1
|
Dey A, Pradhan J, Biswas S, Ahamed Rahimi F, Biswas K, Maji TK. COF-Topological Quantum Material Nano-heterostructure for CO 2 to Syngas Production under Visible Light. Angew Chem Int Ed Engl 2024; 63:e202315596. [PMID: 38400778 DOI: 10.1002/anie.202315596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Efficient solar-driven syngas production (CO+H2 mixture) from CO2 and H2O with a suitable photocatalyst and fundamental understanding of the reaction mechanism are the desired approach towards the carbon recycling process. Herein, we report the design and development of an unique COF-topological quantum material nano-heterostructure, COF@TI with a newly synthesized donor-acceptor based COF and two dimensional (2D) nanosheets of strong topological insulator (TI), PbBi2Te4. The intrinsic robust metallic surfaces of the TI act as electron reservoir, minimising the fast electron-hole recombination process, and the presence of 6s2 lone pairs in Pb2+ and Bi3+ in the TI helps for efficient CO2 binding, which are responsible for boosting overall catalytic activity. In variable ratio of acetonitrile-water (MeCN : H2O) solvent mixture COF@TI produces syngas with different ratios of CO and H2. COF@TI nano-heterostructure enables to produce higher amount of syngas with more controllable ratios of CO and H2 compared to pristine COF. The electron transfer route from COF to TI was realized from Kelvin probe force microscopy (KPFM) analysis, charge density difference calculation, excited state lifetime and photoelectrochemical measurements. Finally, a probable mechanistic pathway has been established after identifying the catalytic sites and reaction intermediates by in situ DRIFTS study and DFT calculation.
Collapse
Affiliation(s)
- Anupam Dey
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Jayita Pradhan
- New Chemistry Unit (NCU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Sandip Biswas
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Faruk Ahamed Rahimi
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Kanishka Biswas
- New Chemistry Unit (NCU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
- New Chemistry Unit (NCU), School of Advanced Materials (SAMat), International Centre for Materials Science (ICMS), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), 560064, Jakkur, Bangalore, India
| |
Collapse
|
2
|
Li N, Zhang Z, Li G. Recent advance on microextraction sampling technologies for bioanalysis. J Chromatogr A 2024; 1720:464775. [PMID: 38452559 DOI: 10.1016/j.chroma.2024.464775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The contents of target substances in biological samples are usually at low concentration levels, and the matrix of biological samples is usually complex. Sample preparation is considered a very critical step in bioanalysis. At present, the utilization of microextraction sampling technology has gained considerable prevalence in the realm of biological analysis. The key developments in this field focus on the efficient microextraction media and the miniaturization and automation of adaptable sample preparation methods currently. In this review, the recent progress on the microextraction sampling technologies for bioanalysis has been introduced from point of view of the preparation of microextraction media and the microextraction sampling strategies. The advance on the microextraction media was reviewed in detail, mainly including the aptamer-functionalized materials, molecularly imprinted polymers, carbon-based materials, metal-organic frameworks, covalent organic frameworks, etc. The advance on the microextraction sampling technologies was summarized mainly based on in-vivo sampling, in-vitro sampling and microdialysis technologies. Moreover, the current challenges and perspective on the future trends of microextraction sampling technologies for bioanalysis were briefly discussed.
Collapse
Affiliation(s)
- Na Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuomin Zhang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Ma M, Yang Y, Huang Z, Huang F, Li Q, Liu H. Recent progress in the synthesis and applications of covalent organic framework-based composites. NANOSCALE 2024; 16:1600-1632. [PMID: 38189523 DOI: 10.1039/d3nr05797f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Covalent organic frameworks (COFs) have historically been of interest to researchers in different areas due to their distinctive characteristics, including well-ordered pores, large specific surface area, and structural tunability. In the past few years, as COF synthesis techniques developed, COF-based composites fabricated by integrating COFs and other functional materials including various kinds of metal or metal oxide nanoparticles, ionic liquids, metal-organic frameworks, silica, polymers, enzymes and carbon nanomaterials have emerged as a novel kind of porous hybrid material. Herein, we first provide a thorough summary of advanced strategies for preparing COF-based composites; then, the emerging applications of COF-based composites in diverse fields due to their synergistic effects are systematically highlighted, including analytical chemistry (sensing, extraction, membrane separation, and chromatographic separation) and catalysis. Finally, the current challenges associated with future perspectives of COF-based composites are also briefly discussed to inspire the advancement of more COF-based composites with excellent properties.
Collapse
Affiliation(s)
- Mingxuan Ma
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Yonghao Yang
- School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China
| | - Zhonghua Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Fuhong Huang
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Quanliang Li
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225000, People's Republic of China.
| |
Collapse
|
4
|
Liu S, Wang Y, Weng L, Wu J, Man Q, Xia Y, Huang LH. Water-stable hydrophilic metal organic framework composite for the recognition of N-glycopeptides during diabetes progression by mass spectrometry. Mikrochim Acta 2023; 191:11. [PMID: 38055058 DOI: 10.1007/s00604-023-06052-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
A hydrophilic Al-MOFs composite was prepared using cheap and available reagents in water via a suitable large-scale production, an economical and environment-friendly method for capturing N-glycopeptides. The prepared Al-MOFs composite with high hydrolytically stable and hydrophilic 1D channels exhibits an ultralow detection limit (0.5 fmol/μL), and excellent reusability (at least 10 cycles) in the capture of N-glycopeptides from standard bio-samples. Interestingly, the Al-MOFs composite also shows remarkable performance in practical applications, where 300 N-glycopeptides ascribed to 124 glycoproteins were identified in 1 µL human serum and were successfully applied in profiling the differences of N-glycopeptides during diabetes progression. Moreover, 12 specific glycoproteins used as biomarkers to accurately distinguish the progression of diabetes are identified. The present work provides a potential commercial method for large-scale glycoproteomics research in complex clinical samples while offering new guidance for the precise diagnosis of diabetes progression.
Collapse
Affiliation(s)
- Shuangshuang Liu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Lingxiao Weng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China
| | - Jiaqi Wu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, China.
| | - Yan Xia
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200438, China.
