1
|
Zhou L, Huang Q, Xia Y. Plasmon-Induced Hot Electrons in Nanostructured Materials: Generation, Collection, and Application to Photochemistry. Chem Rev 2024; 124:8597-8619. [PMID: 38829921 PMCID: PMC11273350 DOI: 10.1021/acs.chemrev.4c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Plasmon refers to the coherent oscillation of all conduction-band electrons in a nanostructure made of a metal or a heavily doped semiconductor. Upon excitation, the plasmon can decay through different channels, including nonradiative Landau damping for the generation of plasmon-induced energetic carriers, the so-called hot electrons and holes. The energetic carriers can be collected by transferring to a functional material situated next to the plasmonic component in a hybrid configuration to facilitate a range of photochemical processes for energy or chemical conversion. This article centers on the recent advancement in generating and utilizing plasmon-induced hot electrons in a rich variety of hybrid nanostructures. After a brief introduction to the fundamentals of hot-electron generation and decay in plasmonic nanocrystals, we extensively discuss how to collect the hot electrons with various types of functional materials. With a focus on plasmonic nanocrystals made of metals, we also briefly examine those based upon heavily doped semiconductors. Finally, we illustrate how site-selected growth can be leveraged for the rational fabrication of different types of hybrid nanostructures, with an emphasis on the parameters that can be experimentally controlled to tailor the properties for various applications.
Collapse
Affiliation(s)
- Li Zhou
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Qijia Huang
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Younan Xia
- The
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Zhao D, Zhu J, Huang Z, Wang Q, Liu Z, Zhang C, Liu Y, Fu Z. Nickel-Doped Decatungstate as a Robust Photocatalyst for Violet Light-Triggered Redox Coupling Conversion of Alcohol and Water to Aldehyde/Ketone and Hydrogen. Inorg Chem 2024; 63:10881-10896. [PMID: 38784969 DOI: 10.1021/acs.inorgchem.4c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The effective coupling of photoinduced alcohol oxidation and water reduction may economically produce hydrogen (H2) from water, which is of great significance in solving the current energy crisis. This study discloses that decatungstate (DT) and especially Ni2+ions-doped DTs are active for the photoreaction of benzyl alcohol with H2O, and under 48 h of violet light illumination, the best 1%Ni-DT yields ca. 86.1% benzoic acid and a 4.65 h-1 H2 generation efficiency (turnover frequency, TOF). Also, 1%Ni-DT is efficient for the photoredox coupling reaction of aliphatic and especially aromatic primary/secondary alcohols with water. A series of characterizations support that the doubled-reduced H2DT produced from the photoreaction plays a key role in water reduction to H2, which is accelerated by the doped Ni2+. In particular, it and the derived Ni3+ may construct a Z-type catalyst for water overall splitting, thereby hoisting the acid yield and H2 amount in the later stage of the photoreaction.
Collapse
Affiliation(s)
- Dan Zhao
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Jiekun Zhu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Ziqin Huang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Qian Wang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zhangzhen Liu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Chao Zhang
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yachun Liu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Zaihui Fu
- National & Local United Engineering Laboratory for New Petrochemical Materials & Fine Utilization of Resources, Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province and Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
3
|
Pylarinou M, Sakellis E, Tsipas P, Gardelis S, Psycharis V, Dimoulas A, Stergiopoulos T, Likodimos V. Light concentration and electron transfer in plasmonic-photonic Ag,Au modified Mo-BiVO 4 inverse opal photoelectrocatalysts. NANOSCALE 2024; 16:10366-10376. [PMID: 38739078 DOI: 10.1039/d3nr06407g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Plasmonic photocatalysis based on metal-semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal-semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic-photonic photoeletrocatalysts.
Collapse
Affiliation(s)
- Martha Pylarinou
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784, Greece.
| | - Elias Sakellis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784, Greece.
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Polychronis Tsipas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Spiros Gardelis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784, Greece.
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Athanasios Dimoulas
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Thomas Stergiopoulos
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", 15341 Agia Paraskevi, Athens, Greece
| | - Vlassis Likodimos
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784, Greece.
| |
Collapse
|
4
|
Wen L, Liu B. Kinetic pathways of sub-bandgap induced electron transfer in Ag/TiO 2 and the effect on isopropanol dehydrogenation under gaseous conditions. Phys Chem Chem Phys 2024; 26:11113-11125. [PMID: 38530657 DOI: 10.1039/d3cp05897b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Electron transfer and its kinetics play a major role in the photocatalysis of metal/semiconductor systems. Using in situ photoconductances, in situ photoabsorption, and photoinduced spectroscopic techniques, the present research aimed to gain a deep insight into electron transfer pathways and their kinetics for Ag/TiO2 systems under sub-bandgap light illumination and gaseous conditions. The results revealed that electrons generated in TiO2 can transfer to Ag nanoparticles at fast rates, and plasmon-generated electrons in Ag nanoparticles can also transfer to TiO2. However, it was found that plasmon-assisted hot electron transfer efficiency is much lower than the electron transition from the valence band to the conduction band of TiO2. Rather than plasmonic active spots, the results showed that Ag nanoparticles acted as co-catalyst sites bridging electron transfer to recombination in a methanol-containing N2 atmosphere. As a result, photocatalytic isopropanol dehydrogenation was decreased. Independent of Ag decorations, it was also indicated that isopropanol dehydrogenation mainly occurred over TiO2 surfaces; therefore, Ag nanoparticles did not increase photocatalytic activities. Our results may provide a different viewpoint on sub-bandgap light-induced Ag/TiO2 photocatalysis under gaseous conditions; this may also facilitate the understanding of the photocatalytic mechanism of metal/semiconductor systems.
