1
|
Marelli M, Perez Schmidt P, Nguyen XT, Pitzalis E, Poggini L, Ragona L, Pagano K, Aronica LA, Polito L, Evangelisti C. Photo-induced microfluidic production of ultrasmall platinum nanoparticles. NANOSCALE 2024; 16:19669-19674. [PMID: 39385674 DOI: 10.1039/d4nr02971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We describe here the synthesis of ultrasmall Pt nanoparticles (NPs) obtained by a robust and reliable protocol using UV-Vis photoreduction of a platinum salt precursor, under continuous flow conditions. These ligand-free Pt NPs were rapidly dispersed onto a solid support or stabilized towards aggregation as a colloidal solution by the addition of an appropriate ligand in the reaction mixture. The proposed protocol exploits a microfluidic platform where the Pt4+ precursor is photo-reduced to small Pt0 NPs (1.3 nm) at room temperature in the presence of ethanol, without any additional reducing agent. We apply the protocol to prepare Pt NPs highly dispersed on carbon support (Pt/C) proven to be a very efficient heterogeneous catalyst for both the hydrosilylation of terminal alkynes and hydrogenation of nitroaromatic compounds, selected as model reactions. Furthermore, we exploit the versatility of this microfluidic approach to produce stabilized aqueous/ethanol colloidal solutions of Pt NPs, employing a ligand of choice (e.g., PVP or a thiol-ligand). These colloids offer long-term storage and further ligand modification. We showcase the synthesis of biocompatible glycol-stabilized Pt nanoparticles as an exemplary application.
Collapse
Affiliation(s)
- Marcello Marelli
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Patricia Perez Schmidt
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Xuan Trung Nguyen
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Emanuela Pitzalis
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| | - Lorenzo Poggini
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Department of Chemistry "U. Schiff" - DICUS - and INSTM Research Unit, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, FI, Italy
| | - Laura Ragona
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133 Milano, Italy
| | - Katiuscia Pagano
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Corti 12, 20133 Milano, Italy
| | - Laura Antonella Aronica
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Laura Polito
- CNR-SCITEC, Institute of Science and Chemical Technologies "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy.
| | - Claudio Evangelisti
- CNR-ICCOM, Institute of Chemistry of OrganoMetallic Compounds, Via G. Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Mehta D, Singh S. Nanozymes and their biomolecular conjugates as next-generation antibacterial agents: A comprehensive review. Int J Biol Macromol 2024; 278:134582. [PMID: 39122068 DOI: 10.1016/j.ijbiomac.2024.134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Antimicrobial resistance (AMR), the ability of bacterial species to develop resistance against exposed antibiotics, has gained immense global attention in the past few years. Bacterial infections are serious health concerns affecting millions of people annually worldwide. Therefore, developing novel antibacterial agents that are highly effective and avoid resistance development is imperative. Among various strategies, recent developments in nanozyme technology have shown promising results as antibacterials in several antibiotic-sensitive and resistant bacterial species. Nanozymes offer several advantages over corresponding natural enzymes, such as inexpensive, stable, multifunctional, tunable catalytic properties, etc. Although the use of nanozymes as antibacterial agents has provided promising results, the specific biomolecule-conjugated nanozymes have shown further improvement in catalytic performance and associated antibacterial efficacy. The exclusive design of functional nanozymes with theranostic potential is found to simultaneously inhibit the growth and image of AMR bacterial species. This review comprehensively summarizes the history of nanozymes, their classification, biomolecules conjugated nanozyme, and their mechanism of enzyme-mimetic activity and associated antibacterial activity in antibiotic-sensitive and resistant species. The futureneeds to effectively engineer the existing or new nanozymes to curb AMR have also been discussed.