- School of Materials Science and Engineering, NingboTech University, Ningbo, 315100, China.
| | - Li-Hao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Ji Y, Li H, Dong J, Lin J, Lin Z. Super-hydrophilic sulfonate-modified covalent organic framework nanosheets for efficient separation and enrichment of glycopeptides. J Chromatogr A 2023; 1699:464020. [PMID: 37104947 DOI: 10.1016/j.chroma.2023.464020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Highly efficient extraction of glycopeptides prior to mass spectrometry detection is extremely crucial for glycoproteomic research, especially in disease biomarker research. Reported here is the first time by applying two-dimensional (2D) covalent organic framework (COFs) nanosheets for highly efficient enrichment of glycopeptides. Particularly, by incorporating hydrophilic monomers through a bottom-up strategy, the 2D COF nanosheets (denoted as NUS-9) displayed an ultra-high graft density of sulfonic groups and super-hydrophilicity. In addition, because of the large surface area, low steric hindrance, high chemical stability, and abundant accessibility sites of 2D COF nanosheets, NUS-9 exhibited remarkable efficiency for glycopeptide enrichment, involving excellent detection sensitivity (0.01 fmol μL-1), outstanding enrichment capability, and good enrichment selectivity (1:1500, horseradish peroxidase (HRP) tryptic digest to bovine serum albumin (BSA) tryptic digest), and recovery (92.2 ± 2.0%). Moreover, the NUS-9 was able to unambiguously detect 631 endogenous glycopeptides from human saliva, demonstrating an unparalleled high efficiency in glycopeptide enrichment. Gene ontology analyses of proteins from human saliva enriched by NUS-9 demonstrated its potential for comprehensive glycoproteome analysis.
Collapse
Affiliation(s)
- Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiashi Lin
- College of Physical Education, Jimei University, Xiamen, Fujian, 361021, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
6
|
Lu Y, Du C, Ying H, Lin Y, Gu Q, Kong F, Zhao H, Lan M. Facile fabrication of hydrophilic covalent organic framework composites for highly selective enrichment of N-glycopeptides. Talanta 2023; 259:124524. [PMID: 37054624 DOI: 10.1016/j.talanta.2023.124524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023]
Abstract
The development of facilely synthetic materials acts an essential role in glycoproteome analysis, especially for the highly efficient enrichment of N-linked glycopeptides. In this work, a facile and timesaving route was introduced in which COFTP-TAPT served as a carrier and poly (ethylenimine) (PEI) and carrageenan (Carr) were successively coated on the surface via electrostatic interaction. The resultant COFTP-TAPT@PEI@Carr showed remarkable performance in glycopeptide enrichment with high sensitivity (2 fmol μL-1), high selectivity (1:800, molar ratio of human serum IgG to BSA digests), large loading capacity (300 mg g-1), satisfactory recovery (102.4 ± 6.0%) and reusability (at least eight times). Due to the brilliant hydrophilicity and electrostatic interactions between COFTP-TAPT@PEI@Carr and positively charged glycopeptides, the prepared materials could be applied in the identification and analysis in the human plasma of healthy subjects and patients with nasopharyngeal carcinoma. As a result, 113 N-glycopeptides with 141 glycosylation sites corresponding to 59 proteins and 144 N-glycopeptides with 177 glycosylation sites corresponding to 67 proteins were enriched from 2 μL plasma trypsin digests of the control groups and patients with nasopharyngeal carcinoma, respectively. 22 glycopeptides were identified only from the normal controls and 53 glycopeptides were detected only from the other set. The results demonstrated that this hydrophilic material was promising on a large scale and further N-glycoproteome research.
Collapse
Affiliation(s)
- Yichen Lu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengrun Du
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongmei Ying
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China.
| | - Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Fangfang Kong
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Shanghai, 200032, China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
7
|
Wang N, Zhou X, Cui B. Recent advances and applications of magnetic covalent organic frameworks in food analysis. J Chromatogr A 2023; 1687:463702. [PMID: 36508770 DOI: 10.1016/j.chroma.2022.463702] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022]
Abstract
Recently, covalent organic frameworks (COFs) have been widely used to prepare magnetic adsorbents for food analysis due to their highly tunable porosity, large specific surface area, excellent chemical and thermal stability and large delocalised π-electron system. This review summarises the main types and preparation methods of magnetic COFs and their applications in food analysis for the detection of pesticide residues, veterinary drugs, endocrine-disrupting phenols and estrogens, plasticisers and other food contaminants. Furthermore, challenges and future outlook in the development of magnetic COFs for food analysis are discussed.
Collapse
Affiliation(s)
- Na Wang
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuesheng Zhou
- School of automotive engineering, ShanDong JiaoTong University, Jinan 250357, China.
| | - Bo Cui
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Ma M, Lu X, Guo Y, Wang L, Liang X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Gu H, Liu X, Wang S, Chen Z, Yang H, Hu B, Shen C, Wang X. COF-Based Composites: Extraordinary Removal Performance for Heavy Metals and Radionuclides from Aqueous Solutions. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:23. [DOI: doi.org/10.1007/s44169-022-00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/30/2022] [Indexed: 06/25/2023]
|
11
|
Liu Z, Xu M, Zhang W, Miao X, Wang PG, Li S, Yang S. Recent development in hydrophilic interaction liquid chromatography stationary materials for glycopeptide analysis. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4437-4448. [PMID: 36300821 DOI: 10.1039/d2ay01369j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Protein glycosylation is one of the most important post-translational modifications, and aberrant glycosylation is associated with the occurrence and development of diseases. Deciphering abnormal glycosylation changes can identify disease-specific signatures to facilitate the discovery of potential disease biomarkers. However, glycosylation analysis is challenging due to the diversity of glycans, heterogeneity of glycosites, and poor electrospray ionization of mass spectrometry. To overcome these obstacles, glycosylation is often elucidated using enriched glycopeptides by removing highly abundant non-glycopeptides. Hydrophilic interaction liquid chromatography (HILIC) is widely used for glycopeptide enrichment due to its excellent selectivity and specificity to hydrophilic glycans and compatibility with mass spectrometry. However, the development of HILIC has lagged far behind hydrophobic interaction chromatography, so efforts to further improve the performance of HILIC are beneficial for glycosylation analysis. This review discusses recent developments in HILIC materials and their advanced applications. Based on the physiochemical properties of glycopeptides, the use of amino acids or peptides as stationary phases showed improved enrichment and separation of glycopeptides. We can envision that the use of glycopeptides as stationary phases would definitely further improve the selectivity and specificity of HILIC for glycosylation analysis.
