1
|
Ghaiedi H, Pinzon Herrera LC, Alshafeay S, Harris L, Almodovar J, Nayani K. Liquid crystalline collagen assemblies as substrates for directed alignment of human Schwann cells. SOFT MATTER 2024; 20:8997-9006. [PMID: 39494732 PMCID: PMC11533399 DOI: 10.1039/d4sm00534a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Collagen is a key component of the extracellular matrix (ECM) and well-oriented domains of collagen are important for mimicking the local cell environment in vitro. While there has been significant attention directed towards the alignment of collagen, formation of large-scale oriented domains remains a key challenge. Type I collagen self-assembles to form liquid crystalline (LC) mesophases in acidic conditions at concentrations above 100 mg mL-1. The LC mesophase provides an efficient platform for large-scale alignment and patterning of collagen coated substrates. However, there still exist challenges related to solubilizing and processing of collagen at such high concentrations in order to replicate the native ECM. In this contribution, we report on centimeter-scale alignment in collagen-coated glass substrates using solutions that are well below the LC-forming concentrations. Importantly, we are also able to extend this method to macroscopic 3-D LC-collagen hydrogels with programmed anisotropy within them to create a mimic of the native ECM. We show that the orientation and aspect ratio of human Schwann cells are strongly coupled with the alignment of the collagen substrate/hydrogel. We use a simple model to estimate the critical magnetic field strength needed for a given concentration of collagen to permit macroscopic alignment-enabling guidance for future studies on alignment of collagen at high concentrations.
Collapse
Affiliation(s)
- Homa Ghaiedi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| | - Luis Carlos Pinzon Herrera
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Saja Alshafeay
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Leonard Harris
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Jorge Almodovar
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Karthik Nayani
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, 3202 Bell Engineering Center, Fayetteville, AR, 72701, USA.
| |
Collapse
|
2
|
Zhang Z, Lv Y, Harati J, Song J, Du P, Ou P, Liang J, Wang H, Wang PY. Submicron-Grooved Films Modulate the Directional Alignment and Biological Function of Schwann Cells. J Funct Biomater 2023; 14:jfb14050238. [PMID: 37233348 DOI: 10.3390/jfb14050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Topographical cues on material surfaces are crucial for guiding the behavior of nerve cells and facilitating the repair of peripheral nerve defects. Previously, micron-grooved surfaces have shown great potential in controlling nerve cell alignment for studying the behavior and functions of those cells and peripheral nerve regeneration. However, the effects of smaller-sized topographical cues, such as those in the submicron- and nano-scales, on Schwann cell behavior remain poorly understood. In this study, four different submicron-grooved polystyrene films (800/400, 800/100, 400/400, and 400/100) were fabricated to study the behavior, gene expression, and membrane potential of Schwann cells. The results showed that all submicron-grooved films could guide the cell alignment and cytoskeleton in a groove depth-dependent manner. Cell proliferation and cell cycle assays revealed that there was no significant difference between the submicron groove samples and the flat control. However, the submicron grooves can direct the migration of cells and upregulate the expression of critical genes in axon regeneration and myelination (e.g., MBP and Smad6). Finally, the membrane potential of the Schwann cells was significantly altered on the grooved sample. In conclusion, this study sheds light on the role of submicron-grooved patterns in regulating the behavior and function of Schwann cells, which provides unique insights for the development of implants for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Zhen Zhang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanliang Lv
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianan Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
| | - Ping Du
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Peiyan Ou
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaqi Liang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou 325000, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
3
|
Ghobeira R, Wieringa P, Van Vrekhem S, Aliakbarshirazi S, Narimisa M, Onyshchenko Y, De Geyter N, Moroni L, Morent R. Multifaceted polymeric nerve guidance conduits with distinctive double-layered architecture and plasma-induced inner chemistry gradient for the repair of critical-sized defects. BIOMATERIALS ADVANCES 2022; 143:213183. [PMID: 36371971 DOI: 10.1016/j.bioadv.2022.213183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Despite tissue engineering advances, current nerve guidance conduits (NGCs) are still failing in repairing critical-sized defects. This study aims, therefore, at tackling large nerve gaps (2 cm) by designing NGCs possessing refined physicochemical properties enhancing the activity of Schwann cells (SCs) that support nerve regeneration over long distances. As such, a combinatorial strategy adopting novel plasma-induced surface chemistry and architectural