Collapse
Affiliation(s)
- Divya Mehta
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India
| | - Sanjay Singh
- National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad 500032, Telangana, India; Regional Centre for Biotechnology (RCB), Faridabad 121001, Haryana, India.
| |
Collapse
|
3
|
Yerpude ST, Potbhare AK, Bhilkar P, Rai AR, Singh RP, Abdala AA, Adhikari R, Sharma R, Chaudhary RG. Biomedical,clinical and environmental applications of platinum-based nanohybrids: An updated review. ENVIRONMENTAL RESEARCH 2023; 231:116148. [PMID: 37211181 DOI: 10.1016/j.envres.2023.116148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/25/2023] [Accepted: 05/13/2023] [Indexed: 05/23/2023]
Abstract
Platinum nanoparticles (Pt NPs) have numerous applications in various sectors, including pharmacology, nanomedicine, cancer therapy, radiotherapy, biotechnology and environment mitigation like removal of toxic metals from wastewater, photocatalytic degradation of toxic compounds, adsorption, and water splitting. The multifaceted applications of Pt NPs because of their ultra-fine structures, large surface area, tuned porosity, coordination-binding, and excellent physiochemical properties. The various types of nanohybrids (NHs) of Pt NPs can be fabricated by doping with different metal/metal oxide/polymer-based materials. There are several methods to synthesize platinum-based NHs, but biological processes are admirable because of green, economical, sustainable, and non-toxic. Due to the robust physicochemical and biological characteristics of platinum NPs, they are widely employed as nanocatalyst, antioxidant, antipathogenic, and anticancer agents. Indeed, Pt-based NHs are the subject of keen interest and substantial research area for biomedical and clinical applications. Hence, this review systematically studies antimicrobial, biological, and environmental applications of platinum and platinum-based NHs, predominantly for treating cancer and photo-thermal therapy. Applications of Pt NPs in nanomedicine and nano-diagnosis are also highlighted. Pt NPs-related nanotoxicity and the potential and opportunity for future nano-therapeutics based on Pt NPs are also discussed.
Collapse
Affiliation(s)
- Sachin T Yerpude
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Ajay K Potbhare
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Pavan Bhilkar
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Alok R Rai
- Post Graduate Department of Microbiology, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| | - Raghvendra P Singh
- Department of Research & Development, Azoth Biotech Pvt. Ltd., Noida, 201306, India.
| | - Ahmed A Abdala
- Chemical Engineering Program, Texas A and M University at Qatar POB, 23784, Doha, Qatar.
| | - Rameshwar Adhikari
- Central Department of Chemistry and Research Centre for Applied Science and Technology (RECAST), Tribhuvan University, Kathmandu, Nepal.
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Science, Banaras Hindu University, Varanasi, India.
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, Seth Kesarimal Porwal College of Arts and Science and Commerce, Kamptee, 441001, India.
| |
Collapse
|
4
|
Migliaccio V, Blal N, De Girolamo M, Mastronardi V, Catalano F, Di Gregorio I, Lionetti L, Pompa PP, Guarnieri D. Inter-Organelle Contact Sites Mediate the Intracellular Antioxidant Activity of Platinum Nanozymes: A New Perspective on Cell-Nanoparticle Interaction and Signaling. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3882-3893. [PMID: 36629473 PMCID: PMC9880958 DOI: 10.1021/acsami.2c22375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/30/2022] [Indexed: 05/25/2023]
Abstract
The catalytic and antioxidant properties of platinum nanoparticles (PtNPs) make them promising candidates for several applications in nanomedicine. However, an open issue, still shared among most nanomaterials, is the understanding on how internalized PtNPs, which are confined within endo-lysosomal compartments, can exert their activities. To address this problem, here we study the protective effect of 5 nm PtNPs on a human hepatic (HepG2) cell line exposed to dichlorodiphenylethylene (DDE) as a model of oxidative stress. Our results indicate that PtNPs are very efficient to reduce DDE-induced damage in HepG2 cells, in an extent that depends on DDE dose. PtNPs can contrast the unbalance of mitochondrial dynamics induced by DDE and increase the expression of the SOD2 mitochondrial enzyme that recovers cells from oxidative stress. Interestingly, in cells treated with PtNPs─alone or in combination with DDE─mitochondria form contact sites with a rough endoplasmic reticulum and endo-lysosomes containing nanoparticles. These findings indicate that the protective capability of PtNPs, through their intrinsic antioxidant properties and modulating mitochondrial functionality, is mediated by an inter-organelle crosstalk. This study sheds new light about the protective action mechanisms of PtNPs and discloses a novel nano-biointeraction mechanism at the intracellular level, modulated by inter-organelle communication and signaling.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Naym Blal