Collapse
Affiliation(s)
- Zhaoliang Liu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Mingming Xu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Xinyu Miao
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Perry G Wang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Shuwei Li
- Nanjing Apollomics Biotech, Inc., Nanjing, Jiangsu 210033, China.
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Jiangsu, 215123, China.
| |
Collapse
|
12
|
Lu Q, Lin S, Ding Q, Zhang H, Tong P, Fang M, Zhang W, Zhang L. An agaric-like covalent organic framework composite for efficient extraction of trace cytokinins in plant samples. J Chromatogr A 2022; 1683:463524. [DOI: 10.1016/j.chroma.2022.463524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 10/31/2022]
|
13
|
Ji Y, He Y, Chen R, Zhong C, Li H, Wu Y, Lin Z. Hydrophilic glutathione-modified flower-like hollow covalent organic frameworks for highly efficient capture of N-linked glycopeptides. J Mater Chem B 2022; 10:6507-6513. [PMID: 35993272 DOI: 10.1039/d2tb01403c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly efficient enrichment of N-glycopeptides from complicated biosamples based on mass spectrometry is essential for biomedical applications, especially in disease biomarker research. In this work, glutathione (GSH)-modified hierarchical flower-like hollow covalent organic frameworks loaded with Au nanoparticles (HFH-COFs@Au@GSH) were synthesized for N-glycopeptide enrichment. Due to the abundant accessibility sites, high specific surface area, and inherent high stability of the hierarchical flower-like hollow structure, a large number of Au NPs and hydrophilic GSH can be modified on the HFH-COFs. The HFH-COFs@Au@GSH displayed excellent hydrophilicity and remarkable enrichment performance for N-glycopeptides: low detection limit (0.1 fmol μL-1), large adsorption capacity (200 μg mg-1), great selectivity (1 : 1000, HRP to BSA), and good reusability (at least 5 times). Furthermore, the HFH-COFs@Au@GSH were successfully applied to capture N-linked glycopeptides in human serum, and 308 N-glycosylation peptides corresponding to 84 N-glycosylation proteins with 123 N-glycosylation sites were detected. Gene ontology analyses were used to elucidate the cellular component, biological process and molecular function of detected glycoproteins in human serum, demonstrating the great potential of the HFH-COFs@Au@GSH in N-glycopeptide enrichment for glycoproteomic analysis of complex biological samples.
Collapse
Affiliation(s)
- Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yanting He
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, Anhui, 233000, China
| | - Ruibing Chen
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chao Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Yijing Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
14
|
Rao D, Wang B, Zhong H, Yan Y, Ding CF. Construction of boric acid-functionalized metal-organic frameworks for glycopeptide recognition in the serum of cervical cancer patients. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9314. [PMID: 35445465 DOI: 10.1002/rcm.9314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
RATIONALE Cervical cancer is one of the most common malignant tumors in women, and it is essential to explore potential biomarkers such as glycopeptides closely related to cancer in physiological samples of cervical cancer patients. Sample pretreatment is required before direct detection using mass spectrometry because there are certain limitations. Meanwhile, it is still highly desired to promote the functionalization and application of metal-organic framework (MOF)-derived materials. METHODS Using a post-synthesis modification method, a novel type of boric acid-functionalized MOF probe (designated as UiO-66@PEI@Au@B(OH)2 ) is prepared for recognition of glycopeptides. The results are obtained using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano-liquid chromarography-tandem mass spectrometry. RESULTS The UiO-66@PEI@Au@B(OH)2 probe exhibits a low detection limit (0.6 fmol μL-1 ), an excellent recovery rate, comparatively good reusability and selectivity (HRP digests:BSA digests = 1:500). When UiO-66@PEI@Au@B(OH)2 is used to selectively capture glycopeptides from the serum of a healthy person and a cervical cancer patient, 101 glycopeptides corresponding to 54 glycoproteins and 108 glycopeptides corresponding to 57 glycoproteins are detected, respectively. CONCLUSIONS The successful preparation of UiO-66@PEI@Au@B(OH)2 provides a path for the investigation of the functionalization of MOF-derived materials. The excellent performance of UiO-66@PEI@Au@B(OH)2 not only demonstrates the huge potential of functionalized MOFs in the glycoproteome, but also opens up new phases of the application of MOF-based materials.
Collapse
Affiliation(s)
- Dongping Rao
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Baichun Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Huizhen Zhong
- Ningbo Women and Children's Hospital, Ningbo, Zhejiang, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
15
|
Xu W, Cao JF, Zhang XP, Shu Y, Wang JH. The concurrent enrichment of glycoproteins and phosphoproteins with polyoxometalate-covalent organic framework conjugate as the adsorbent. J Chromatogr A 2022; 1675:463183. [DOI: 10.1016/j.chroma.2022.463183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022]
|
16
|
Continuous photocatalysis via Z-scheme based nanocatalyst system for environmental remediation of pharmaceutically active compound: Modification, reaction site, defect engineering and challenges on the nanocatalyst. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Su P, Li M, Li X, Yuan X, Gong Z, Wu L, Song J, Yang Y. Glutathione functionalized magnetic covalent organic frameworks with dual-hydrophilicity for highly efficient and selective enrichment of glycopeptides. J Chromatogr A 2022; 1667:462869. [DOI: 10.1016/j.chroma.2022.462869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/31/2022]
|
18
|
Xie Z, Yan Y, Tang K, Ding CF. Post-synthesis modification of covalent organic frameworks for ultrahigh enrichment of low-abundance glycopeptides from human saliva and serum. Talanta 2022; 236:122831. [PMID: 34635221 DOI: 10.1016/j.talanta.2021.122831] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
In this study, a novel type of covalent organic framework (COF) material rich in boronic acid sites was prepared through post-synthesis modification (TbBD@PEI@Au@4-MPBA). The surface of COF material had abundant carboxylic acid groups, which could bind a large amount of polyethyleneimine (PEI) through electrostatic interaction. At the same time, the amino groups on the PEI can be grafted with Au nanoparticles (Au NPs) in situ, and then 4-mercaptophenylboronic acid (4-MPBA) was modified by the reaction of Au and sulfhydryl groups. The massive grafting of boronic acid groups made the material's enrichment effect on glycopeptides expected. The results of experiments indicated that the composite material has high sensitivity (5 amol μL-1) and selectivity (1:1000). In addition, the material has outstanding stability and reusability, with a load capacity of about 100 mg g-1 and a recovery of 99.3 ± 2.2%. What's more, after enriched by TbBD@PEI@Au@4-MPBA, 56 endogenous glycopeptides from fresh human saliva were detected by MALDI-TOF MS, 56 unique glycopeptides corresponding to 31 glycoproteins from human saliva and 513 unique glycopeptides corresponding to 208 glycoproteins from serum of throat cancer patient were detected by nano-LC-MS/MS, respectively, which was expected to be applied to glycoproteomics research.