Collapse
Affiliation(s)
- Liping Wen
- School of Environmental & Biological Engineering, Wuhan Technology and Business University, Wuhan city, Hubei province, 430065, P. R. China
| | - Baoshun Liu
- State Key laboratory of silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei Province, P. R. China.
| |
Collapse
|
5
|
Liu Y, Zhao Y, Li M, Liu Y. Annealing temperature effects on monolayer WS 2-veiled Ag nanoparticle array for surface catalytic reaction. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123137. [PMID: 37523849 DOI: 10.1016/j.saa.2023.123137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]
Abstract
Plasmonic-WS2 hybrids have attracted widespread interest for plasmon driven catalytic reactions. In this work, a Ag nanoparticles (NPs)/WS2 hybrid was fabricated by utilizing a one-step anodized Al template-assisted vacuum thermal evaporation technique and wet transfer method. To optimize the catalytic performance, the morphological evolution and corresponding changes in the catalytic properties of the Ag NPs/WS2 hybrid at different thermal annealing temperatures were investigated. It was found that the surface-enhanced Raman scattering (SERS) and catalytic activity of the hybrid were optimized by tuning the annealing temperature, with the optimal SERS and catalytic properties observed at 290 °C. These results may open new avenues for improving the efficiency and expanding the research field of plasmon-driven reactions.
Collapse
Affiliation(s)
- Yanqi Liu
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Engineering Research Center of Optical Instrument and System, The Ministry of Education, 516, Jungong Road, 200093 Shanghai, China
| | - Yan Zhao
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Key Laboratory of Trans-scale Laser Manufacturing Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China.
| | - Muhua Li
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yi Liu
- Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Engineering Research Center of Optical Instrument and System, The Ministry of Education, 516, Jungong Road, 200093 Shanghai, China; CAS Center for Excellence in Ultra-Intense Laser Science, Shanghai 201800, China
| |
Collapse
|
6
|
Jakimińska A, Spilarewicz K, Macyk W. New insights into the influence of plasmonic and non-plasmonic nanostructures on the photocatalytic activity of titanium dioxide. NANOSCALE ADVANCES 2023; 5:6038-6044. [PMID: 37941939 PMCID: PMC10628983 DOI: 10.1039/d3na00513e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
The results of this work cover the influence of plasmonic (gold) and non-plasmonic (palladium) nanostructures on the photocatalytic activity and redox properties of titanium dioxide. Materials decorated with gold, palladium and both materials were examined using photoelectrochemical and spectroelectrochemical methods to establish the changes introduced by the modifications and the possibility of the influence of the plasmonic effect from gold on their activity. Additionally, the photocatalytic tests of hydroxyl radical generation and hydrogen evolution were performed to confirm the activity of modified materials in oxidation and reduction reactions. It turned out that in the observed system the catalytic properties of palladium determine mostly the activity of modified materials, and the surface plasmon resonance of gold does not affect the activity. Moreover, the influence of the nanostructures on the activity, besides the catalytic performance, is the same for plasmonic and non-plasmonic ones and results in a change in the redox properties of the semiconductor.
Collapse
Affiliation(s)
- Anna Jakimińska
- Faculty of Chemistry, Jagiellonian University Ul. Gronostajowa 2 30-387 Kraków Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University Ul. S. Łojasiewicza 11 30-348 Kraków Poland
| | - Kaja Spilarewicz
- Faculty of Chemistry, Jagiellonian University Ul. Gronostajowa 2 30-387 Kraków Poland
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University Ul. Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
7
|
Shiraishi Y, Shimabukuro Y, Shima K, Ichikawa S, Tanaka S, Hirai T. Sunlight-Driven Generation of Hypochlorous Acid on Plasmonic Au/AgCl Catalysts in Aerated Chloride Solution. JACS AU 2023; 3:1403-1412. [PMID: 37234114 PMCID: PMC10207101 DOI: 10.1021/jacsau.3c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
HClO is typically manufactured from Cl2 gas generated by the electrochemical oxidation of Cl- using considerable electrical energy with a large concomitant emission of CO2. Therefore, renewable energy-driven HClO generation is desirable. In this study, we developed a strategy for stable HClO generation by sunlight irradiation of a plasmonic Au/AgCl photocatalyst in an aerated Cl- solution at ambient temperature. Plasmon-activated Au particles by visible light generate hot electrons, which are consumed by O2 reduction, and hot holes, which oxidize the lattice Cl- of AgCl adjacent to the Au particles. The formed Cl2 is disproportionated to afford HClO, and the removed lattice Cl- are compensated by the Cl- in the solution, thus promoting a catalytic HClO generation cycle. A solar-to-HClO conversion efficiency of ∼0.03% was achieved by simulated sunlight irradiation, where the resultant solution contained >38 ppm (>0.73 mM) of HClO and exhibited bactericidal and bleaching activities. The strategy based on the Cl- oxidation/compensation cycles will pave the way for sunlight-driven clean, sustainable HClO generation.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
- Innovative
Catalysis Science Division, Institute for Open and Transdisciplinary
Research Initiatives (ICS-OTRI), Osaka University, Suita 565-0871, Japan
| | - Yoshifumi Shimabukuro
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Kaho Shima
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Research
Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Shunsuke Tanaka
- Department
of Chemical, Energy, and Environmental Engineering, Kansai University, Suita 564-8680, Japan
| | - Takayuki Hirai
- Research
Center for Solar Energy Chemistry and Division of Chemical Engineering,
Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan
| |
Collapse
|
8
|
Eshete M, Li X, Yang L, Wang X, Zhang J, Xie L, Deng L, Zhang G, Jiang J. Charge Steering in Heterojunction Photocatalysis: General Principles, Design, Construction, and Challenges. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Mesfin Eshete
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
- Department of Industrial Chemistry College of Applied Sciences Nanotechnology Excellence Center Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Xiyu Li
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
| | - Li Yang
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
| | - Xijun Wang
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
| | - Jinxiao Zhang
- College of Chemistry and Bioengineering Guilin University of Technology 12 Jian'gan Road Guilin Guangxi 541004 P. R. China
| | - Liyan Xie
- A Key Laboratory of the- Ministry of Education for Advanced- Catalysis Materials Department of Chemistry Zhejiang Normal University Jinhua Zhejiang 321004 P. R. China
| | - Linjie Deng
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale School of Chemistry and Materials Science University of Science and Technology of China Jinzhai Road 96 Hefei Anhui 230026 P. R. China
| |
Collapse
|
9
|
Wang S, Yao J, Ou Z, Wang X, Long Y, Zhang J, Fang Z, Wang T, Ding T, Xu H. Plasmon-assisted nanophase engineering of titanium dioxide for improved performances in single-particle based sensing and photocatalysis. NANOSCALE 2022; 14:4705-4711. [PMID: 35265953 DOI: 10.1039/d1nr08247g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Titanium dioxide (TiO2) due to its large bandgap, has a very limited efficiency in utilizing sunlight for photocatalysis and photoanode applications. Sensitizing with metallic nanoparticles is one of the promising routes for resolving this issue but it requires thermal annealing and proper bandgap engineering to optimize the Schottky junctions. Here we use plasmonic nanoheating to locally anneal the TiO2 medium with a sub-nanometer (sub-nm) feature, which results in a nanophase transition from amorphous TiO2 to anatase and rutile with a gradient configuration. Such gradient nanocoatings of rutile/anatase establish a cascade hot electron transfer via a conduction band and defect states, which improves the surface enhanced Raman scattering (SERS) performance and photocatalytic efficiency over an order of magnitude. Unlike conventional global annealing, this nanoannealing strategy with plasmonic heating enables sub-nm control at the interface between the metal and semiconductors, and this strategy not only provides new opportunities for single particle SERS, but also shows significant implications for photocatalysis and hot-electron chemistry.