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Micaela De Girolamo
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Federico Catalano
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Ilaria Di Gregorio
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Lillà Lionetti
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia (IIT), Via Morego 30, Genova 16163, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “Adolfo Zambelli”, Università degli Studi di Salerno, Fisciano, Salerno 84084, Italy
| |
Collapse
|
5
|
Gutiérrez de la Rosa SY, Muñiz Diaz R, Villalobos Gutiérrez PT, Patakfalvi R, Gutiérrez Coronado Ó. Functionalized Platinum Nanoparticles with Biomedical Applications. Int J Mol Sci 2022; 23:9404. [PMID: 36012670 PMCID: PMC9409011 DOI: 10.3390/ijms23169404] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 12/21/2022] Open
Abstract
Functionalized platinum nanoparticles have been of considerable interest in recent research due to their properties and applications, among which they stand out as therapeutic agents. The functionalization of the surfaces of nanoparticles can overcome the limits of medicine by increasing selectivity and thereby reducing the side effects of conventional drugs. With the constant development of nanotechnology in the biomedical field, functionalized platinum nanoparticles have been used to diagnose and treat diseases such as cancer and infections caused by pathogens. This review reports on physical, chemical, and biological methods of obtaining platinum nanoparticles and the advantages and disadvantages of their synthesis. Additionally, applications in the biomedical field that can be utilized once the surfaces of nanoparticles have been functionalized with different bioactive molecules are discussed, among which antibodies, biodegradable polymers, and biomolecules stand out.
Collapse
Affiliation(s)
| | | | | | | | - Óscar Gutiérrez Coronado
- Centro Universitario de los Lagos, Universidad de Guadalajara, Lagos de Moreno 47460, Jalisco, Mexico
| |
Collapse
|
6
|
Mastronardi V, Magliocca E, Gullon JS, Brescia R, Pompa PP, Miller TS, Moglianetti M. Ultrasmall, Coating-Free, Pyramidal Platinum Nanoparticles for High Stability Fuel Cell Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36570-36581. [PMID: 35920442 PMCID: PMC9975930 DOI: 10.1021/acsami.2c07738] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Ultrasmall (<5 nm diameter) noble metal nanoparticles with a high fraction of {111} surface domains are of fundamental and practical interest as electrocatalysts, especially in fuel cells; the nanomaterial surface structure dictates its catalytic properties, including kinetics and stability. However, the synthesis of size-controlled, pure Pt-shaped nanocatalysts has remained a formidable chemical challenge. There is an urgent need for an industrially scalable method for their production. Here, a one-step approach is presented for the preparation of single-crystal pyramidal nanocatalysts with a high fraction of {111} surface domains and a diameter below 4 nm. This is achieved by harnessing the shape-directing effect of citrate molecules, together with the strict control of oxidative etching while avoiding polymers, surfactants, and organic solvents. These catalysts exhibit significantly enhanced durability while, providing equivalent current and power densities to highly optimized commercial Pt/C catalysts at the beginning of life (BOL). This is even the case when they are tested in full polymer electrolyte membrane fuel cells (PEMFCs), as opposed to rotating disk experiments that artificially enhance electrode kinetics and minimize degradation. This demonstrates that the {111} surface domains in pyramidal Pt nanoparticles (as opposed to spherical Pt nanoparticles) can improve aggregation/corrosion resistance in realistic fuel cell conditions, leading to a significant improvement in membrane electrode assembly (MEA) stability and lifetime.
Collapse
Affiliation(s)
- Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, 16146 Genova, Italy
| | - Emanuele Magliocca
- Electrochemical
Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE London, U.K.
| | - José Solla Gullon
- Institute
of Electrochemistry, University of Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Thomas S. Miller
- Electrochemical
Innovation Laboratory, Department of Chemical Engineering, University College London, Torrington Place, WC1E 7JE London, U.K.