Collapse
Affiliation(s)
- Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
19
|
Meng Z, Mirica KA. Covalent organic frameworks as multifunctional materials for chemical detection. Chem Soc Rev 2021; 50:13498-13558. [PMID: 34787136 PMCID: PMC9264329 DOI: 10.1039/d1cs00600b] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 12/17/2022]
Abstract
Sensitive and selective detection of chemical and biological analytes is critical in various scientific and technological fields. As an emerging class of multifunctional materials, covalent organic frameworks (COFs) with their unique properties of chemical modularity, large surface area, high stability, low density, and tunable pore sizes and functionalities, which together define their programmable properties, show promise in advancing chemical detection. This review demonstrates the recent progress in chemical detection where COFs constitute an integral component of the achieved function. This review highlights how the unique properties of COFs can be harnessed to develop different types of chemical detection systems based on the principles of chromism, luminescence, electrical transduction, chromatography, spectrometry, and others to achieve highly sensitive and selective detection of various analytes, ranging from gases, volatiles, ions, to biomolecules. The key parameters of detection performance for target analytes are summarized, compared, and analyzed from the perspective of the detection mechanism and structure-property-performance correlations of COFs. Conclusions summarize the current accomplishments and analyze the challenges and limitations that exist for chemical detection under different mechanisms. Perspectives on how future directions of research can advance the COF-based chemical detection through innovation in novel COF design and synthesis, progress in device fabrication, and exploration of novel modes of detection are also discussed.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| | - Katherine A Mirica
- Department of Chemistry, Burke Laboratory, 41 College Street, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
20
|
Li J, He Y, Zou Y, Yan Y, Song Z, Shi X. Achieving a stable COF with the combination of “flat” and “twist” large-size rigid synthons for selective gas adsorption and separation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
22
|
Kumar S, Kulkarni VV, Jangir R. Covalent‐Organic Framework Composites: A Review Report on Synthesis Methods. ChemistrySelect 2021. [DOI: 10.1002/slct.202102435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shubham Kumar
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat INDIA
| | - Vihangraj V. Kulkarni
- Faculty of Environmental Engineering Department of Civil Engineering National Institute of Technology Silchar Silchar 788010 Assam INDIA
| | - Ritambhara Jangir
- Department of Chemistry Sardar Vallabhbhai National Institute of Technology, Ichchanath Surat 395 007 Gujarat, INDIA
| |
Collapse
|
23
|
GAO W, BAI Y, LIU H. [Recent advances in functionalized magnetic nanomaterials for glycoprotein and glycopeptide enrichment]. Se Pu 2021; 39:981-988. [PMID: 34486837 PMCID: PMC9404082 DOI: 10.3724/sp.j.1123.2021.08012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Protein glycosylation is among the most common and important post-translational modifications, and plays an important regulatory role in many biological processes, including signal transduction, protein translation, and immune response. Abnormal protein glycosylation is also associated with numerous diseases, suggesting that glycoproteins may offer an array of useful disease biomarkers. Mass spectrometry (MS) has become an important analytical tool in glycoproteomics. However, the low abundance and weak ionization efficiency of glycopeptides have hindered direct mass spectrometric analyses, which remain considerably challenging. Glycoprotein and glycopeptide enrichment from complex biological samples is an important step in glycoproteomics. Diverse methods have recently been developed for specific glycoprotein and glycopeptide enrichment, including hydrophilic interaction liquid chromatography (HILIC), lectin affinity chromatography, boronate affinity chromatography, and hydrazide functional affinity chromatography. A variety of enrichment materials designed for the above strategies have been developed to meet the requirement of enriching low abundance glycoproteins and glycopeptides in complex samples. Magnetic solid phase extraction (MSPE) is an efficient sample pretreatment technology that offers advantages of simple operation, low cost, and high extraction efficiency. Functionalized magnetic nanomaterials have been widely used as adsorbents in glycoproteome studies. Since magnetic adsorbent is a key factor in MSPE, in this review, the preparation of magnetic nanomaterials functionalized with sugars, ionic liquids, lectins, boronate affinity ligands, metal organic frameworks, and covalent organic frameworks, and their applications in glycoprotein and glycopeptide enrichment are summarized. These functional magnetic nanomaterials possess high specific surface area and a large number of active adsorption sites, allowing different enrichment mechanisms, including HILIC, lectin affinity chromatography, and boronate and hydrazide functional affinity chromatography. These functional magnetic nanomaterials are mainly used to enrich glycoproteins and glycopeptides in serum, plasma, cells, tissues, saliva and other biological samples. Nearly 90 papers published in the last decade from the Science Citation Index (SCI) and Chinese core journals have been cited in this paper. Finally, the development and prospects of magnetic nanomaterials in glycoprotein and glycopeptide enrichment are also discussed.