Collapse
Affiliation(s)
- Shuangshuang Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jiacheng Yao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zhenwei Ou
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Xujie Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Yinfeng Long
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Jing Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Ti Wang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Tao Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| | - Hongxing Xu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education of China, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
- School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
10
|
Li L, Yan L, Wu Z, Zhou X, Zhao X, Liu B. Plasmon-assisted facile selective gaseous isopropanol dehydrogenation over Ag nanocubes. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01454d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present research showed that the non-heating effect of plasmonic absorption caused a great increase in the acetone dehydrogenation over Ag nanocubes in high selectivity at low temperatures.
Collapse
Affiliation(s)
- Liuyang Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Ling Yan
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Zhizhou Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Xuedong Zhou
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| | - Baoshun Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan city, Hubei Province 430070, People's Republic of China
| |
Collapse
|
11
|
Lin X, Wei ZQ, Mo QL, Hou S, Xu S, Fu XY, Xiao FX. Electron tunneling through interim ligand layers towards photoredox selective organic transformation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Gao W, Kan C, Ke S, Yun Q, Zhu X, Zhu X. Au nanobipyramids with Pt decoration enveloped in TiO 2 nanoboxes for photocatalytic reactions. NANOSCALE ADVANCES 2021; 3:4226-4234. [PMID: 36132847 PMCID: PMC9418515 DOI: 10.1039/d1na00092f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/31/2021] [Indexed: 06/16/2023]
Abstract
Noble metal nanocrystals and core-shell nanocomposites have attracted particular interest due to their unique optical properties originating from surface plasmon resonance (SPR) and wide applications related to the SPR effect. In this work, we designed and fabricated a new Au-Pt@TiO2 nanocomposite, in which Au nanobipyramids (AuNBPs) decorated with platinum (Pt) clusters were enveloped in mesoporous TiO2 nanoboxes with nanocavities. AuNBPs provide strong SPR absorption and localized field enhancement restricted to the cavities of TiO2 nanoboxes. The Pt nanoclusters decorated on the surface of AuNBPs can effectively modulate the charge movement and energy transfer in the photocatalytic process. The enhanced electric field provides a local thermal effect for the photocatalytic reaction and promotes the injection process of hot electrons which facilitates carrier separation. The nanoboxes with nanocavities can effectively manage the usage of localized energy and provide space for reaction. Under the cooperative effects, the photocatalytic performance was remarkably improved along with durability and stability. For the AuNBP-Pt@TiO2 nanoboxes, the rhodamine-B degradation efficiency was ∼6.5 times that of AuNBP@TiO2 nanoboxes. The mechanism of the photocatalysis process was proposed based on experimental results and simulations. Benefiting from the excellent structure and properties, the obtained nanostructure is a promising candidate in the fields of pollutant degradation and chemical reaction catalysis.
Collapse
Affiliation(s)
- Weijian Gao
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Caixia Kan
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Key Laboratory of Aerospace Information Materials and Physics, Ministry of Industry and Information Technology Nanjing 210016 China
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education Nanjing 210016 China
| | - Shanlin Ke
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Qinru Yun
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Xingzhong Zhu
- College of Science, Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
| | - Xiaoguang Zhu
- Institute of Solid State Physics, Chinese Academy of Sciences Hefei 230031 China
| |
Collapse
|
13
|
Manuel AP, Shankar K. Hot Electrons in TiO 2-Noble Metal Nano-Heterojunctions: Fundamental Science and Applications in Photocatalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1249. [PMID: 34068571 PMCID: PMC8151081 DOI: 10.3390/nano11051249] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
Plasmonic photocatalysis enables innovation by harnessing photonic energy across a broad swathe of the solar spectrum to drive chemical reactions. This review provides a comprehensive summary of the latest developments and issues for advanced research in plasmonic hot electron driven photocatalytic technologies focusing on TiO2-noble metal nanoparticle heterojunctions. In-depth discussions on fundamental hot electron phenomena in plasmonic photocatalysis is the focal point of this review. We summarize hot electron dynamics, elaborate on techniques to probe and measure said phenomena, and provide perspective on potential applications-photocatalytic degradation of organic pollutants, CO2 photoreduction, and photoelectrochemical water splitting-that benefit from this technology. A contentious and hitherto unexplained phenomenon is the wavelength dependence of plasmonic photocatalysis. Many published reports on noble metal-metal oxide nanostructures show action spectra where quantum yields closely follow the absorption corresponding to higher energy interband transitions, while an equal number also show quantum efficiencies that follow the optical response corresponding to the localized surface plasmon resonance (LSPR). We have provided a working hypothesis for the first time to reconcile these contradictory results and explain why photocatalytic action in certain plasmonic systems is mediated by interband transitions and in others by hot electrons produced by the decay of particle plasmons.