| | - Mauro Moglianetti
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
7
|
Mastronardi V, Kim J, Veronesi M, Pomili T, Berti F, Udayan G, Brescia R, Diercks JS, Herranz J, Bandiera T, Fichthorn KA, Pompa PP, Moglianetti M. Green chemistry and first-principles theory enhance catalysis: synthesis and 6-fold catalytic activity increase of sub-5 nm Pd and Pt@Pd nanocubes. NANOSCALE 2022; 14:10155-10168. [PMID: 35796244 DOI: 10.1039/d2nr02278h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Synthesizing metal nanoparticles with fine control of size, shape and surface properties is of high interest for applications such as catalysis, nanoplasmonics, and fuel cells. In this contribution, we demonstrate that the citrate-coated surfaces of palladium (Pd) and platinum (Pt)@Pd nanocubes with a lateral length <5 nm and low polydispersity in shape achieve superior catalytic properties. The synthesis achieves great control of the nanoparticle's physico-chemical properties by using only biogenic reagents and bromide ions in water while being fast, easy to perform and scalable. The role of the seed morphology is pivotal as Pt single crystal seeds are necessary to achieve low polydispersity in shape and prevent nanorods formation. In addition, electrochemical measurements demonstrate the abundancy of Pd{100} surface facets at a macroscopic level, in line with information inferred from TEM analysis. Quantum density functional theory calculations indicate that the kinetic origin of cubic Pd nanoshapes is facet-selective Pd reduction/deposition on Pd(111). Moreover, we underline both from an experimental and theoretical point of view that bromide alone does not induce nanocube formation without the synergy with formic acid. The superior performance of these highly controlled nanoparticles to perform the catalytic reduction of 4-nitrophenol was proved: polymer-free and surfactant-free Pd nanocubes outperform state-of-the-art materials by a factor >6 and a commercial Pd/C catalyst by more than one order of magnitude.
Collapse
Affiliation(s)
- Valentina Mastronardi
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Junseok Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Marina Veronesi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
- Structural Biophysics and Translational Pharmacology Facility, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Tania Pomili
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Francesco Berti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Gayatri Udayan
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
- Center for Bio-Molecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| | - Rosaria Brescia
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Justus S Diercks
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Juan Herranz
- Electrochemistry Laboratory, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Kristen A Fichthorn
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Center for Bio-Molecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (Lecce), Italy
| |
Collapse
|
8
|
Franco-Ulloa S, Guarnieri D, Riccardi L, Pompa PP, De Vivo M. Association Mechanism of Peptide-Coated Metal Nanoparticles with Model Membranes: A Coarse-Grained Study. J Chem Theory Comput 2021; 17:4512-4523. [PMID: 34077229 PMCID: PMC8280734 DOI: 10.1021/acs.jctc.1c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 11/28/2022]
Abstract
Functionalized metal nanoparticles (NPs) hold great promise as innovative tools in nanomedicine. However, one of the main challenges is how to optimize their association with the cell membrane, which is critical for their effective delivery. Recent findings show high cellular uptake rates for NPs coated with the polycationic cell-penetrating peptide gH625-644 (gH), although the underlying internalization mechanism is poorly understood. Here, we use extended coarse-grained simulations and free energy calculations to study systems that simultaneously include metal NPs, peptides, lipids, and sterols. In particular, we investigate the first encounter between multicomponent model membranes and 2.5 nm metal NPs coated with gH (gHNPs), based on the evidence from scanning transmission electron microscopy. By comparing multiple membrane and (membranotropic) NP models, we found that gHNP internalization occurs by forming an intermediate state characterized by specific stabilizing interactions formed by peptide-coated nanoparticles with multicomponent model membranes. This association mechanism is mainly characterized by interactions of gH with the extracellular solvent and the polar membrane surface. At the same time, the NP core interacts with the transmembrane (cholesterol-rich) fatty phase.