Collapse
Affiliation(s)
- Wenjie GAO
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu BAI
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei LIU
- 北京大学化学与分子工程学院, 北京分子科学国家实验室, 北京 100871
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Kujawa J, Al-Gharabli S, Muzioł TM, Knozowska K, Li G, Dumée LF, Kujawski W. Crystalline porous frameworks as nano-enhancers for membrane liquid separation – Recent developments. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
[Covalent organic framework functional materials and their applications in glycopeptide enrichment]. Se Pu 2021; 39:588-598. [PMID: 34227319 PMCID: PMC9404058 DOI: 10.3724/sp.j.1123.2021.02001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
蛋白质糖基化是生物体中最重要的翻译后修饰手段之一,糖蛋白/糖肽的有效分离和富集成为目前糖蛋白组学研究的首要问题。对于复杂的生物样本,糖蛋白的数量较少,酶解后大量高丰度非糖基化修饰肽的存在,使得低丰度糖肽的检测更加困难。因此,需要一些手段来有效地富集糖肽以提高其检测丰度,发展高选择性的糖肽富集材料及方法就成为在分子水平上有效地监测糖蛋白或糖肽的重要途径。相对于传统的糖肽富集材料,共价有机骨架材料具有比表面积大和可修饰位点丰富的优点,在糖肽富集领域具有很大的应用潜力。该文制备了一种新型的共价有机骨架材料(O-T-D-COFs),利用1,3,5-三(4-氨苯基)苯和2,5-二甲氧基苯-1,4-二甲醛作为反应单体通过共聚缩合反应生成的席夫碱构成了材料的框架,对合成后的中间体材料进行氧化处理,从而提高材料的富集性能。利用扫描电镜、透射电镜、红外光谱和固体核磁等表征技术对材料的结构进行了表征,并将其应用于糖肽的选择性富集。分别对富集过程的上样条件、淋洗条件、洗脱条件进行了优化,结合质谱检测技术,从人血清免疫球蛋白G酶解液中观察到32个明显的糖肽信号峰。通过模拟复杂样本体系验证材料富集选择性,在人血清免疫球蛋白G和牛血清白蛋白的酶解液混合物摩尔比达到1∶50时,该材料仍然保持了良好的选择性。此外,还考察了材料的检测限、富集容量、回收率等富集性能,及在实际样品中的应用潜力。以人血清免疫球蛋白G为评价对象,O-T-D-COFs具有较低的检测限(2.5 fmol/μL)、较高的富集容量(120 mg/g),及较好的富集回收率(103.5%±6.6%、101.5%±10.4%)。在血清样品中富集到来自53个N-糖蛋白中的86个N-糖肽序列,并鉴定到了94个N-糖基化位点。这些结果都表明,该材料在糖肽富集领域有较好的应用前景。
Collapse
|
26
|
Luo B, Li G, Li Z, He J, Zhou J, Wu L, Lan F, Wu Y. Construction of a magnetic covalent organic framework with synergistic affinity strategy for enhanced glycopeptide enrichment. J Mater Chem B 2021; 9:6377-6386. [PMID: 34296732 DOI: 10.1039/d1tb01168e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considering the inherent properties of glycopeptides, such as glycan structure, size, and hydrophilicity, affinity materials possessing suitable functional molecule-glycan interactions, matched channels with size exclusion, and surfaces with hydrophilic interactions are preferred for glycopeptide separation in biological samples. Here, a novel boronic-acid-functionalized magnetic covalent organic framework was prepared through epitaxial growth and multi-ligand strategies. The multi-ligand strategy was firstly employed to prepare functionalized magnetic covalent organic framework without any post-functionalization protocol. Notably, the proposed strategy was found to be time saving, robust, and reproducible. The versatile magnetic covalent organic framework nanocomposite was endowed with phenylboronic acid functional molecules, strong hydrophilic features, mesoporous channels, fast magnetic responsiveness, and a large surface area. Benefitting from multiple affinity interactions, namely, synergistic reversible covalent interactions and hydrophilic affinity interactions, the nanocomposite presented extremely high performance in the recognition of intact N-glycopeptides. The inherent properties endowed the nanocomposite with excellent enrichment performance for N-glycopeptides: excellent selectivity (1 : 2000, IgG/BSA, m/m), an ultralow detection limit (0.05 fmol μL-1), and a good size-exclusion effect (1 : 500, IgG digests/BSA, m/m). More excitingly, a total of 1921 unique intact glycopeptides assigned to 1154 glycoproteins were identified from rat liver tissue; this performance is superior to that of commercial products. Additionally, the nanocomposite was successfully applied to enrich intact glycopeptides of exosomes extracted from healthy individuals and renal failure patients, providing a novel concept for the design of materials using a synergistic affinity strategy for sample preparation in glycoproteomics.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tian Y, Tang R, Wang X, Zhou J, Li X, Ma S, Gong B, Ou J. Bioinspired dandelion-like silica nanoparticles modified with L-glutathione for highly efficient enrichment of N-glycopeptides in biological samples. Anal Chim Acta 2021; 1173:338694. [PMID: 34172155 DOI: 10.1016/j.aca.2021.338694] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
The pretreatment of complicated biological samples to eliminate the interference of nonglycopeptides and improve the efficiency of glycopeptides detection is crucial in glycoproteomics research. Hydrophilic interaction chromatography (HILIC) has been adopted for enrichment of glycosylated peptides following identification with mass spectrometry, but it is still urgent to develop novel hydrophilic materials to save cost and improve enrichment efficiency. Scientists are pursuing to fabricate freestanding intelligent artificial materials. One promising approach is to use biomimic material. In our case, "one-pot" strategy was developed to prepare bioinspired nano-core-shell silica microspheres (CSSMs), employing tetrapropylorthosilicate as the silicon source and phenolic resin as the soft template. The pore structure of the obtained microspheres diverged from the center to the outside with diameter ranged from 150 to 340 nm, and shell layer ranged from 25 to 83 nm by adjusting the preparation parameters. Some of them showed dandelion-like morphology. After hydrophilic modification, these CSSMs exhibited great hydrophilicity and could be used as sorbents for enriching N-glycopeptides from complicated biological samples in HILIC. Up to 594 unique N-glycopeptides and 367 N-glycosylation sites from 182 N-glycoproteins were unambiguously identified from 2 μL of human serum, which was superior to the enrichment performance of many HILIC materials in reported papers, demonstrating great potential advantages in proteomic application.
