1
|
Devassy AMC, Wankhede KD, Kamalakshan A, Mandal S. A robust single compartment peroxide fuel cell using mesoporous antimony doped tin oxide as the cathode material. NANOSCALE 2024; 16:12060-12070. [PMID: 38813765 DOI: 10.1039/d4nr01375a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
To date, metal oxide catalysts have not been explored as cathode materials for robust and high-performance single-compartment H2O2 fuel cells due to significant non-electrochemical disproportionation losses of H2O2 on many metal oxide surfaces. Here, for the first time, we demonstrate an acidic peroxide fuel cell with antimony doped tin oxide as the cathode and widely used Ni foam as the anode material. Our constructed peroxide fuel cell records a superior open circuit potential of nearly 0.82 V and a maximum power density of 0.32 mW cm-2 with high operational stability. The fuel cell performance is further improved by increasing the ionic strength of the electrolyte with the addition of 1 M NaCl, resulting in an increased maximum power density value of 1.1 mW cm-2.
Collapse
Affiliation(s)
| | - Karuna Dagaji Wankhede
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Adithya Kamalakshan
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - Sarthak Mandal
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
2
|
Sun Y, Luo Y, Dai L, Zheng Y, Zhang H, Wang Y. Sn Bulk Phase Doping and Surface Modification on Ti 4 O 7 for Oxygen Reduction to Hydrogen Peroxide. Chemistry 2024; 30:e202303602. [PMID: 38093158 DOI: 10.1002/chem.202303602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 01/05/2024]
Abstract
Developing stable and highly selective two-electron oxygen reduction reaction (2e- ORR) electrocatalysts for producing hydrogen peroxide (H2 O2 ) is considered a major challenge to replace the anthraquinone process and achieve a sustainable green economy. Here, we doped Sn into Ti4 O7 (D-Sn-Ti4 O7 ) by simple polymerization post-calcination method as a high-efficiency 2e- ORR electrocatalyst. In addition, we also applied plain calcination after the grinding method to load Sn on Ti4 O7 (L-Sn-Ti4 O7 ) as a comparison. However, the performance of L-Sn-Ti4 O7 is far inferior to that of the D-Sn-Ti4 O7 . D-Sn-Ti4 O7 exhibits a starting potential of 0.769 V (versus the reversible hydrogen electrode, RHE) and a high H2 O2 selectivity of 95.7 %. Excitingly, the catalyst can maintain a stable current density of 2.43 mA ⋅ cm-2 for 3600 s in our self-made H-type cell, and the cumulative H2 O2 production reaches 359.2 mg ⋅ L-1 within 50,000 s at 0.3 V. The performance of D-Sn-Ti4 O7 is better than that of the non-noble metal 2e- ORR catalysts reported so far. The doping of Sn not only improves the conductivity but also leads to the lattice distortion of Ti4 O7 , further forming more oxygen vacancies and Ti3+ , which greatly improves its 2e- ORR performance compared with the original Ti4 O7 . In contrast, since the Sn on the surface of L-Sn-Ti4 O7 displays a synergistic effect with Tin+ (3≤n≤4) of Ti4 O7 , the active center Tin+ dissociates the O=O bond, making it more inclined to 4e- ORR.
Collapse
Affiliation(s)
- Yue Sun
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Yangjun Luo
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Longhua Dai
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Yanan Zheng
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City, 400044, P.R. China
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China
| |
Collapse
|
3
|
Zheng R, Meng Q, Zhang L, Ge J, Liu C, Xing W, Xiao M. Co-based Catalysts for Selective H 2 O 2 Electroproduction via 2-electron Oxygen Reduction Reaction. Chemistry 2023; 29:e202203180. [PMID: 36378121 DOI: 10.1002/chem.202203180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
Abstract
Electrochemical production of hydrogen peroxide (H2 O2 ) via two-electron oxygen reduction reaction (ORR) process is emerging as a promising alternative method to the conventional anthraquinone process. To realize high-efficiency H2 O2 electrosynthesis, robust and low cost electrocatalysts have been intensively pursued, among which Co-based catalysts attract particular research interests due to the earth-abundance and high selectivity. Here, we provide a comprehensive review on the advancement of Co-based electrocatalyst for H2 O2 electroproduction. The fundamental chemistry of 2-electron ORR is discussed firstly for guiding the rational design of electrocatalysts. Subsequently, the development of Co-based electrocatalysts involving nanoparticles, compounds and single atom catalysts is summarized with the focus on active site identification, structure regulation and mechanism understanding. Moreover, the current challenges and future directions of the Co-based electrocatalysts are briefly summarized in this review.