Collapse
Affiliation(s)
- Ajay P. Manuel
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada;
- Future Energy Systems Research Institute, University of Alberta, Edmonton, AB T6G 1K4, Canada
| |
Collapse
|
14
|
Jeon B, Lee C, Park JY. Electronic Control of Hot Electron Transport Using Modified Schottky Barriers in Metal-Semiconductor Nanodiodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9252-9259. [PMID: 33587596 DOI: 10.1021/acsami.0c22108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Hot electron flux, generated by both incident light energy and the heat of the catalytic reaction, is a major element for energy conversion at the surface. Controlling hot electron flux in a reversible manner is extremely important for achieving high energy conversion efficiency. Here we demonstrate that hot electron flux can be controlled by tuning the Schottky barrier height. This phenomenon was monitored by using a Schottky nanodiode composed of a metal-semiconductor. The formation of a Schottky barrier at a nanometer scale inevitably accompanies an intrinsic image potential between the metal-semiconductor junction, which lowers the effective Schottky barrier height. When a reverse bias is applied to the nanodiode, an additional image potential participates in a secondary barrier lowering, leading to the increased hot electron flow. Besides, a decrease of tunneling width results in facile electron transport through the barrier. The increased hot electron flux by the chemical reaction (chemicurrent) and by the photon absorption (photocurrent) indicates hot electrons are captured more effectively by modifying the Schottky barrier. This study can shed light on a quantitative understanding and application of charge behavior at metal-semiconductor interfaces, in solar energy conversion, or in a catalytic reaction.
Collapse
Affiliation(s)
- Beomjoon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changhwan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
15
|
Yu Z, Gao Y, Sang L, Lei L. Probing into the double identity of Cu in bimetallic CuAg-TNTA hot-electron devices for photo-hydrogen conversion. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01072g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The dual identities of Cu are hot electron acceptor and electron generator in the bimetal/TiO2 hot-electron device.
Collapse
Affiliation(s)
- Zexin Yu
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, Beijing University of Technology, Beijing, 100124, China
| | - Yunlong Gao
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, Beijing University of Technology, Beijing, 100124, China
| | - Lixia Sang
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, Beijing University of Technology, Beijing, 100124, China
| | - Lei Lei
- MOE Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Beijing Key Laboratory of Heat Transfer and Energy Conversion, Beijing Municipality, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
16
|
Biutty MN, Zakia M, Yoo SI. Enhanced Photothermal Heating from
One‐dimensional
Assemblies of Au Nanoparticles Encapsulated by
TiO
2
Shell. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12106] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Maulida Zakia
- Department of Polymer Engineering Pukyong National University Busan 48547 Republic of Korea
| | - Seong Il Yoo
- Department of Polymer Engineering Pukyong National University Busan 48547 Republic of Korea
| |
Collapse
|
17
|
Dong SH, Wang AL, Zhao J, Tan SJ, Wang B. Interaction of CO and O 2 with supported Pt single-atoms on TiO 2(110). CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp1911198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Shi-hui Dong
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ao-lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jin Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shi-jing Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Ghobadi TGU, Ghobadi A, Soydan MC, Vishlaghi MB, Kaya S, Karadas F, Ozbay E. Strong Light-Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO 4 for Photoelectrochemical Water Splitting. CHEMSUSCHEM 2020; 13:2577-2588. [PMID: 32157799 DOI: 10.1002/cssc.202000294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Indexed: 05/07/2023]
Abstract
A facial and large-scale compatible fabrication route is established, affording a high-performance heterogeneous plasmonic-based photoelectrode for water oxidation that incorporates a CoFe-Prussian blue analog (PBA) structure as the water oxidation catalytic center. For this purpose, an angled deposition of gold (Au) was used to selectively coat the tips of the bismuth vanadate (BiVO4 ) nanostructures, yielding Au-capped BiVO4 (Au-BiVO4 ). The formation of multiple size/dimension Au capping islands provides strong light-matter interactions at nanoscale dimensions. These plasmonic particles not only enhance light absorption in the bulk BiVO4 (through the excitation of Fabry-Perot (FP) modes) but also contribute to photocurrent generation through the injection of sub-band-gap hot electrons. To substantiate the activity of the photoanodes, the interfacial electron dynamics are significantly improved by using a PBA water oxidation catalyst (WOC) resulting in an Au-BiVO4 /PBA assembly. At 1.23 V (vs. RHE), the photocurrent value for a bare BiVO4 photoanode was obtained as 190 μA cm-2 , whereas it was boosted to 295 μA cm-2 and 1800 μA cm-2 for Au-BiVO4 and Au-BiVO4 /PBA, respectively. Our results suggest that this simple and facial synthetic approach paves the way for plasmonic-based solar water splitting, in which a variety of common metals and semiconductors can be employed in conjunction with catalyst designs.
