peptide nanofiber scaffold for biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:713-736. [DOI: 10.1080/09205063.2019.1605868] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rongrong Wang
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Zhaoyue Wang
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Yayuan Guo
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Hongmin Li
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| | - Zhuoyue Chen
- Lab of Tissue Engineering Faculty of Life Science, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi’an, Shaanxi Province, P.R. China
- Key Laboratory of Resource Biology and Modern Biotechnology in Western China Ministry of Education, Northwest University, Xi’an, Shaanxi Province, P.R. China
| |
Collapse
|
21
|
Björk EM, Baumann B, Hausladen F, Wittig R, Lindén M. Cell adherence and drug delivery from particle based mesoporous silica films. RSC Adv 2019; 9:17745-17753. [PMID: 35520598 PMCID: PMC9064623 DOI: 10.1039/c9ra02823d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Spatially and temporally controlled drug delivery is important for implant and tissue engineering applications, as the efficacy and bioavailability of the drug can be enhanced, and can also allow for drugging stem cells at different stages of development. Long-term drug delivery over weeks to months is however difficult to achieve, and coating of 3D surfaces or creating patterned surfaces is a challenge using coating techniques like spin- and dip-coating. In this study, mesoporous films consisting of SBA-15 particles grown onto silicon wafers using wet processing were evaluated as a scaffold for drug delivery. Films with various particle sizes (100–900 nm) and hence thicknesses were grown onto trichloro(octadecyl)silane-functionalized silicon wafers using a direct growth method. Precise patterning of the areas for film growth could be obtained by local removal of the OTS functionalization through laser ablation. The films were incubated with the drug model 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO), and murine myoblast cells (C2C12 cells) were seeded onto films with different particle sizes. Confocal laser scanning microscopy (CLSM) was used to study the cell growth, and a vinculin-mediated adherence of C2C12 cells on all films was verified. The successful loading of DiO into the films was confirmed by UV-vis and CLSM. It was observed that the drugs did not desorb from the particles during 24 hours in cell culture. During adherent growth on the films for 4 h, small amounts of DiO and separate particles were observed inside single cells. After 24 h, a larger number of particles and a strong DiO signal were recorded in the cells, indicating a particle mediated drug uptake. The vast majority of the DiO-loaded particles remained attached to the substrate also after 24 h of incubation, making the films attractive as longer-term reservoirs for drugs on e.g. medical implants. Particle-based mesoporous silica films synthesized through a direct growth method were successfully used as a drug delivery system.![]()
Collapse
Affiliation(s)
- Emma M. Björk
- Institute for Inorganic Chemistry II
- University of Ulm
- 890 81 Ulm
- Germany
- Nanostructured Materials
| | - Bernhard Baumann
- Institute for Inorganic Chemistry II
- University of Ulm
- 890 81 Ulm
- Germany
| | - Florian Hausladen
- Institute for Laser Technologies in Medicine & Metrology (ILM)
- Ulm University
- 890 81 Ulm
- Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine & Metrology (ILM)
- Ulm University
- 890 81 Ulm
- Germany
| | - Mika Lindén
- Institute for Inorganic Chemistry II
- University of Ulm
- 890 81 Ulm
- Germany
| |
Collapse
|
22
|
Wang L, Neumann M, Fu T, Li W, Cheng X, Su BL. Porous and responsive hydrogels for cell therapy. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Scalfi-Happ C, Zhu Z, Graefe S, Wiehe A, Ryabova A, Loschenov V, Wittig R, Steiner RW. Chlorin Nanoparticles for Tissue Diagnostics and Photodynamic Therapy. Photodiagnosis Photodyn Ther 2018; 22:106-114. [PMID: 29567384 DOI: 10.1016/j.pdpdt.2018.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/01/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
BACKGROUND Organic crystalline nanoparticles (NPs) are not fluorescent due to the crystalline structure of the flat molecules organized in layers. In earlier experiments with Aluminum Phthalocyanine (AlPc)-derived NPs, the preferential uptake and dissolution by macrophages was demonstrated [3]. Therefore, inflamed tissue or cancer tissue with accumulated macrophages may exhibit specific fluorescence in contrast to healthy tissue which does not fluoresce. The present study addresses the photobiological effects of NP generated from Temoporfin (mTHPC), a clinically utilized photosensitizer belonging to the chlorin family. METHODS In-vitro investigations addressing uptake, dissolution and phototoxicity of mTHPC NP vs. the liposomal mTHPC formulation Foslip were performed using J774A.1 macrophages and L929 fibroblasts. For total NP uptake analysis, the cells were lysed, the nanoparticles dissolved and the fluorescence quantified. The intracellular molecular dissolution was measured by flow cytometry. Fluorescence microscopy served for controlling intracellular localization of the dissolved fluorescing molecules. Reaction mechanisms after PDT (mitochondrial activity, apoptosis) were analyzed using fluorescent markers in cell-based assays and flow cytometry. RESULTS Organic crystalline NP of different size were produced from mTHPC raw material. NP were internalized more efficiently in J774A.1 macrophages when compared to L929 fibroblasts, whereas uptake and fluorescence of Foslip was similar between the cell lines. NP dissolution correlated with internalization levels for larger particles in the range of 200-500 nm. Smaller particles (45 nm in diameter) were taken up at high levels in macrophages, but were not dissolved efficiently, resulting in comparatively low intracellular fluorescence. Whereas Foslip was predominantly localized in membranes, NP-mediated fluorescence also co-localized with acidic vesicles, suggesting endocytosis/phagocytosis as a major uptake mechanism. In macrophages, phototoxicity of NPs was stronger than in fibroblasts, even exceeding Foslip when administered in identical amounts. In both cell lines, phototoxicity correlated with mitochondrial depolarization and enhanced activation of caspase 3. CONCLUSIONS Due to their preferential uptake/dissolution in macrophages, mTHPC NP may have potential for the diagnosis and photodynamic treatment of macrophage-associated disorders such as inflammation and cancer.