heterogeneity was considered. A mechanically suitable copolymer (Polyactive®) was electrospun to produce nanofibrous NGCs mimicking the extracellular matrix. An innovative seamless double-layered architecture consisting of an inner wall comprised of bundles of aligned fibers with intercalated random fibers and an outer wall fully composed of random fibers was conceived to synergistically provide cell guidance cues and sufficient nutrient inflow. NGCs were subjected to argon plasma treatments using a dielectric barrier discharge (DBD) and a plasma jet (PJ). Surface chemical changes were examined by advanced X-ray photoelectron spectroscopy (XPS) micro-mappings. The DBD homogeneously increased the surface oxygen content from 17 % to 28 % on the inner wall. The PJ created a gradient chemistry throughout the inner wall with an oxygen content gradually increasing from 21 % to 30 %. In vitro studies revealed enhanced primary SC adhesion, elongation and proliferation on plasma-treated NGCs. A cell gradient was observed on the PJ-treated NGCs thus underlining the favorable oxygen gradient in promoting cell chemotaxis. A gradual change from circular to highly elongated SC morphologies mimicking the bands of Büngner was visualized along the gradient. Overall, plasma-treated NGCs are promising candidates paving the way towards critical nerve gap repair.
Collapse
Affiliation(s)
- Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Paul Wieringa
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| | - Stijn Van Vrekhem
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Sheida Aliakbarshirazi
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Mehrnoush Narimisa
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Yuliia Onyshchenko
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitsingel 40, 6229ER, Maastricht, the Netherlands
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Yu P, Yu F, Xiang J, Zhou K, Zhou L, Zhang Z, Rong X, Ding Z, Wu J, Li W, Zhou Z, Ye L, Yang W. Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107922. [PMID: 34837252 DOI: 10.1002/adma.202107922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Rebuilding mineralized tissues in skeletal and dental systems remains costly and challenging. Despite numerous demands and heavy clinical burden over the world, sources of autografts, allografts, and xenografts are far limited, along with massive risks including viral infections, ethic crisis, and so on. Per such dilemma, artificial scaffolds have emerged to provide efficient alternatives. To date, cell-free biomimetic mineralization (BM) and cell-dependent scaffolds have both demonstrated promising capabilities of regenerating mineralized tissues. However, BM and cell-dependent scaffolds have distinctive mechanisms for mineral genesis, which makes them methodically, synthetically, and functionally disparate. Herein, these two strategies in regenerative dentistry and orthopedics are systematically summarized at the level of mechanisms. For BM, methodological and theoretical advances are focused upon; and meanwhile, for cell-dependent scaffolds, it is demonstrated how scaffolds orchestrate osteogenic cell fate. The summary of the experimental advances and clinical progress will endow researchers with mechanistic understandings of artificial scaffolds in rebuilding hard tissues, by which better clinical choices and research directions may be approached.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Zhou
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Xiao Rong
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Zichuan Ding
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Jiayi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wudi Li
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zongke Zhou
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wei Yang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| |
Collapse
|
5
|
Chitosan Micro-Grooved Membranes with Increased Asymmetry for the Improvement of the Schwann Cell Response in Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22157901. [PMID: 34360664 PMCID: PMC8348329 DOI: 10.3390/ijms22157901] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
Peripheral nerve injuries are a common condition in which a nerve is damaged, affecting more than one million people every year. There are still no efficient therapeutic treatments for these injuries. Artificial scaffolds can offer new opportunities for nerve regeneration applications; in this framework, chitosan is emerging as a promising biomaterial. Here, we set up a simple and effective method for the production of micro-structured chitosan films by solvent casting, with high fidelity in the micro-pattern reproducibility. Three types of chitosan directional micro-grooved patterns, presenting different levels of symmetricity, were developed for application in nerve regenerative medicine: gratings (GR), isosceles triangles (ISO) and scalene triangles (SCA). The directional patterns were tested with a Schwann cell line. The most asymmetric topography (SCA), although it polarized the cell shaping less efficiently, promoted higher cell proliferation and a faster cell migration, both individually and collectively, with a higher directional persistence of motion. Overall, the use of micro-structured asymmetrical directional topographies may be exploited to enhance the nerve regeneration process mediated by chitosan scaffolds.