Collapse
Affiliation(s)
- Sebastian Franco-Ulloa
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Dipartimento
di Chimica e Biologia “A. Zambelli”, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, Fisciano, l-84084 Salerno, Italy
| | - Laura Riccardi
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Marco De Vivo
- Molecular
Modeling and Drug Discovery Lab, Istituto
Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
9
|
Mastronardi V, Udayan G, Cibecchini G, Brescia R, Fichthorn KA, Pompa PP, Moglianetti M. Synthesis of Citrate-Coated Penta-twinned Palladium Nanorods and Ultrathin Nanowires with a Tunable Aspect Ratio. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49935-49944. [PMID: 33090789 PMCID: PMC7735672 DOI: 10.1021/acsami.0c11597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Green and scalable methodologies for the preparation of metal nanoparticles with fine control of shape and size are of high interest in many areas including catalysis, nanomedicine, and nanodiagnostics. In this contribution, we describe a new synthetic method for the production of palladium (Pd) penta-twinned nanowires and nanorods utilizing sodium citrate, formic acid, ascorbic acid, and potassium bromide (KBr) in water, without the use of surfactants or polymers. The synthesis is green, fast, and without the need of complex setups. Interestingly, a microwave-assisted scale-up process has been developed. The combination of a synthetic protocol for seeds and the seed-mediated growth process allows us to synthesize nanorods and nanowires by modulating the concentration of KBr. The synthesized nanomaterials have been physicochemically characterized. High-resolution transmission electron microscopy shows that the nanorods and nanowires have a penta-twinned structure enclosed by {100} lateral facets. Moreover, the absence of sticky molecules or toxic byproducts guarantees the biocompatibility of the nanomaterials, while leaving the surface clean to perform enzymatic activities.
Collapse
Affiliation(s)
- Valentina Mastronardi
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, Genova 16146, Italy
| | - Gayatri Udayan
- Department
of Engineering for Innovation, University
of Salento, Via per Monteroni, Lecce 73100, Italy
- Nanobiointeractions
& Nanodiagnostics, Center for Bio-Molecular
Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Lecce 73010, Italy
| | - Giulia Cibecchini
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
- Department
of Chemistry and Industrial Chemistry, University
of Genova, Via Dodecaneso
31, Genova 16146, Italy
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego
30, Genova 16163, Italy
| | - Kristen A. Fichthorn
- Department
of Chemical Engineering, The Pennsylvania
State University, University Park, Pennsylvania 16802, United States
| | - Pier Paolo Pompa
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
| | - Mauro Moglianetti
- Nanobiointeractions
& Nanodiagnostics, Istituto Italiano
di Tecnologia, Via Morego 30, Genova 16163, Italy
- Nanobiointeractions
& Nanodiagnostics, Center for Bio-Molecular
Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Lecce 73010, Italy
| |
Collapse
|
10
|
Calderan L, Malatesta M. Imaging techniques in nanomedical research. Eur J Histochem 2020; 64. [PMID: 32613820 PMCID: PMC7341075 DOI: 10.4081/ejh.2020.3151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022] Open
Abstract
About twenty years ago, nanotechnology began to be applied to biomedical issues giving rise to the research field called nanomedicine. Thus, the study of the interactions between nanomaterials and the biological environment became of primary importance in order to design safe and effective nanoconstructs suitable for diagnostic and/or therapeutic purposes. Consequently, imaging techniques have increasingly been used in the production, characterisation and preclinical/clinical application of nanomedical tools. This work aims at making an overview of the microscopy and imaging techniques in vivo and in vitro in their application to nanomedical investigation, and to stress their contribution to this developing research field.
Collapse
Affiliation(s)
- Laura Calderan
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| | - Manuela Malatesta
- Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona.
| |
Collapse
|
11
|
Cibecchini G, Veronesi M, Catelani T, Bandiera T, Guarnieri D, Pompa PP. Antiangiogenic Effect of Graphene Oxide in Primary Human Endothelial Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22507-22518. [PMID: 32255338 DOI: 10.1021/acsami.0c03404] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we exploited an integrated approach combining systematic analysis of cytotoxicity, angiogenic potential, and metabolomics to shed light on the effects of graphene oxide (GO) on primary human endothelial Huvec cells. Contrary to the outcomes observed in immortalized cell lines able to internalize a similar amount of GO, significant toxicity was found in Huvec cells at high GO concentrations (25 and 50 μg/mL). In particular, we found that the steric hindrance of GO intracellular aggregates perturbed the correct assembly of cytoskeleton and distribution of mitochondria. This was found to be primarily associated with oxidative stress and impairment of cell migration, affecting the formation of capillary-like structures. In addition, preliminary metabolomics characterization demonstrated that GO affects the consumption of niacinamide, a precursor of energy carriers, and several amino acids involved in the regulation of angiogenesis. Our findings suggest that GO acts at different cellular levels, both directly and indirectly. More precisely, the combination of the physical hindrance of internalized GO aggregates, induction of oxidative stress, and alteration of some metabolic pathways leads to a significant antiangiogenic effect in primary human endothelial cells.