Collapse
Affiliation(s)
- Ruixue Zheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Qinglei Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Li Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China
| | - Junjie Ge
- School of Chemistry and Material Science, University of Science and Technology of China Hefei, 230026, Anhui, P. R. China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, 130022, Jilin, P. R. China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, P. R. China
| |
Collapse
|
4
|
Feng YC, Wang X, Yi ZY, Wang YQ, Yan HJ, Wang D. In-situ ECSTM investigation of H2O2 production in cobalt—porphyrin-catalyzed oxygen reduction reaction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical Reactors for Continuous Decentralized H 2 O 2 Production. Angew Chem Int Ed Engl 2022; 61:e202205972. [PMID: 35698896 DOI: 10.1002/anie.202205972] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 12/21/2022]
Abstract
The global utilization of H2 O2 is currently around 4 million tons per year and is expected to continue to increase in the future. H2 O2 is mainly produced by the anthraquinone process, which involves multiple steps in terms of alkylanthraquinone hydrogenation/oxidation in organic solvents and liquid-liquid extraction of H2 O2 . The energy-intensive and environmentally unfriendly anthraquinone process does not meet the requirements of sustainable and low-carbon development. The electrocatalytic two-electron (2 e- ) oxygen reduction reaction (ORR) driven by renewable energy (e.g. solar and wind power) offers a more economical, low-carbon, and greener route to produce H2 O2 . However, continuous and decentralized H2 O2 electrosynthesis still poses many challenges. This Minireview first summarizes the development of devices for H2 O2 electrosynthesis, and then introduces each component, the assembly process, and some optimization strategies.
Collapse
Affiliation(s)
- Yichan Wen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianying Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhelun Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| | - Xufang Qian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yixin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Wen Y, Zhang T, Wang J, Pan Z, Wang T, Yamashita H, Qian X, Zhao Y. Electrochemical reactors for continuously decentralized H2O2 production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yichan Wen
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Ting Zhang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Jianying Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Zhelun Pan
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Tianfu Wang
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Hiromi Yamashita
- Shanghai Jiao Tong University Division of Materials and Manufacturing Science, Graduate School of Engineering CHINA
| | - Xufang Qian
- Shanghai Jiao Tong University School of Environmental Science and Engineering CHINA
| | - Yixin Zhao
- Shanghai Jiao Tong University Environmental Science and Engineering 800 Dongchuan Road 44106 Shanghai CHINA
| |
Collapse
|
7
|
Zhao J, Fu C, Ye K, Liang Z, Jiang F, Shen S, Zhao X, Ma L, Shadike Z, Wang X, Zhang J, Jiang K. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat Commun 2022; 13:685. [PMID: 35115516 PMCID: PMC8813992 DOI: 10.1038/s41467-022-28346-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/03/2022] [Indexed: 12/29/2022] Open
Abstract
Electrochemical oxygen reduction could proceed via either 4e--pathway toward maximum chemical-to-electric energy conversion or 2e--pathway toward onsite H2O2 production. Bulk Pt catalysts are known as the best monometallic materials catalyzing O2-to-H2O conversion, however, controversies on the reduction product selectivity are noted for atomic dispersed Pt catalysts. Here, we prepare a series of carbon supported Pt single atom catalyst with varied neighboring dopants and Pt site densities to investigate the local coordination environment effect on branching oxygen reduction pathway. Manipulation of 2e- or 4e- reduction pathways is demonstrated through modification of the Pt coordination environment from Pt-C to Pt-N-C and Pt-S-C, giving rise to a controlled H2O2 selectivity from 23.3% to 81.4% and a turnover frequency ratio of H2O2/H2O from 0.30 to 2.67 at 0.4 V versus reversible hydrogen electrode. Energetic analysis suggests both 2e- and 4e- pathways share a common intermediate of *OOH, Pt-C motif favors its dissociative reduction while Pt-S and Pt-N motifs prefer its direct protonation into H2O2. By taking the Pt-N-C catalyst as a stereotype, we further demonstrate that the maximum H2O2 selectivity can be manipulated from 70 to 20% with increasing Pt site density, providing hints for regulating the stepwise oxygen reduction in different application scenarios.