Collapse
|
6
|
Abstract
Ion beam irradiation of solid surfaces may result in the self-organized formation of well-defined topographic nanopatterns. Depending on the irradiation conditions and the material properties, isotropic or anisotropic patterns of differently shaped features may be obtained. Most intriguingly, the periodicities of these patterns can be adjusted in the range between less than twenty and several hundred nanometers, which covers the dimensions of many cellular and extracellular features. However, even though ion beam nanopatterning has been studied for several decades and is nowadays widely employed in the fabrication of functional surfaces, it has found its way into the biomaterials field only recently. This review provides a brief overview of the basics of ion beam nanopatterning, emphasizes aspects of particular relevance for biomaterials applications, and summarizes a number of recent studies that investigated the effects of such nanopatterned surfaces on the adsorption of biomolecules and the response of adhering cells. Finally, promising future directions and potential translational challenges are identified.
Collapse
|
7
|
Garcia Diosa JA, Gonzalez Orive A, Weinberger C, Schwiderek S, Knust S, Tiemann M, Grundmeier G, Keller A, Camargo Amado RJ. TiO 2 nanoparticle coatings on glass surfaces for the selective trapping of leukemia cells from peripheral blood. J Biomed Mater Res B Appl Biomater 2021; 109:2142-2153. [PMID: 33982864 DOI: 10.1002/jbm.b.34862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/03/2021] [Accepted: 04/30/2021] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) using TiO2 nanoparticles has become an important alternative treatment for different types of cancer due to their high photocatalytic activity and high absorption of UV-A light. To potentiate this treatment, we have coated commercial glass plates with TiO2 nanoparticles prepared by the sol-gel method (TiO2 -m), which exhibit a remarkable selectivity for the irreversible trapping of cancer cells. The physicochemical properties of the deposited TiO2 -m nanoparticle coatings have been characterized by a number of complementary surface-analytical techniques and their interaction with leukemia and healthy blood cells were investigated. Scanning electron and atomic force microscopy verify the formation of a compact layer of TiO2 -m nanoparticles. The particles are predominantly in the anatase phase and have hydroxyl-terminated surfaces as revealed by Raman, X-ray photoelectron, and infrared spectroscopy, as well as X-ray diffraction. We find that lymphoblastic leukemia cells adhere to the TiO2 -m coating and undergo amoeboid-like migration, whereas lymphocytic cells show distinctly weaker interactions with the coating. This evidences the potential of this nanomaterial coating to selectively trap cancer cells and renders it a promising candidate for the development of future prototypes of PDT devices for the treatment of leukemia and other types of cancers with non-adherent cells.