Collapse
Affiliation(s)
- Giulia Cibecchini
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Department of Chemistry and Industrial Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Marina Veronesi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Tiziano Catelani
- Electron Microscopy Facility, Istituto Italiano di Tecnologia, Via Morego, 30, 16163 Genova, Italy
- Piattaforma Interdipartimentale di Microscopia, Università Degli Studi di Milano-Bicocca, Piazza Della Scienza 2, Milano 20126, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Daniela Guarnieri
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
- Dipartimento di Chimica e Biologia "A. Zambelli", Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions&Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
12
|
Li J, Zhao J, Tan T, Liu M, Zeng Z, Zeng Y, Zhang L, Fu C, Chen D, Xie T. Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: A Comprehensive Review. Int J Nanomedicine 2020; 15:2563-2582. [PMID: 32368041 PMCID: PMC7173867 DOI: 10.2147/ijn.s243223] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/21/2020] [Indexed: 12/22/2022] Open
Abstract
Gliomas are the most common tumor of the central nervous system. However, the presence of the brain barrier blocks the effective delivery of drugs and leads to the treatment failure of various drugs. The development of a nanoparticle drug delivery system (NDDS) can solve this problem. In this review, we summarized the brain barrier (including blood-brain barrier (BBB), blood-brain tumor barriers (BBTB), brain-cerebrospinal fluid barrier (BCB), and nose-to-brain barrier), NDDS of glioma (such as passive targeting systems, active targeting systems, and environmental responsive targeting systems), and NDDS efficacy improvement strategies and deficiencies. The research prospect of drug-targeted delivery systems for glioma is also discussed.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqian Zhao
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- College of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Tiantian Tan
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Mengmeng Liu
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhaowu Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yiying Zeng
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Lele Zhang
- School of Medicine, Chengdu University, Chengdu, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Dajing Chen
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Tian Xie
- Holistic Integrative Pharmacy Institutes, Hangzhou Normal University, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Gessner I, Neundorf I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int J Mol Sci 2020; 21:E2536. [PMID: 32268473 PMCID: PMC7177461 DOI: 10.3390/ijms21072536] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/27/2022] Open
Abstract
Based on their tunable physicochemical properties and the possibility of producing cell-specific platforms through surface modification with functional biomolecules, nanoparticles (NPs) represent highly promising tools for biomedical applications. To improve their potential under physiological conditions and to enhance their cellular uptake, combinations with cell-penetrating peptides (CPPs) represent a valuable strategy. CPPs are often cationic peptide sequences that are able to translocate across biological membranes and to carry attached cargos inside cells and have thus been recognized as versatile tools for drug delivery. Nevertheless, the conjugation of CPP to NP surfaces is dependent on many properties from both individual components, and further insight into this complex interplay is needed to allow for the fabrication of highly stable but functional vectors. Since CPPs per se are nonselective and enter nearly all cells likewise, additional decoration of NPs with homing devices, such as tumor-homing peptides, enables the design of multifunctional platforms for the targeted delivery of chemotherapeutic drugs. In this review, we have updated the recent advances in the field of CPP-NPs, focusing on synthesis strategies, elucidating the influence of different physicochemical properties, as well as their application in cancer research.
Collapse
Affiliation(s)
- Isabel Gessner
- Department of Chemistry, Inorganic Chemistry, University of Cologne, Greinstr 6, 50939 Cologne, Germany;
| | - Ines Neundorf
- Department of Chemistry, Biochemistry, University of Cologne, Zuelpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
14
|
Moglianetti M, Pedone D, Udayan G, Retta SF, Debellis D, Marotta R, Turco A, Rella S, Malitesta C, Bonacucina G, De Luca E, Pompa PP. Intracellular Antioxidant Activity of Biocompatible Citrate-Capped Palladium Nanozymes. NANOMATERIALS 2020; 10:nano10010099. [PMID: 31947820 PMCID: PMC7023661 DOI: 10.3390/nano10010099] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 11/30/2022]
Abstract
A method for the aqueous synthesis of stable and biocompatible citrate-coated palladium nanoparticles (PdNPs) in the size range comparable to natural enzymes (4–8 nm) has been developed. The toxicological profile of PdNPs was assessed by different assays on several cell lines demonstrating their safety in vitro also at high particle concentrations. To elucidate their cellular fate upon uptake, the localization of PdNPs was analyzed by Transmission Electron Microscopy (TEM). Moreover, crucial information about their intracellular stability and oxidation state was obtained by Sputtering-Enabled Intracellular X-ray Photoelectron Spectroscopy (SEI-XPS). TEM/XPS results showed significant stability of PdNPs in the cellular environment, an important feature for their biocompatibility and potential for biomedical applications. On the catalytic side, these PdNPs exhibited strong and broad antioxidant activities, being able to mimic the three main antioxidant cellular enzymes, i.e., peroxidase, catalase, and superoxide dismutase. Remarkably, using an experimental model of a human oxidative stress-related disease, we demonstrated the effectiveness of PdNPs as antioxidant nanozymes within the cellular environment, showing that they are able to completely re-establish the physiological Reactive Oxygen Species (ROS) levels in highly compromised intracellular redox conditions.