Collapse
Affiliation(s)
- T Gamze Ulusoy Ghobadi
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 6800, Ankara, Turkey
| | - Amir Ghobadi
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Mahmut Can Soydan
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
| | - Mahsa Barzgar Vishlaghi
- Chemistry Department, Koc University, Istanbul, 34450, Turkey
- TUPRAS Energy Center (KUTEM), Koc University, Istanbul, 34450, Turkey
| | - Sarp Kaya
- Chemistry Department, Koc University, Istanbul, 34450, Turkey
- TUPRAS Energy Center (KUTEM), Koc University, Istanbul, 34450, Turkey
| | - Ferdi Karadas
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 6800, Ankara, Turkey
- Department of Chemistry, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| | - Ekmel Ozbay
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, 6800, Ankara, Turkey
- Department of Electrical and Electronics Engineering, Bilkent University, 06800, Ankara, Turkey
- NANOTAM-Nanotechnology Research Center, Bilkent University, 06800, Ankara, Turkey
- Department of Physics, Faculty of Science, Bilkent University, 06800, Ankara, Turkey
| |
Collapse
|
19
|
Ma L, Chen YL, Yang DJ, Li HX, Ding SJ, Xiong L, Qin PL, Chen XB. Multi-interfacial plasmon coupling in multigap (Au/AgAu)@CdS core-shell hybrids for efficient photocatalytic hydrogen generation. NANOSCALE 2020; 12:4383-4392. [PMID: 32025686 DOI: 10.1039/c9nr09696e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmon coupling induced intense light absorption and near-field enhancement have vast potential for high-efficiency photocatalytic applications. Herein, (Au/AgAu)@CdS core-shell hybrids with strong multi-interfacial plasmon coupling were prepared through a convenient strategy for efficient photocatalytic hydrogen generation. Bimetallic Au/AgAu cores with an adjustable number of nanogaps (from one to four) were primarily synthesized by well-controlled multi-cycle galvanic replacement and overgrowth processes. Extinction tests and numerical simulations synergistically revealed that the multigap Au/AgAu hybrids possess a gap-dependent light absorption region and a local electric field owing to the multigap-induced multi-interfacial plasmon coupling. With these characteristics, hetero-photocatalysts prepared by further coating of CdS shells on multigap Au/AgAu cores exhibited a prominent gap-dependent photocatalytic hydrogen production activity from water splitting under light irradiation (λ > 420 nm). It is found that the hydrogen generation rates of multigap (Au/AgAu)@CdS have an exponential improvement compared with that of pure CdS as the number of nanogaps increases. In particular, four-gap (Au/AgAu)@CdS core-shell catalysts displayed the highest hydrogen generation rate, that is 96.1 and 47.2 times those of pure CdS and gapless Au@CdS core-shell hybrids. These improvements can be ascribed to the strong plasmon absorption and near-field enhancement induced by the multi-interfacial plasmon coupling, which can greatly improve the light-harvesting efficiency, offer more plasmonic energy, and boost the generation and separation of electron-hole pairs in the multigap catalysts.
Collapse
Affiliation(s)
- Liang Ma
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - You-Long Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Da-Jie Yang
- Beijing Computational Science Research Center, Beijing, 100193, P. R. China.
| | - Hai-Xia Li
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China.
| | - Lun Xiong
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Ping-Li Qin
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Xiang-Bai Chen
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| |
Collapse
|
20
|
Xu X, Yang N, Wang P, Wang S, Xiang Y, Zhang X, Ding X, Chen H. Highly Intensified Molecular Oxygen Activation on Bi@Bi 2MoO 6 via a Metallic Bi-Coordinated Facet-Dependent Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1867-1876. [PMID: 31840502 DOI: 10.1021/acsami.9b17623] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Construction of the semimetal/semiconductor composite interface is widely used to promote the O2 molecule adsorption and charge transfer for boosting solar-driven molecular oxygen activation (MOA). Herein, a Bi@Bi2MoO6 heterostructure is fabricated via a two-step wet chemical method as a typical photocatalyst to investigate the underlying mechanism of Bi-coordinated facet-dependent MOA under visible-light illumination. Density functional theory and systematical characterization methods reveal the distinct charge transfer and O2 activation processes on the surface of Bi nanoparticle-deposited Bi2MoO6 nanosheets with different facets exposed. By virtue of a particular and efficient [Bi2O2]2+ → Bi → MoO42- interfacial charge-transfer channel, Bi deposited on the (001) facet of Bi2MoO6 can observably intensify MOA, thereby giving birth to more generation of reactive oxygen species and endowing the Bi@Bi2MoO6 with excellent photocatalytic performance in sodium pentachlorophenate (NaPCP) removal. The decomposition pathway of NaPCP is also proposed based on the intermediate determination and mineralization analysis. This work provides deep insights into the mechanism of facet-dependent MOA over a semimetal-semiconductor system and also sheds light on designing effective molecular oxygen-activated interface for environmental remediation.
Collapse
|
21
|
Wang Q, Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem Rev 2019; 120:919-985. [PMID: 31393702 DOI: 10.1021/acs.chemrev.9b00201] [Citation(s) in RCA: 758] [Impact Index Per Article: 151.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solar-driven water splitting provides a leading approach to store the abundant yet intermittent solar energy and produce hydrogen as a clean and sustainable energy carrier. A straightforward route to light-driven water splitting is to apply self-supported particulate photocatalysts, which is expected to allow solar hydrogen to be competitive with fossil-fuel-derived hydrogen on a levelized cost basis. More importantly, the powder-based systems can lend themselves to making functional panels on a large scale while retaining the intrinsic activity of the photocatalyst. However, all attempts to generate hydrogen via powder-based solar water-splitting systems to date have unfortunately fallen short of the efficiency values required for practical applications. Photocatalysis on photocatalyst particles involves three sequential steps: (i) absorption of photons with higher energies than the bandgap of the photocatalysts, leading to the excitation of electron-hole pairs in the particles, (ii) charge separation and migration of these photoexcited carriers, and (iii) surface chemical reactions based on these carriers. In this review, we focus on the challenges of each step and summarize material design strategies to overcome the obstacles and limitations. This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemical System Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Kazunari Domen
- Department of Chemical System Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.,Center for Energy & Environmental Science , Shinshu University , 4-17-1 Wakasato , Nagano-shi , Nagano 380-8553 , Japan
| |
Collapse
|
22
|
Progress in the Utilization Efficiency Improvement of Hot Carriers in Plasmon-Mediated Heterostructure Photocatalysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of plasmon-induced hot carriers (HCs) enables the possibility of applying semiconductors with wide band gaps to visible light catalysis, which becomes an emerging research field in environmental protections. Continued efforts have been made for an efficient heterostructure photocatalytic process with controllable behaviors of HCs. Recently, it has been discovered that the improvement of the utilization of HCs by band engineering is a promising strategy for an enhanced catalytic process, and relevant works have emerged for such a purpose. In this review, we give an overview of the recent progress relating to optimized methods for designing efficient photocatalysts by considering the intrinsic essence of HCs. First, the basic mechanism of the heterostructure photocatalytic process is discussed, including the formation of the Schokkty barrier and the process of photocatalysis. Then, the latest studies for improving the utilization efficiency of HCs in two aspects, the generation and extraction of HCs, are introduced. Based on this, the applications of such heterostructure photocatalysts, such as water/air treatments and organic transformations, are briefly illustrated. Finally, we conclude by discussing the remaining bottlenecks and future directions in this field.