Collapse
Affiliation(s)
- Jiajun Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cehuang Fu
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke Ye
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zheng Liang
- Laboratory of Energy Chemical Engineering, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangling Jiang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201899, China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoran Zhao
- Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, MA, NY11973, USA
| | - Zulipiya Shadike
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Kun Jiang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Nair AS, Pathak B. Computational strategies to address the catalytic activity of nanoclusters. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Akhil S. Nair
- Discipline of Chemistry Indian Institute of Technology Indore Indore Madhya Pradesh India
| | - Biswarup Pathak
- Discipline of Chemistry Indian Institute of Technology Indore Indore Madhya Pradesh India
| |
Collapse
|
9
|
He J, Luo S, Li Y, Mi H, Sun L, Ren X. First-principles study of binary and ternary alloys based on PdCu as oxygen reduction catalysts. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Nair AS, Ahuja R, Pathak B. Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. NANOSCALE ADVANCES 2020; 2:2410-2421. [PMID: 36133380 PMCID: PMC9418523 DOI: 10.1039/d0na00209g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/21/2020] [Indexed: 05/28/2023]
Abstract
The development of single-atom catalysts (SACs) for chemical reactions of vital importance in the renewable energy sector has emerged as an urgent priority. In this perspective, transition metal-based SACs with monolayer phosphorous (phosphorene) as the supporting material are scrutinized for their electrocatalytic activity towards the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) from first-principle calculations. The detailed screening study has confirmed a breaking of the scaling relationship between the ORR/OER intermediates, resulting in various activity trends across the transition metal series. Groups 9 and 10 transition metal-based SACs are identified as potential catalyst candidates with the platinum single atom offering bifunctional activity for OER and HER with diminished overpotentials. Ambient condition stability analysis of SACs confirmed a different extent of interaction towards oxygen and water compared to pristine phosphorene, suggesting room for improving the stability of phosphorene via chemical functionalization.
Collapse
Affiliation(s)
- Akhil S Nair
- Discipline of Chemistry, Indian Institute of Technology Indore M. P. India
| | - Rajeev Ahuja
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University Box 516 SS-75120 Uppsala Sweden
- Applied Materials Theory Group, Department of Materials and Engineering, Royal Institute of Technology, (KTH) S-10044 Stockholm Sweden
| | - Biswarup Pathak
- Discipline of Chemistry, Indian Institute of Technology Indore M. P. India
| |
Collapse
|
11
|
Chen W, Fu W, Qian G, Zhang B, Chen D, Duan X, Zhou X. Synergistic Pt-WO 3 Dual Active Sites to Boost Hydrogen Production from Ammonia Borane. iScience 2020; 23:100922. [PMID: 32120070 PMCID: PMC7052519 DOI: 10.1016/j.isci.2020.100922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 11/18/2022] Open
Abstract
Development of synergistic heterogeneous catalysts with active sites working cooperatively has been a pursuit of chemists. Herein, we report for the first time the fabrication and manipulation of Pt-WO3 dual-active-sites to boost hydrogen generation from ammonia borane. A combination of DFT calculations, structural characterization, and kinetic (isotopic) analysis reveals that Pt and WO3 act as the active sites for ammonia borane and H2O activation, respectively. A trade-off between the promoting effect of WO3 and the negative effect of decreased Pt binding energy contributes to a volcano-shaped activity, and Pt/CNT-5W delivers a 4-fold increased activity of 710.1 molH2·molPt-1·min-1. Moreover, WO3 is suggested to simultaneously act as the sacrificial site that can divert B-containing by-products away from Pt sites against deactivation, yielding an increase from 24% to 68% of the initial activity after five cycles. The strategy demonstrated here could shed a new light on the design and manipulation of dual-active-site catalysts.
Collapse
Affiliation(s)
- Wenyao Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wenzhao Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Qian
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - De Chen
- Department of Chemical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Xuezhi Duan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
12
|
Sun Y, Han L, Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 2020; 49:6605-6631. [DOI: 10.1039/d0cs00458h] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the design, preparation, and applications of different catalysts for electrochemical and photochemical H2O2 production are summarized, and some invigorating perspectives for future developments are also provided.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Chemistry
- Technical University of Berlin
- 10623 Berlin
- Germany
| | - Lei Han
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Peter Strasser
- Department of Chemistry
- Technical University of Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
13
|
Mahata A, Nair AS, Pathak B. Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00895k] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive evaluation of Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Arup Mahata
- Discipline of Chemistry
- Indian Institute of Technology (IIT) Indore
- Indore
- India
| | - Akhil S. Nair
- Discipline of Chemistry
- Indian Institute of Technology (IIT) Indore
- Indore
- India
| | - Biswarup Pathak
- Discipline of Chemistry
- Indian Institute of Technology (IIT) Indore
- Indore
- India
- Discipline of Metallurgy Engineering and Materials Science
| |
Collapse
|