Collapse
Affiliation(s)
- Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; (D.P.); (G.U.)
- Correspondce: (M.M.); (E.D.L.); (P.P.P.)
| | - Deborah Pedone
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; (D.P.); (G.U.)
| | - Gayatri Udayan
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; (D.P.); (G.U.)
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy;
| | - Doriana Debellis
- Electron Microscopy Laboratory, Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy; (D.D.); (R.M.)
| | - Roberto Marotta
- Electron Microscopy Laboratory, Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy; (D.D.); (R.M.)
| | - Antonio Turco
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, via Monteroni, 73100 Lecce, Italy; (A.T.); (S.R.); (C.M.)
| | - Simona Rella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, via Monteroni, 73100 Lecce, Italy; (A.T.); (S.R.); (C.M.)
| | - Cosimino Malitesta
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, via Monteroni, 73100 Lecce, Italy; (A.T.); (S.R.); (C.M.)
| | - Giulia Bonacucina
- School of Pharmacy, Via Gentile III da Varano, University of Camerino, 62032 Camerino, Italy;
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; (D.P.); (G.U.)
- Correspondce: (M.M.); (E.D.L.); (P.P.P.)
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, via Barsanti, 73010 Arnesano, Lecce, Italy; (D.P.); (G.U.)
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genova, Italy
- Correspondce: (M.M.); (E.D.L.); (P.P.P.)
| |
Collapse
|
15
|
Design, Synthesis and Characterization of Novel Co-Polymers Decorated with Peptides for the Selective Nanoparticle Transport across the Cerebral Endothelium. Molecules 2018; 23:molecules23071655. [PMID: 29986452 PMCID: PMC6100052 DOI: 10.3390/molecules23071655] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 12/02/2022] Open
Abstract
The development of new strategies for enhancing drug delivery to the brain represents a major challenge in treating cerebral diseases. In this paper, we report on the synthesis and structural characterization of a biocompatible nanoparticle (NP) made up of poly(lactic-co-glycolic acid) (PLGA)-polyethylene glycol (PEG) co-polymer (namely PELGA) functionalized with the membranotropic peptide gH625 (gH) and the iron-mimicking peptide CRTIGPSVC (CRT) for transport across the blood-brain barrier (BBB). gH possesses a high translocation potency of the cell membrane. Conversely, CRT selectively recognizes the brain endothelium, which interacts with transferrin (Tf) and its receptor (TfR) through a non-canonical ligand-directed mechanism. We hypothesize that the delivery across the BBB of PELGA NPs should be efficiently enhanced by the NP functionalization with both gH and CRT. Synthesis of peptides and their conjugation to the PLGA as well as NP physical-chemical characterization are performed. Moreover, NP uptake, co-localization, adhesion under dynamic conditions, and permeation across in vitro BBB model are evaluated as a function of gH/CRT functionalization ratio. Results establish that the cooperative effect of CRT and gH may change the intra-cellular distribution of NPs and strengthen NP delivery across the BBB at the functionalization ratio 33% gH–66% CRT.