Collapse
|
23
|
Shiraishi Y, Imai J, Yasumoto N, Sakamoto H, Tanaka S, Ichikawa S, Hirai T. Doping of Nb 5+ Species at the Au-TiO 2 Interface for Plasmonic Photocatalysis Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5455-5462. [PMID: 30916561 DOI: 10.1021/acs.langmuir.8b04075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Au nanoparticles loaded on semiconductor TiO2 absorb visible light due to their surface plasmon resonance (SPR) and inject the photogenerated hot electrons (ehot-) into the conduction band of TiO2. The separated charges promote oxidation and reduction reactions. The step that determines the rate of the plasmonic photocatalysis on the Au/TiO2 system is the ehot- injection through the Schottky barrier created at the Au-TiO2 interface. In the present work, niobium (Nb5+) oxide species were doped at the Au-TiO2 interface by loading Nb5+ onto the TiO2 surface followed by deposition of Au particles (2 wt % of TiO2). Visible light irradiation of the Au/Nb5+/TiO2 catalysts promotes aerobic oxidation of alcohols with much higher efficiency than that of undoped Au/TiO2. Lewis acidity of the Nb5+ species located at the interface cancels the negative charges of Au and creates a barrier with a narrower depletion layer, promoting tunneling ehot- injection. Efficiency of the ehot- injection depends on the amount of Nb5+ doped. Loading small amounts of Nb5+ (∼0.1 wt % of TiO2) creates mononuclear NbO4 species and shows large activity enhancement. In contrast, loading larger amounts of Nb5+ creates aggregated polynuclear Nb2O5 species. They decrease the electron density of Au particles and weaken their SPR absorption. This suppresses the ehot- generation on the Au particles and decreases the activity of plasmonic photocatalysis.
Collapse
Affiliation(s)
| | | | | | | | - Shunsuke Tanaka
- Department of Chemical, Energy, and Environmental Engineering , Kansai University , Suita 564-8680 , Japan
| | | | | |
Collapse
|
24
|
Bardey S, Bonduelle-Skrzypczak A, Fécant A, Cui Z, Colbeau-Justin C, Caps V, Keller V. Plasmonic photocatalysis applied to solar fuels. Faraday Discuss 2019; 214:417-439. [DOI: 10.1039/c8fd00144h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We show the impact of structural, chemical and interfacial features of gold–titania composites on solar and visible photocatalytic gas phase reduction of CO2 and the specificities of the hot electron-based process.
Collapse
Affiliation(s)
- Steven Bardey
- Institut de Chimie et des Procédés pour l’Energie, l’Environnement et la Santé (ICPEES)
- UMR7515
- 67087 Strasbourg
- France
- IFP Energies Nouvelles (IFPEN)
| | | | | | - Zhenpeng Cui
- Laboratoire de Chimie Physique
- CNRS UMR 8000
- Univ. Paris-Sud
- Université Paris-Saclay
- 91405 Orsay
| | | | - Valérie Caps
- Institut de Chimie et des Procédés pour l’Energie, l’Environnement et la Santé (ICPEES)
- UMR7515
- 67087 Strasbourg
- France
| | - Valérie Keller
- Institut de Chimie et des Procédés pour l’Energie, l’Environnement et la Santé (ICPEES)
- UMR7515
- 67087 Strasbourg
- France
| |
Collapse
|
25
|
Hassan QU, Yang D, Zhou JP, Lei YX, Wang JZ, Awan SU. Novel Single-Crystal Hollandite K1.46Fe0.8Ti7.2O16 Microrods: Synthesis, Double Absorption, and Magnetism. Inorg Chem 2018; 57:15187-15197. [PMID: 30500175 DOI: 10.1021/acs.inorgchem.8b02481] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qadeer-Ul Hassan
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Dou Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Jian-Ping Zhou
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Yu-Xi Lei
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Jing-Zhou Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, People’s Republic of China
| | - Saif Ullah Awan
- Department of Electrical Engineering, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| |
Collapse
|
26
|
Siemer N, Lüken A, Zalibera M, Frenzel J, Muñoz-Santiburcio D, Savitsky A, Lubitz W, Muhler M, Marx D, Strunk J. Atomic-Scale Explanation of O2 Activation at the Au–TiO2 Interface. J Am Chem Soc 2018; 140:18082-18092. [DOI: 10.1021/jacs.8b10929] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Niklas Siemer
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Alexander Lüken
- Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Michal Zalibera
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
- Institute of Physical Chemistry and Chemical Physics, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, SK-812 37 Bratislava, Slovakia
| | - Johannes Frenzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | - Anton Savitsky
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, 45470 Mülheim/Ruhr, Germany
| | - Martin Muhler
- Lehrstuhl für Technische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jennifer Strunk
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, 18059 Rostock, Germany
| |
Collapse
|
27
|
Liu B, Lu X, Qiao Z, Song L, Cheng Q, Zhang J, Zhang A, Huang Y, Chen T. pH and Temperature Dual-Responsive Plasmonic Switches of Gold Nanoparticle Monolayer Film for Multiple Anticounterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13047-13056. [PMID: 30300548 DOI: 10.1021/acs.langmuir.8b02989] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) gold nanoparticle (Au NP) monolayer film possesses a lot of fascinating peculiarities, and has shown promising applications in photoelectrical devices, catalysis, spectroscopy, sensors, and anticounterfeiting. Because of the localized surface plasmon resonance (LSPR) property predetermined by the natural structure of metal nanoparticles, it is usually difficult to realize the reversible LSPR transition of 2D film. In this work, we report on the fabrication of a large-area free-standing Au NP monolayer film with dual-responsive switchable plasmonic property using a pH- or thermal-responsive dendronized copolymer as a stimuli-sensitive linker. In this system, an oligoethylene-glycol-based (OEG-based) dendronized copolymer (named PG1A) with pH or temperature sensitivity was first modified onto the surface of a Au NP. Then, polyethylene glycol dibenzyl aldehyde (PEG-DA) was introduced to interact with the amino moieties from PG1A before the process of oil-water interfacial self-assembly of NPs, resulting in an elastic, robust, pH- or temperature-sensitive interpenetrating network among Au NPs in monolayer films. In addition, the film could exhibit reversibly plasmonic shifts of about 77 nm and inherent color changes through varying temperature or pH. The obtained free-standing monolayer film also shows an excellent transferable property, which can be easily transferred onto substrates such as plastic molds, PDMS, copper grids, and silicon wafers. In virtue of these peculiarities of the free-standing property, special plasmonic signal, and homologous macroscopic color, the transferred film was primely applied to an anticounterfeiting security label with clear color change at the designed spots, providing a new avenue to plasmonic nanodevices with various applications.