Collapse
Affiliation(s)
- Yang Tian
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xia Wang
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiahua Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- College of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
28
|
Li Q, Wu JT, Liu Y, Qi XM, Jin HG, Yang C, Liu J, Li GL, He QG. Recent advances in black phosphorus-based electrochemical sensors: A review. Anal Chim Acta 2021; 1170:338480. [PMID: 34090586 DOI: 10.1016/j.aca.2021.338480] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Since the discovery of liquid-phase-exfoliated black phosphorus (BP) as a field-effect transistor in 2014, BP, with its 2D layered structure, has attracted significant attention, owing to its anisotropic electroconductivity, tunable direct bandgap, extraordinary surface activity, moderate switching ratio, high hole mobility, good biocompatibility, and biodegradability. Several pioneering research efforts have explored the application of BP in different types of electrochemical sensors. This review summarizes the latest synthesis methods, protection strategies, and electrochemical sensing applications of BP and its derivatives. The typical synthesis methods for BP-based crystals, nanosheets, and quantum dots are discussed in detail; the degradation of BP under ambient conditions is introduced; and state-of-the-art protection methodologies for enhancing BP stability are explored. Various electrochemical sensing applications, including chemically modified electrodes, electrochemiluminescence sensors, enzyme electrodes, electrochemical aptasensors, electrochemical immunosensors, and ion-selective electrodes are discussed in detail, along with the mechanisms of BP functionalization, sensing strategies, and sensing properties. Finally, the major challenges in this field are outlined and future research avenues for BP-based electrochemical sensors are highlighted.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jing-Tao Wu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ying Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Man Qi
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Hong-Guang Jin
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, 410114, China
| | - Chun Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Jun Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Guang-Li Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Quan-Guo He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| |
Collapse
|
29
|
Kou X, Tong L, Huang S, Chen G, Zhu F, Ouyang G. Recent advances of covalent organic frameworks and their application in sample preparation of biological analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116182] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
|
31
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
32
|
Liu Y, Zhou W, Teo WL, Wang K, Zhang L, Zeng Y, Zhao Y. Covalent-Organic-Framework-Based Composite Materials. Chem 2020. [DOI: 10.1016/j.chempr.2020.08.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Molecules 2020; 25:E5404. [PMID: 33218211 PMCID: PMC7699276 DOI: 10.3390/molecules25225404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.
Collapse
Affiliation(s)
- Jenni J. Jarju
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Ana M. Lavender
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Vanesa Romero
- Department of Food and Analytical Chemistry, Marine Research Center (CIM), University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| |
Collapse
|
34
|
Deng L, Kang X, Zhang K, Gao M, Fu Q, Xia Z, Gao D. Fabrication of covalent organic frameworks and its selective extraction of fluoronitrobenzenes from environmental samples. J Chromatogr A 2020; 1635:461704. [PMID: 33223152 DOI: 10.1016/j.chroma.2020.461704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 02/02/2023]
Abstract
In this study, porous covalent organic frameworks (COFs, named as COFs-SWMU) were synthesized for the first time via a facile approach by using 4,4',4''-methylidynetri-anilin and 2,5-dihydroxy-1,4-benzenedicarboxaldehyde as precursors under ambient temperature. The COFs-SWMU were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy, thermogravimetric analysis, etc. The COFs-SWMU exhibited a relatively high specific surface area and desirable thermal stability. The adsorption performance of COFs-SWMU towards fluoronitrobenzenes (FNBs, including 1-fluoro-2-nitrobenzene, 1-fluoro-3-nitrobenzene, 1-fluoro-4-nitrobenzene, 2,4-difluoronitrobenzene, 3,4-difluoronitrobenzene, and 3,4-dinitrofluorobenzene) was investigated on the basis of adsorption capacity and partition coefficient (PC). The adsorption kinetics and isotherm of COFs-SWMU for FNBs were studied in detail. Further, a simple, fast and sensitive method which combined COFs-SWMU based extraction with high-performance liquid chromatography-diode array detection, was proposed for the analysis of FNBs in environmental samples. Desirable linearity (R2>0.9998) in the range of 0.1-100 μg•mL-1, low limits of detection (LODs; 0.1‒0.15 μg•mL‒1), low limits of quantitation (LOQs; 0.28‒0.40 μg•mL‒1), and desirable precision (RSDs, 0.24-2.83% for intraday and 1.13-6.92% for interday) are obtained. Finally, the COFs-SWMU were applied to the effective extraction of FNBs from environmental samples, and desirable recovery results were obtained.
Collapse
Affiliation(s)
- Linlin Deng
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xun Kang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Kailian Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Manjie Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Qifeng Fu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zhining Xia
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
35
|
Advances in magnetic porous organic frameworks for analysis and adsorption applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Benyettou F, Das G, Nair AR, Prakasam T, Shinde DB, Sharma SK, Whelan J, Lalatonne Y, Traboulsi H, Pasricha R, Abdullah O, Jagannathan R, Lai Z, Motte L, Gándara F, Sadler KC, Trabolsi A. Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. J Am Chem Soc 2020; 142:18782-18794. [PMID: 33090806 DOI: 10.1021/jacs.0c05381] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanoscale imine-linked covalent organic frameworks (nCOFs) were first loaded with the anticancer drug Doxorubicin (Dox), coated with magnetic iron oxide nanoparticles (γ-Fe2O3 NPs), and stabilized with a shell of poly(l-lysine) cationic polymer (PLL) for simultaneous synergistic thermo-chemotherapy treatment and MRI imaging. The pH responsivity of the resulting nanoagents (γ-SD/PLL) allowed the release of the drug selectively within the acidic microenvironment of late endosomes and lysosomes of cancer cells (pH 5.4) and not in physiological conditions (pH 7.4). γ-SD/PLL could efficiently generate high heat (48 °C) upon exposure to an alternating magnetic field due to the nCOF porous structure that facilitates the heat conduction, making γ-SD/PLL excellent heat mediators in an aqueous solution. The drug-loaded magnetic nCOF composites were cytotoxic due to the synergistic toxicity of Dox and the effects of hyperthermia in vitro on glioblastoma U251-MG cells and in vivo on zebrafish embryos, but they were not significantly toxic to noncancerous cells (HEK293). To the best of our knowledge, this is the first report of multimodal MRI probe and chemo-thermotherapeutic magnetic nCOF composites.