Collapse
|
16
|
Ganguly P, Breen A, Pillai SC. Toxicity of Nanomaterials: Exposure, Pathways, Assessment, and Recent Advances. ACS Biomater Sci Eng 2018; 4:2237-2275. [DOI: 10.1021/acsbiomaterials.8b00068] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Priyanka Ganguly
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Ailish Breen
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| | - Suresh C. Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, School of Science, Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology Sligo, Ash Lane, Sligo F91 YW50, Ireland
| |
Collapse
|
17
|
Platinum Nanoparticles Decrease Reactive Oxygen Species and Modulate Gene Expression without Alteration of Immune Responses in THP-1 Monocytes. NANOMATERIALS 2018; 8:nano8060392. [PMID: 29865145 PMCID: PMC6027382 DOI: 10.3390/nano8060392] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
Abstract
Platinum nanoparticles (PtNPs) attract great attention due to their efficient catalysis and good degree of cytocompatibility, but information about their effects on the human immune system is still missing. Monocytes are key cells of the innate immune system and the understanding of their reactions to PtNPs is crucial in view of any feasible application to human pathologies. Here, we evaluate the internalization of citrate-coated PtNPs into THP-1 monocytes and its consequences on immune cell responses. We found that the presence of intracellular PtNPs efficiently reduce reactive oxygen species (ROS) without affecting cell viability. The physiological expression of the immune receptors Cluster of Differentiation 14 (CD14), CD11b, CC-Chemokine Receptor 2 (CCR2) and CCR5 and the expression of cytokines and chemokines are not compromised by the presence of PtNPs within THP-1 cells. On the other hand, the treatment with PtNPs modulates the transcription of sixty genes, some of them involved in lipopolysaccharide (LPS) signaling in different cells. However, the treatment with PtNPs of monocytes does not compromise the LPS-induced increase of cytokines in THP-1 monocytes in vitro. Our results demonstrate that citrate-coated PtNPs are non-toxic, perform efficient intracellular reactive oxygen species (ROS) scavenging activity and possess good immune-compatibility, suggesting them as feasible synthetic enzymes for applications in nanomedicine.
Collapse
|
18
|
Fotticchia T, Vecchione R, Scognamiglio PL, Guarnieri D, Calcagno V, Di Natale C, Attanasio C, De Gregorio M, Di Cicco C, Quagliariello V, Maurea N, Barbieri A, Arra C, Raiola L, Iaffaioli RV, Netti PA. Enhanced Drug Delivery into Cell Cytosol via Glycoprotein H-Derived Peptide Conjugated Nanoemulsions. ACS NANO 2017; 11:9802-9813. [PMID: 28820568 DOI: 10.1021/acsnano.7b03058] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The key role of nanocarriers in improving the pharmacological properties of commonly used drugs is recognized worldwide. It is also known that in the development of new effective nanocarriers the use of targeting moieties integrated on their surface is essential. Herein, we propose a nanocarrier based on an oil in water nanoemulsion coated with a membranotropic peptide derived from the glycoprotein H of Herpes simplex virus 1, known as gH625, in order to reduce endolysosomal accumulation and to enhance cytosolic localization. In addition, we show an enhanced anti-inflammatory activity of curcumin, a bioactive compound isolated from the Curcuma longa plant, when loaded into our engineered nanocarriers. This effect is a consequence of a higher uptake combined with a high curcumin preservation exerted by the active nanocapsules compared to control ones. When loaded into our nanocapsules, indeed, curcumin molecules are directly internalized into the cytosol rather than into lysosomes. Further, in order to extend the in vitro experimental setting with a more complex model and to explore the possibility to use our nanocarriers for further biological applications, we tested their performance in a 3D sprouting angiogenesis model. Finally, we show promising preliminary in vivo results by assessing the anti-inflammatory properties of the proposed nanocarrier.
Collapse
Affiliation(s)
- Teresa Fotticchia
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II , P.le Tecchio 80, Naples 80125, Italy
| | - Pasqualina Liana Scognamiglio
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | - Daniela Guarnieri
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT) , Via Morego, 30, Genova 16163, Italy
| | - Vincenzo Calcagno
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | - Chiara Attanasio
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | - Maria De Gregorio
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | - Chiara Di Cicco
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | | | | | | | | | - Luca Raiola
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
| | | | - Paolo A Netti
- Center for Advanced Biomaterials for Health Care@CRIB, Istituto Italiano di Tecnologia , Largo Barsanti e Matteucci 53, Napoli 80125, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II , P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|