Collapse
Affiliation(s)
- Claudia Scalfi-Happ
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany.
| | - Zhenxin Zhu
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany
| | - Susanna Graefe
- Biolitec Research GmbH, Otto-Schott-Straße 15, 07745 Jena, Germany
| | - Arno Wiehe
- Biolitec Research GmbH, Otto-Schott-Straße 15, 07745 Jena, Germany
| | - Anastasia Ryabova
- Natural Science Center of A.M. Prokhorov General Physics Institute, RAS, Vavilovstr. 38, 119991 Moscow, Russia; Biospec JSC, Krimskiy val. 8, 119049 Moscow, Russia
| | - Victor Loschenov
- Natural Science Center of A.M. Prokhorov General Physics Institute, RAS, Vavilovstr. 38, 119991 Moscow, Russia; Biospec JSC, Krimskiy val. 8, 119049 Moscow, Russia; National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Rainer Wittig
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany
| | - Rudolf W Steiner
- Institut für Lasertechnologien in der Medizin und Messtechnik an der Universität Ulm, Helmholtzstr. 12, 89081 Ulm, Germany; National Research Nuclear University, MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| |
Collapse
|
24
|
Martínez-Carmona M, Lozano D, Colilla M, Vallet-Regí M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater 2018; 65:393-404. [PMID: 29127069 DOI: 10.1016/j.actbio.2017.11.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/07/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023]
Abstract
A novel multifunctional nanodevice based in doxorubicin (DOX)-loaded mesoporous silica nanoparticles (MSNs) as nanoplatforms for the assembly of different building blocks has been developed for bone cancer treatment. These building blocks consists of: i) a polyacrylic acid (PAA) capping layer grafted to MSNs via an acid-cleavable acetal linker, to minimize premature cargo release and provide the nanosystem of pH-responsive drug delivery ability; and ii) a targeting ligand, the plant lectin concanavalin A (ConA), able to selectively recognize, bind and internalize owing to certain cell-surface glycans, such as sialic acids (SA), overexpressed in given tumor cells. This multifunctional nanosystem exhibits a noticeable higher internalization degree into human osteosarcoma cells (HOS), overexpressing SA, compared to healthy preosteoblast cells (MC3T3-E1). Moreover, the results indicate that small DOX loading (2.5 µg mL-1) leads to almost 100% of osteosarcoma cell death in comparison with healthy bone cells, which significantly preserve their viability. Besides, this nanodevice has a cytotoxicity on tumor cells 8-fold higher than that caused by the free drug. These findings demonstrate that the synergistic combination of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards normal cells. This line of attack opens up new insights in targeted bone cancer therapy. STATEMENT OF SIGNIFICANCE The development of highly selective and efficient tumor-targeted smart drug delivery nanodevices remains a great challenge in nanomedicine. This work reports the design and optimization of a multifunctional nanosystem based on mesoporous silica nanoparticles (MSNs) featuring selectivity towards human osteosarcoma cells and pH-responsive antitumor drug delivery capability. The novelty and originality of this manuscript relies on proving that the synergistic assembly of different building blocks into a unique nanoplatform increases antitumor effectiveness and decreases toxicity towards healthy cells, which constitutes a new paradigm in targeted bone cancer therapy.
Collapse
Affiliation(s)
- Marina Martínez-Carmona
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Daniel Lozano
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Montserrat Colilla
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - María Vallet-Regí
- Dpto. Química Inorgánica y Bioinorgánica, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|