Collapse
Affiliation(s)
- Baoqing Liu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Xuefei Lu
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
| | - Ze Qiao
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Liping Song
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Qian Cheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Jiawei Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Afang Zhang
- Department of Polymer Materials, College of Materials Science and Engineering , Shanghai University , Nanchen Road 333 , Shanghai 200444 , China
| | - Youju Huang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| | - Tao Chen
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province , Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences , Ningbo 315201 , China
- University of Chinese Academy of Sciences , 19A Yuquan Road , Beijing 100049 , China
| |
Collapse
|
28
|
Xiong Y, Zou L, Pan Q, Zhou Y, Zou Z, Yang H. Photo-electro synergistic catalysis: Can Pd be active for methanol electrooxidation in acidic medium? Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Karbalaei Akbari M, Hai Z, Wei Z, Detavernier C, Solano E, Verpoort F, Zhuiykov S. ALD-Developed Plasmonic Two-Dimensional Au-WO 3-TiO 2 Heterojunction Architectonics for Design of Photovoltaic Devices. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10304-10314. [PMID: 29509409 DOI: 10.1021/acsami.7b17508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Electrically responsive plasmonic devices, which benefit from the privilege of surface plasmon excited hot carries, have supported fascinating applications in the visible-light-assisted technologies. The properties of plasmonic devices can be tuned by controlling charge transfer. It can be attained by intentional architecturing of the metal-semiconductor (MS) interfaces. In this study, the wafer-scaled fabrication of two-dimensional (2D) TiO2 semiconductors on the granular Au metal substrate is achieved using the atomic layer deposition (ALD) technique. The ALD-developed 2D MS heterojunctions exhibited substantial enhancement of the photoresponsivity and demonstrated the improvement of response time for 2D Au-TiO2-based plasmonic devices under visible light illumination. To circumvent the undesired dark current in the plasmonic devices, a 2D WO3 nanofilm (∼0.7 nm) was employed as the intermediate layer on the MS interface to develop the metal-insulator-semiconductor (MIS) 2D heterostructure. As a result, 13.4% improvement of the external quantum efficiency was obtained for fabricated 2D Au-WO3-TiO2 heterojunctions. The impedancometry measurements confirmed the modulation of charge transfer at the 2D MS interface using MIS architectonics. Broadband photoresponsivity from the UV to the visible light region was observed for Au-TiO2 and Au-WO3-TiO2 heterostructures, whereas near-infrared responsivity was not observed. Consequently, considering the versatile nature of the ALD technique, this approach can facilitate the architecturing and design of novel 2D MS and MIS heterojunctions for efficient plasmonic devices.
Collapse
Affiliation(s)
- Mohammad Karbalaei Akbari
- Faculty of Bioscience Engineering , Ghent University Global Campus , 119 Songdomunhwa-ro , Yeonsu-gu, 21985 Incheon , South Korea
| | - Zhenyin Hai
- Faculty of Bioscience Engineering , Ghent University Global Campus , 119 Songdomunhwa-ro , Yeonsu-gu, 21985 Incheon , South Korea
| | - Zihan Wei
- Faculty of Bioscience Engineering , Ghent University Global Campus , 119 Songdomunhwa-ro , Yeonsu-gu, 21985 Incheon , South Korea
| | - Christophe Detavernier
- Department of Solid State Sciences , Ghent University , Krijgslaan 281/S1 , 9000 Ghent , Belgium
| | - Eduardo Solano
- Department of Solid State Sciences , Ghent University , Krijgslaan 281/S1 , 9000 Ghent , Belgium
- NCD Beamline , ALBA Synchrotron Light Source , Carrer de la Llum, 2-26 , 08290 Cerdanyola del Vallès , Spain
| | - Francis Verpoort
- Faculty of Bioscience Engineering , Ghent University Global Campus , 119 Songdomunhwa-ro , Yeonsu-gu, 21985 Incheon , South Korea
- National Research Tomsk Polytechnic University , Lenin Avenue 30 , 634050 Tomsk , Russian Federation
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center for Chemical and Material Engineering , Wuhan University of Technology , 430070 Wuhan , P. R. China
| | - Serge Zhuiykov
- Faculty of Bioscience Engineering , Ghent University Global Campus , 119 Songdomunhwa-ro , Yeonsu-gu, 21985 Incheon , South Korea
| |
Collapse
|
30
|
Lee M, Arras R, Takahashi R, Warot-Fonrose B, Daimon H, Casanove MJ, Lippmaa M. Noble Metal Nanocluster Formation in Epitaxial Perovskite Thin Films. ACS OMEGA 2018; 3:2169-2173. [PMID: 31458521 PMCID: PMC6641535 DOI: 10.1021/acsomega.7b02071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/13/2018] [Indexed: 06/10/2023]
Abstract
We studied the synthesis of nanocomposite materials consisting of noble metal clusters embedded in an oxide semiconductor matrix. The embedded nanostructures form in a simple self-organized single-step growth process. The primary interest is in developing materials for photo-electrochemical energy conversion where spatially inhomogeneous band structures can enhance photogenerated charge separation and carrier extraction from a semiconductor. We show that spontaneous segregation of metallic Ir occurs during the initial growth of an Ir:SrTiO3 thin film. Cross-sectional transmission electron microscopy suggests that the nanoscale Ir clusters are epitaxial with the host lattice, and their presence is not detectable by surface morphology measurements.