Collapse
Affiliation(s)
| | - Alejandro Gonzalez Orive
- Department of Chemistry, Materials and Nanotechnology Institute, University of La Laguna, Tenerife, Spain
| | | | - Sabrina Schwiderek
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | - Steffen Knust
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | - Michael Tiemann
- Inorganic Chemistry, Paderborn University, Paderborn, Germany
| | - Guido Grundmeier
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Paderborn, Germany
| | | |
Collapse
|
8
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020; 59:15626-15632. [PMID: 32168409 PMCID: PMC7487060 DOI: 10.1002/anie.202002593] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2020] [Indexed: 12/21/2022]
Abstract
We report a simple method based upon coaxial electrospinning for the fabrication of aligned microfibers engraved with nanoscale grooves to promote neurite outgrowth and cell migration. The success of this method relies on the immiscibility between poly(ϵ-caprolactone) (PCL) and poly(vinyl pyrrolidone) (PVP) in 2,2,2-trifluoroethanol (TFE) for the generation of PVP/TFE pockets on the surface of a PCL jet. The pockets are stretched and elongated along with the jet, eventually resulting in the formation of nanoscale grooves upon the removal of PVP. The presence of nanoscale grooves greatly enhances the outgrowth of neurites from both PC12 cells and chick embryonic dorsal root ganglia (DRG) bodies, as well as the migration of Schwann cells. The enhancements can be maximized by optimizing the dimensions of the grooves for potential use in applications involving neurite extension and wound closure.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
DELL'ANNA R, IACOB E, TRIPATHI M, DALTON A, BÖTTGER R, PEPPONI G. AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation. J Microsc 2020; 280:183-193. [DOI: 10.1111/jmi.12908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Affiliation(s)
- R. DELL'ANNA
- Fondazione Bruno Kessler Centre for Materials and Microsystems, Micro Nano Facility Trento Italy
| | - E. IACOB
- Fondazione Bruno Kessler Centre for Materials and Microsystems, Micro Nano Facility Trento Italy
| | - M. TRIPATHI
- Department of Physics and Astronomy University of Sussex Brighton U.K
| | - A. DALTON
- Department of Physics and Astronomy University of Sussex Brighton U.K
| | - R. BÖTTGER
- Helmholtz‐Zentrum Dresden‐Rossendorf Dresden Germany
| | - G. PEPPONI
- Fondazione Bruno Kessler Centre for Materials and Microsystems, Micro Nano Facility Trento Italy
| |
Collapse
|
10
|
Spreading of biologically relevant liquids over the laser textured surfaces. J Colloid Interface Sci 2020; 567:224-234. [PMID: 32058172 DOI: 10.1016/j.jcis.2020.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
HYPOTHESIS The distribution of biological objects upon the spreading of biologically relevant dispersions over laser textured surfaces is affected by the dispersion composition and substrate chemistry and roughness. EXPERIMENTS To examine the role of the substrate texture in biologically relevant liquid spreading, the dynamic behavior of droplets of water and dispersions of bacterial cells and viruses and dynamic behavior of droplet/air surface tension were addressed. A new procedure to simultaneously distinguish three different spreading fronts was developed. FINDINGS The study of spreading of water and the biologically relevant liquids over the laser textured substrate indicate the development of three spreading fronts associated with the movement of bulk droplet base, the flow along the microchannels, and the nanotexture impregnation. The anisotropy of spreading for all types of liquid fronts was found. Despite the expected difference in the rheological behavior of water and the biologically relevant liquids, the spreading of all tested liquids was successfully described by power-law fits. The droplet base spreading for all tested liquids followed the Tanner law. The advancing of water and dispersions in the microchannels along both fast and slow axes was described by Washburn type behavior. The impregnation of the nanotexture by water and biologically relevant liquids demonstrated universality in power fit description with an exponent n = 0.23.
Collapse
|
11
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
12
|
Tonazzini I, Masciullo C, Savi E, Sonato A, Romanato F, Cecchini M. Neuronal contact guidance and YAP signaling on ultra-small nanogratings. Sci Rep 2020; 10:3742. [PMID: 32111918 PMCID: PMC7048778 DOI: 10.1038/s41598-020-60745-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/03/2020] [Indexed: 01/09/2023] Open
Abstract
Contact interaction of neuronal cells with extracellular nanometric features can be exploited to investigate and modulate cellular responses. By exploiting nanogratings (NGs) with linewidth from 500 nm down to 100 nm, we here study neurite contact guidance along ultra-small directional topographies. The impact of NG lateral dimension on the neuronal morphotype, neurite alignment, focal adhesion (FA) development and YAP activation is investigated in nerve growth factor (NGF)-differentiating PC12 cells and in primary hippocampal neurons, by confocal and live-cell total internal reflection fluorescence (TIRF) microscopy, and at molecular level. We demonstrate that loss of neurite guidance occurs in NGs with periodicity below 400 nm and correlates with a loss of FA lateral constriction and spatial organization. We found that YAP intracellular localization is modulated by the presence of NGs, but it is not sensitive to their periodicity. Nocodazole, a drug that can increase cell contractility, is finally tested for rescuing neurite alignment showing mild ameliorative effects. Our results provide new indications for a rational design of biocompatible scaffolds for enhancing nerve-regeneration processes.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Cecilia Masciullo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Eleonora Savi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Agnese Sonato
- CNR-IOM, Area Science Park, S.S. 14, km 163.5, Basovizza, TS, Italy
| | - Filippo Romanato
- CNR-IOM, Area Science Park, S.S. 14, km 163.5, Basovizza, TS, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy.