Collapse
Affiliation(s)
- Farah Benyettou
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Gobinda Das
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Anjana Ramdas Nair
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | | | - Digambar B Shinde
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Sudhir Kumar Sharma
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jamie Whelan
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Yoann Lalatonne
- Inserm, U1148, Laboratory for Vascular Translational Science, Université Sorbonne Paris Nord, Sorbonne Paris Cité, F-93017 Bobigny, France.,Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Hassan Traboulsi
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Kingdom of Saudi Arabia
| | - Renu Pasricha
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Osama Abdullah
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ramesh Jagannathan
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Zhiping Lai
- Advanced Membranes and Porous Materials Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Laurence Motte
- Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science, LVTS, INSERM, UMR 1148, F-93000 Bobigny, France
| | - Felipe Gándara
- Materials Science Institute of Madrid-CSIC, 28049 Madrid, Spain
| | - Kirsten C Sadler
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Ali Trabolsi
- New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
37
|
Li J, Huan W, Xu K, Wang B, Zhang J, Zhu B, Wu M, Wang J. Gold nanoparticle-glutathione-functionalized porous graphene oxide-based hydrophilic beads for the selective enrichment of N-linked glycopeptides. Mikrochim Acta 2020; 187:518. [PMID: 32851535 DOI: 10.1007/s00604-020-04519-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/18/2020] [Indexed: 12/17/2022]
Abstract
A three-dimensional structured porous graphene oxide-polyethylenimine bead (pGP) is synthesized for immobilizing gold nanoparticles and modifying glutathione molecules (denoted as pGP/AuG). The pGP/AuG has open pore structure, honeycomb-like channels, and excellent hydrophilicity. By taking advantages of the porous structure, abundant binding sites, and multivalent interactions between glycopeptides and both glutathione molecules and free amino groups, the pGP/AuG is adopted to the selective enrichment of N-linked glycopeptides with low limit of detection (2 fmol), high enrichment selectivity (1:500), binding capacity (333.3 mg/g), recovery yield (91.3 ± 2.1%), and repeatability (< 6.0% RSD) using matrix-assisted laser desorption/ionization time of flight mass spectrometry detection method. Furthermore, the practical applicability of pGP/AuG is evaluated, in which 209 N-glycosylated peptides corresponding to 128 N-glycosylated proteins are identified from 1 μL human serum in three independent analysis procedures, suggesting the great potential for application in glycoproteome fields.Graphical abstract Schematic presentation of preparation for porous graphene oxide-based hydrophilic beads (pGP/AuG) with honeycomb-like microstructure. The pGP/AuG was successfully used for enriching and identifying glycopeptides from actual biological sample.
Collapse
Affiliation(s)
- Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China.
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China
| | - Kaiwei Xu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Buchuan Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China
| | - Jingshu Zhang
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| | - Binbin Zhu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China
| | - Minjie Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Zhejiang A& F University, Lin'an, Hangzhou, 311300, China
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| |
Collapse
|
38
|
Yang SS, Wang C, Yu X, Shang W, Chen DDY, Gu ZY. A hydrophilic two-dimensional titanium-based metal-organic framework nanosheets for specific enrichment of glycopeptides. Anal Chim Acta 2020; 1119:60-67. [DOI: 10.1016/j.aca.2020.04.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 11/29/2022]
|
39
|
Porous graphene oxide/chitosan beads with honeycomb-biomimetic microchannels as hydrophilic adsorbent for the selective capture of glycopeptides. Mikrochim Acta 2020; 187:324. [PMID: 32399726 DOI: 10.1007/s00604-020-04266-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
A porous hydrophilic affinity bead consisting of graphene oxide and chitosan (pGC) with the honeycomb-biomimetic microchannels has been synthesized and applied as hydrophilic adsorbent for selective capture of glycopeptides. The pGC beads have open-porous structure, honeycomb-like microchannels, large interior voids, and hydrophilic property. Based on the multivalent hydrophilic interactions between glycan moieties on glycopeptides and amino groups and hydroxyl groups on chitosan, the glycopeptides were enriched and separated by pGC beads. The pGC beads exhibit high sensitivity (detection limit, 5 fmol), binding capacity (111.1 mg/g), enrichment selectivity (molar ratio of human IgG to BSA tryptic digests of 1:200), and recovery yield (89.78%). By combing pGC beads and nano LC-MS/MS analysis, a total of 325 N-glycosylated peptides corresponding to 152 N-glycosylated proteins were identified from 2 μL human serum. These experimental results demonstrate the practical application of the method in glycoproteomics research. Graphical abstract Schematic representation of fabrication for porous hydrophilic affinity beads (pGC) with honeycomb-biomimetic microchannels based on graphene oxide (GO) and chitosan (CS). The pGC was successfully applied to capturing and identifying low-abundant glycopeptides from biological samples.
Collapse
|
40
|
Design of guanidyl-functionalized magnetic covalent organic framework for highly selective capture of endogenous phosphopeptides. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145:122080. [DOI: 10.1016/j.jchromb.2020.122080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
|
41
|
Qing G, Yan J, He X, Li X, Liang X. Recent advances in hydrophilic interaction liquid interaction chromatography materials for glycopeptide enrichment and glycan separation. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Hou C, Zhao D, Chen W, Li H, Zhang S, Liang C. Covalent Organic Framework-Functionalized Magnetic CuFe 2O 4/Ag Nanoparticles for the Reduction of 4-Nitrophenol. NANOMATERIALS 2020; 10:nano10030426. [PMID: 32121177 PMCID: PMC7152833 DOI: 10.3390/nano10030426] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022]
Abstract
In this work, magnetic CuFe2O4/Ag nanoparticles activated by porous covalent organic frameworks (COF) was fabricated to evaluate the heterogenous reduction of 4-nitrophenol (4-NP). The core-shell CuFe2O4/Ag@COF was successfully prepared by polydopamine reduction of silver ions on CuFe2O4 nanoparticles, followed by COF layer condensation. By integrating the intrinsic characteristics of the magnetic CuFe2O4/Ag core and COF layer, the obtained nanocomposite exhibited features of high specific surface area (464.21 m2 g−1), ordered mesoporous structure, strong environment stability, as well as fast magnetic response. Accordingly, the CuFe2O4/Ag@COF catalyst showed good affinity towards 4-NP via π-π stacking interactions and possessed enhanced catalytic activity compared with CuFe2O4/Ag and CuFe2O4@COF. The pseudo-first-order rate constant of CuFe2O4/Ag@COF (0.77 min−1) is 3 and 5 times higher than CuFe2O4/Ag and CuFe2O4@COF, respectively. The characteristics of bi-catalytic CuFe2O4/Ag and the porous COF shell of CuFe2O4/Ag@COF made a contribution to improve the activity of 4-NP reduction. The present work demonstrated a facile strategy to fabricate COF-activated nano-catalysts with enhanced performance in the fields of nitrophenolic wastewater treatment.
Collapse
Affiliation(s)
- Chen Hou
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.Z.); (W.C.); (H.L.)