Collapse
Affiliation(s)
- Mihee Lee
- Graduate
School of Materials Science, Nara Institute
of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Centre
d’Elaboration des Matériaux et d’Etudes Structurales (CEMES),
CNRS UPR 8011 and Université de Toulouse, 29 rue Jeanne Marvig, Toulouse F-31055, France
| | - Rémi Arras
- Centre
d’Elaboration des Matériaux et d’Etudes Structurales (CEMES),
CNRS UPR 8011 and Université de Toulouse, 29 rue Jeanne Marvig, Toulouse F-31055, France
| | - Ryota Takahashi
- Institute
for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan
| | - Bénédicte Warot-Fonrose
- Centre
d’Elaboration des Matériaux et d’Etudes Structurales (CEMES),
CNRS UPR 8011 and Université de Toulouse, 29 rue Jeanne Marvig, Toulouse F-31055, France
| | - Hiroshi Daimon
- Graduate
School of Materials Science, Nara Institute
of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Marie-José Casanove
- Centre
d’Elaboration des Matériaux et d’Etudes Structurales (CEMES),
CNRS UPR 8011 and Université de Toulouse, 29 rue Jeanne Marvig, Toulouse F-31055, France
| | - Mikk Lippmaa
- Institute
for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8581, Japan
| |
Collapse
|
31
|
Xue J, Elbanna O, Kim S, Fujitsuka M, Majima T. Defect state-induced efficient hot electron transfer in Au nanoparticles/reduced TiO2 mesocrystal photocatalysts. Chem Commun (Camb) 2018; 54:6052-6055. [DOI: 10.1039/c8cc02853b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Defect states assist hot electrons with energies lower than the Schottky barrier in transferring from Au nanoparticles to TiO2.
Collapse
Affiliation(s)
- Jiawei Xue
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047
- Japan
| | - Ossama Elbanna
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047
- Japan
| | - Sooyeon Kim
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047
- Japan
| | - Mamoru Fujitsuka
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047
- Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN)
- Osaka University
- Osaka 567-0047
- Japan
| |
Collapse
|
32
|
Khore SK, Kadam SR, Naik SD, Kale BB, Sonawane RS. Solar light active plasmonic Au@TiO2 nanocomposite with superior photocatalytic performance for H2 production and pollutant degradation. NEW J CHEM 2018. [DOI: 10.1039/c8nj01410h] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spherically shaped plasmonic Au nanoparticles (NPs) of size 10 nm (±4 nm) have been decorated on TiO2 NPs for the synthesis of Au@TiO2 composites via an aqueous sol–gel method.
Collapse
Affiliation(s)
- Supriya K. Khore
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Sunil R. Kadam
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
- Centre for Advanced Studies in Materials Science
| | - Sonali D. Naik
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Bharat B. Kale
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| | - Ravindra S. Sonawane
- Centre for Materials for Electronic Technology
- Government of India
- Pune 411008
- India
| |
Collapse
|
33
|
Jiang ZY, Zhao ZY. Comparison studies of interfacial energetic and electronic properties of bimetallic AuCu/TiO2 hetero-structures from DFT calculations. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00828g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modification in which an Au co-catalyst is replaced with a bimetallic AuCu co-catalyst to build a TiO2-based composite photocatalyst not only enhances the interaction of the metal layer with the TiO2 substrate, but also promotes electron transfer and charge separation across the interface.
Collapse
Affiliation(s)
- Zong-You Jiang
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- P. R. China
| | - Zong-Yan Zhao
- Faculty of Materials Science and Engineering
- Kunming University of Science and Technology
- Kunming 650093
- P. R. China
| |
Collapse
|
34
|
Shiraishi Y, Tanaka H, Sakamoto H, Hayashi N, Kofuji Y, Ichikawa S, Hirai T. Synthesis of Au Nanoparticles with Benzoic Acid as Reductant and Surface Stabilizer Promoted Solely by UV Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13797-13804. [PMID: 29119792 DOI: 10.1021/acs.langmuir.7b03192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Photoreductive synthesis of colloidal gold nanoparticles (AuNPs) from Au3+ is one important process for nanoprocessing. Several methods have been proposed; however, there is no report of a method capable of producing AuNPs with inexpensive reagents acting as both reductant and surface stabilizer, promoted solely under photoirradiation. We found that UV irradiation of water with Au3+ and benzoic acid successfully produces monodispersed AuNPs, where thermal reduction does not occur in the dark condition even at elevated temperatures. Photoexcitation of a benzoate-Au3+ complex reduces Au3+ while oxidizing benzoic acid. The benzoic acid molecules are adsorbed on the AuNPs and act as surface stabilizers. Change in light intensity and benzoic acid amount successfully creates AuNPs with controllable sizes. The obtained AuNPs can easily be redispersed in an organic solvent or loaded onto a solid support by simple treatments.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST) , Saitama 332-0012, Japan
| | - Haruki Tanaka
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Hirokatsu Sakamoto
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Naoto Hayashi
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Yusuke Kofuji
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| | - Satoshi Ichikawa
- Institute for NanoScience Design, Osaka University , Toyonaka 560-8531, Japan
| | - Takayuki Hirai
- Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University , Toyonaka 560-8531, Japan
| |
Collapse
|