| |
Collapse
|
13
|
Tonazzini I, Van Woerden GM, Masciullo C, Mientjes EJ, Elgersma Y, Cecchini M. The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons. Mol Autism 2019; 10:41. [PMID: 31798818 PMCID: PMC6884852 DOI: 10.1186/s13229-019-0293-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Geeske M. Van Woerden
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Cecilia Masciullo
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Edwin J. Mientjes
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Marco Cecchini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
14
|
De Masi A, Tonazzini I, Masciullo C, Mezzena R, Chiellini F, Puppi D, Cecchini M. Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophys Rev 2019; 11:807-815. [PMID: 31529358 PMCID: PMC6815298 DOI: 10.1007/s12551-019-00591-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/02/2019] [Indexed: 12/17/2022] Open
Abstract
Regenerative medicine is continuously facing new challenges and it is searching for new biocompatible, green/natural polymer materials, possibly biodegradable and non-immunogenic. Moreover, the critical importance of the nano/microstructuring of surfaces is overall accepted for their full biocompatibility and in vitro/in vivo performances. Chitosan is emerging as a promising biopolymer for tissue engineering and its application can be further improved by exploiting its nano/microstructuration. Here, we report the state of the art of chitosan films and scaffolds nano/micro-structuration. We show that it is possible to obtain, by solvent casting, chitosan thin films with good mechanical properties and to structure them at the microscale and even nanoscale level, with resolutions down to 100 nm.
Collapse
Affiliation(s)
- Alessia De Masi
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy.
| | - Cecilia Masciullo
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Roberta Mezzena
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Dario Puppi
- Department of Chemistry and Industrial Chemistry, University of Pisa, UdR INSTM PISA, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Marco Cecchini
- NEST, Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127, Pisa, Italy
| |
Collapse
|
15
|
Smith ES, Porterfield JE, Kannan RM. Leveraging the interplay of nanotechnology and neuroscience: Designing new avenues for treating central nervous system disorders. Adv Drug Deliv Rev 2019; 148:181-203. [PMID: 30844410 PMCID: PMC7043366 DOI: 10.1016/j.addr.2019.02.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology has the potential to open many novel diagnostic and treatment avenues for disorders of the central nervous system (CNS). In this review, we discuss recent developments in the applications of nanotechnology in CNS therapies, diagnosis and biology. Novel approaches for the diagnosis and treatment of neuroinflammation, brain dysfunction, psychiatric conditions, brain cancer, and nerve injury provide insights into the potential of nanomedicine. We also highlight nanotechnology-enabled neuroscience techniques such as electrophysiology and intracellular sampling to improve our understanding of the brain and its components. With nanotechnology integrally involved in the advancement of basic neuroscience and the development of novel treatments, combined diagnostic and therapeutic applications have begun to emerge. Nanotheranostics for the brain, able to achieve single-cell resolution, will hasten the rate in which we can diagnose, monitor, and treat diseases. Taken together, the recent advances highlighted in this review demonstrate the prospect for significant improvements to clinical diagnosis and treatment of a vast array of neurological diseases. However, it is apparent that a strong dialogue between the nanoscience and neuroscience communities will be critical for the development of successful nanotherapeutics that move to the clinic, benefit patients, and address unmet needs in CNS disorders.