- Correspondence: (C.H.); (S.Z.); Tel.: +86-1829-207-8770 (C.H.)
| | - Dongyan Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.Z.); (W.C.); (H.L.)
| | - Wenqiang Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.Z.); (W.C.); (H.L.)
| | - Hao Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.Z.); (W.C.); (H.L.)
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an 710021, China; (D.Z.); (W.C.); (H.L.)
- Correspondence: (C.H.); (S.Z.); Tel.: +86-1829-207-8770 (C.H.)
| | - Chen Liang
- Key Laboratory of Clean Pulp & Papermaking and Pollution Control of Guangxi Province, Guangxi University, Nanning 543003, China;
| |
Collapse
|
43
|
Wu Y, Sun N, Deng C. Construction of Magnetic Covalent Organic Frameworks with Inherent Hydrophilicity for Efficiently Enriching Endogenous Glycopeptides in Human Saliva. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9814-9823. [PMID: 32011110 DOI: 10.1021/acsami.9b22601] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, a magnetic covalent organic framework (COF) with inherent hydrophilicity (denoted mCTpBD) was synthesized through interface deposition of a hydrophilic COF shell on amino group-functionalized magnetite particles via the reaction between a carboxyl group-containing monomer and benzidine. Thanks to the superior hydrophilicity, appropriate porous structure, and easy magnetic separation, the resulting mCTpBD exhibited excellent performance in conveniently enriching glycopeptides from standard samples with a high sensitivity of 0.5 fmol μL-1 and strong size-exclusion effect of up to 1:1000 (w/w). Furthermore, by using the mCTpBD adsorbent, endogenous glycopeptides in saliva of healthy people and patients with inflammatory bowel disease were successfully enriched and identified by the combined liquid chromatography-mass spectrometry/mass spectrometry technology, which indicates a promising prospective of core-shell magnetic composite microspheres with a hydrophilic COF shell in glycoproteomics research.
Collapse
Affiliation(s)
- Yonglei Wu
- Department of Chemistry, The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development , Fudan University , Shanghai 200433 , China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital , Fudan University , Shanghai 200433 , China
| | - Chunhui Deng
- Department of Chemistry, The Fifth People's Hospital of Shanghai, Institutes of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development , Fudan University , Shanghai 200433 , China
| |
Collapse
|
44
|
Ding F, Zhao Y, Liu H, Zhang W. Core–shell magnetic microporous covalent organic framework with functionalized Ti(iv) for selective enrichment of phosphopeptides. Analyst 2020; 145:4341-4351. [DOI: 10.1039/d0an00038h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We fabricated a core-shell magnetic Ti4+-functionalized covalent organic framework composite to selectively capture phosphopeptides in biosamples. This method is applicable to achieve rapid, selective and efficient phosphopeptide analysis.
Collapse
Affiliation(s)
- Fengjuan Ding
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Haiyan Liu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- People’ s Republic of China
| |
Collapse
|
45
|
Zhang N, Su Y, Gao Y, Bao T, Wang S. Facile synthesis and immobilization of boroxine polymers containing carbon chains and their application as adsorbents. Polym Chem 2020. [DOI: 10.1039/d0py00797h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel boroxine-linked covalent organic polymers was synthesized and immobilized by one pot reaction for extraction of anthraquinones.
Collapse
Affiliation(s)
- Nan Zhang
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Ying Su
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Yan Gao
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Tao Bao
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| | - Sicen Wang
- School of Pharmacy
- Health Science Center
- Xi'an Jiaotong University
- Xi'an
- 710061
| |
Collapse
|
46
|
One-pot preparation of hydrophilic citric acid-magnetic nanoparticles for identification of glycopeptides in human saliva. Talanta 2020; 206:120178. [DOI: 10.1016/j.talanta.2019.120178] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/07/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
|
47
|
Zhou Y, Xu Y, Zhang C, Emmer Å, Zheng H. Amino Acid-Functionalized Two-Dimensional Hollow Cobalt Sulfide Nanoleaves for the Highly Selective Enrichment of N-Linked Glycopeptides. Anal Chem 2019; 92:2151-2158. [DOI: 10.1021/acs.analchem.9b04740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuye Zhou
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, Stockholm SE−100 44, Sweden
| | - Yang Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Chaochao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Åsa Emmer
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Applied Physical Chemistry, Analytical Chemistry, Stockholm SE−100 44, Sweden
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
48
|
Luo B, He J, Li Z, Lan F, Wu Y. Glutathione-Functionalized Magnetic Covalent Organic Framework Microspheres with Size Exclusion for Endogenous Glycopeptide Recognition in Human Saliva. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47218-47226. [PMID: 31750645 DOI: 10.1021/acsami.9b15905] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Endogenous glycopeptides have been confirmed to play a significant role in multifarious pathological and physiological processes. The low abundance of endogenous glycopeptides and abundant interferents (e.g., large-size proteins and heteropeptides) in complex biological matrices render the direct analysis of endogenous glycopeptides difficult. Reported here is a novel glutathione-functionalized magnetic covalent organic framework microsphere (denoted as MCNC@COF@GSH) endowed with size-exclusion effect and strong hydrophilicity for selective and efficient enrichment of N-linked glycopeptides. The as-prepared MCNC@COF@GSH microspheres possessed fast magnetic responsiveness, regular porosity, large surface areas, and good hydrophilicity, resulting in remarkable performances in N-linked glycopeptide enrichment with low detection limit (0.01 fmol μL-1), high selectivity (1:5000, human immunoglobulin G (IgG) digests to bovine serum albumin digests), excellent size-exclusion effect (IgG digests/IgG/bovine serum albumin (BSA), 1:500:500), and reusability (at least five times). More excitingly, 143 endogenous N-linked glycopeptides were clearly identified from 10 μL sample of human saliva treated with the MCNC@COF@GSH microspheres, which is the unprecedented high efficiency in endogenous N-linked glycopeptide enrichment from human saliva. In addition to providing a strategy for versatile functionalization of magnetic covalent organic frameworks (COFs), this study may be used to develop application of endogenous glycoproteome analysis.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China
| | - Jia He
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China
| | - Zhiyu Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
49
|
Chen Y, Xia L, Liang R, Lu Z, Li L, Huo B, Li G, Hu Y. Advanced materials for sample preparation in recent decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115652] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens Bioelectron 2019; 144:111691. [DOI: 10.1016/j.bios.2019.111691] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/06/2023]
|