Collapse
Affiliation(s)
- Elizabeth S Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute, Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Dell'Anna R, Iacob E, Barozzi M, Vanzetti L, Hübner R, Böttger R, Giubertoni D, Pepponi G. The role of incidence angle in the morphology evolution of Ge surfaces irradiated by medium-energy Au ions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:324001. [PMID: 29947619 DOI: 10.1088/1361-648x/aacf5f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Germanium (Ge) surfaces have been irradiated with 26 keV gold (Au) ions at a constant fluence and at incidence angles varying from 0° to 85°. The evolution of the emerging nanostructures is studied by atomic force microscopy (AFM), scanning electron microscopy, x-ray photoelectron spectroscopy (XPS), and cross-sectional transmission electron microscopy. The obtained results are compared with findings reported in the literature. Periodic rippled patterns with the wave vector parallel to the projection of the ion beam direction onto the Ge surface develop between 30° and 45°. From 75° the morphology changes from parallel-mode ripples to parallel-mode terraces, and by further increasing the incidence angle the terraces coarsen and show a progressive break-up of the front facing the ion beam. No perpendicular-mode ripples or terraces have been observed. The analysis of the AFM height profiles and slope distributions shows in the 45°-85° range an angular dependence of the temporal scale for the onset of nonlinear processes. For incidence angles below 45°, the surface develops a sponge-like structure, which persists at higher incidence angles on the top and partially on the face of the facets facing the ion beam. The XPS and the energy-dispersive x-ray spectroscopy evidence the presence of Au nano-aggregates of different sizes for the different incidence angles. This study points out the peculiar behavior of Ge surfaces irradiated with medium-energy Au ions and warns about the differences to be faced when trying to build a universal framework for the description of semiconductor pattern evolution under ion-beam irradiation.
Collapse
Affiliation(s)
- Rossana Dell'Anna
- Fondazione Bruno Kessler, Centre for Materials and Microsystems, Micro Nano Facility, Via Sommarive 18, 38123 Trento, Italy
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Masciullo C, Sonato A, Romanato F, Cecchini M. Perfluoropolyether (PFPE) Intermediate Molds for High-Resolution Thermal Nanoimprint Lithography. NANOMATERIALS 2018; 8:nano8080609. [PMID: 30103377 PMCID: PMC6116295 DOI: 10.3390/nano8080609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
Abstract
Among soft lithography techniques, Thermal Nanoimprint Lithography (NIL) is a high-throughput and low-cost process that can be applied to a broad range of thermoplastic materials. By simply applying the appropriate pressure and temperature combination, it is possible to transfer a pattern from a mold surface to the chosen material. Usually, high-resolution and large-area NIL molds are difficult to fabricate and expensive. Furthermore, they are typically made of silicon or other hard materials such as nickel or quartz for preserving their functionality. Nonetheless, after a large number of imprinting cycles, they undergo degradation and become unusable. In this paper, we introduce and characterize an innovative two-step NIL process based on the use of a perfluoropolyether (PFPE) intermediate mold to replicate sub-100 nm features from a silicon mold to the final thermoplastic material. We compare PFPE elastomeric molds with molds made of the standard polydimethylsiloxane (PDMS) elastomer, which demonstrates better resolution and fidelity of the replica process. By using PFPE intermediate molds, the nanostructured masters are preserved and the throughput of the process is significantly enhanced.
Collapse
Affiliation(s)
- Cecilia Masciullo
- National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Agnese Sonato
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), Area Science Park, S.S. 14, km 163.5, 34149 Basovizza (TS), Italy.
| | - Filippo Romanato
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), Area Science Park, S.S. 14, km 163.5, 34149 Basovizza (TS), Italy.
| | - Marco Cecchini
- National Enterprise for nanoScience and nanoTechnology (NEST), Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa, Italy.
| |
Collapse
|
18
|
Batth A, Thompson I. Nylon as an in vitro
scaffold for three-dimensional study of neural cells. J Biomed Mater Res A 2018; 106:1575-1584. [DOI: 10.1002/jbm.a.36367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Aran Batth
- Division of Tissue Engineering and Biophotonics; Dental Institute, King's College London, Guy's Hospital; London SE1 9RT United Kingdom
| | - Ian Thompson
- Division of Tissue Engineering and Biophotonics; Dental Institute, King's College London, Guy's Hospital; London SE1 9RT United Kingdom
| |
Collapse
|