1
|
Halmagyi TG, Alsharif NB, Berkal MA, Hempenius MA, Szilagyi I, Vancso GJ, Nardin C. Aptamer Clicked Poly(ferrocenylsilanes) at Au Nanoparticles as Platforms with Multiple Function [†]. Chemistry 2024; 30:e202303979. [PMID: 38206093 DOI: 10.1002/chem.202303979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Aptamers are widely used in biosensing due to their specific sensitivity toward many targets. Thus, gold nanoparticle (AuNP) aptasensors are subject to intense research due to the complementary properties of aptamers as sensing elements and AuNPs as transducers. We present herein a novel method for the functional coupling of thrombin-specific aptamers to AuNPs via an anionic, redox-active poly(ferrocenylsilane) (PFS) polyelectroyte. The polymer acts as a co-reductant and stabilizer for the AuNPs, provides grafting sites for the aptamer, and can be used as a redox sensing element, making the aptamer-PFS-AuNP composite (aptamer-AuNP) a promising model system for future multifunctional sensors. The aptamer-AuNPs exhibit excellent colloidal stability in high ionic strength environments owing to the combined electrosteric stabilizing effects of the aptamer and the PFS. The synthesis of each assembly element is described, and the colloidal stability and redox responsiveness are studied. As an example to illustrate applications, we present results for thrombin sensitivity and specificity using the specific aptamer.
Collapse
Affiliation(s)
- Tibor G Halmagyi
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| | - Nizar B Alsharif
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged H-, 6720, Szeged, Hungary
| | - Mohamed A Berkal
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| | - Mark A Hempenius
- Sustainable Polymer Chemistry, University of Twente NL-, 7522NB, Enschede, the Netherlands
| | - Istvan Szilagyi
- MTA-SZTE Momentum Biocolloids Research Group, Department of Physical Chemistry and Materials Science, Interdisciplinary Research Center, University of Szeged H-, 6720, Szeged, Hungary
| | - G Julius Vancso
- Sustainable Polymer Chemistry, University of Twente NL-, 7522NB, Enschede, the Netherlands
| | - Corinne Nardin
- E2S UPPA, CNRS, IPREM, Universite de Pau et des Pays de l'Adour F-, 64053, Pau, France
| |
Collapse
|
2
|
Wei W, He X, Yan K, Hu J, Wang Z, Liu M, Chen J, Cai Z, Sun B, Yu G. Novel small molecule-based organic nanoparticles for second near-infrared photothermal tumor ablation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123668. [PMID: 38029599 DOI: 10.1016/j.saa.2023.123668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Second near-infrared (NIR-II,1000 ∼ 1700 nm) therapeutic window presents an increased tissue penetration and elevated maximal permissible exposure in the application of photothermal therapy (PTT). However, the lack of NIR-II photothermal conversion agents (PCAs) limit their further development. In this work, we rationally designed and successfully developed three novel indolium-like heptamethine cyanine dyes (NFs) by installing N,N-diethylamino on the terminal ends of a conjugated polyene backbone and replacing the middle chlorine atom with o-mercapto benzoic acid and p-mercapto benzoic acid. Notably, NF2 with stronger rotating group encapsulated in organic nanoparticles (NF2 NPs) exhibited high photothermal conversion efficiency (PCE), which could come up to (61.3 %). Then we conducted serial experiments to further investigate PTT capability of NF2 NPs 4 T1 cell line and nude mice bearing 4 T1 tumor. As expected, the resulting NF2 NPs presented the excellent photothermal conversion ability and superb PTT effect both in vivo and in vitro. This study will inspire more work for future design and clinical applications of NIR-II therapeutic agents.
Collapse
Affiliation(s)
- Wanying Wei
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Xiaofan He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Kun Yan
- Department of Cardio-Thoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China
| | - Jinzhong Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Zining Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Jian Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Zhuoer Cai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, PR China.
| | - Guiping Yu
- Department of Cardio-Thoracic Surgery, Jiangyin Clinical College of Xuzhou Medical University, Wuxi 214400, PR China.
| |
Collapse
|
3
|
Manjubaashini N, Daniel Thangadurai T. Unaided-eye detection of diverse Metal ions by AuNPs-based Nanocomposites: A Review. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
4
|
The Influence of Solvents and Colloidal Particles on the Efficiency of Molecular Antioxidants. Antioxidants (Basel) 2022; 12:antiox12010099. [PMID: 36670961 PMCID: PMC9855148 DOI: 10.3390/antiox12010099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
The radical scavenging activity of three molecular antioxidants (trolox, rutin and ellagic acid) was investigated in different solvents with and without added polymer-based colloidal particles (SL-IP-2). Rutin and ellagic acid showed poor solubility in water, preventing the accurate measurement of the effective antioxidant concentration values, which were determined in ethanol/water (EtOH/H2O) mixtures. The presence of trolox and rutin changed neither the surface charge properties nor the size of SL-IP-2 in these solvents, while significant adsorption on SL-IP-2 was observed for ellagic acid leading to overcharging and rapid particle aggregation at appropriately high antioxidant concentrations in EtOH/H2O. The differences in the radical scavenging capacity of trolox and ellagic acid that was observed in homogeneous solutions using water or EtOH/H2O as solvents vanished in the presence of the particles. Rutin lost its activity after addition of SL-IP-2 due to the larger molecular size and lower exposure of the functional groups to the substrate upon interaction with the particles. The obtained results shed light on the importance of the type of solvent and particle-antioxidant interfacial effects on the radical decomposition ability of molecular antioxidants, which is of crucial importance in industrial processes involving heterogeneous systems.
Collapse
|
5
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
6
|
Abdolhosseini M, Zandsalimi F, Moghaddam FS, Tavoosidana G. A review on colorimetric assays for DNA virus detection. J Virol Methods 2022; 301:114461. [PMID: 35031384 DOI: 10.1016/j.jviromet.2022.114461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/22/2022]
Abstract
Early detection is one of the ways to deal with DNA virus widespread prevalence, and it is necessary to know new diagnostic methods and techniques. Colorimetric assays are one of the most advantageous methods in detecting viruses. These methods are based on color change, which can be seen either with the naked eye or with special devices. The aim of this study is to introduce and evaluate effective colorimetric methods based on amplification, nanoparticle, CRISPR/Cas, and Lateral flow in the diagnosis of DNA viruses and to discuss the effectiveness of each of the updated methods. Compared to the other methods, colorimetric assays are preferred for faster detection, high efficiency, cheaper cost, and high sensitivity and specificity. It is expected that the spread of these viruses can be prevented by identifying and developing new methods.
Collapse
Affiliation(s)
- Mansoreh Abdolhosseini
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Zandsalimi
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Salasar Moghaddam
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Tavoosidana
- Molecular Medicine Department, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Szuwarzyński M, Wolski K, Kruk T, Zapotoczny S. Macromolecular strategies for transporting electrons and excitation energy in ordered polymer layers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
You J, Manners I, Dou H. In Situ Preparation of Composite Redox-Active Micelles Bearing Pd Nanoparticles for the Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9089-9097. [PMID: 34279101 DOI: 10.1021/acs.langmuir.1c01154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the redox activity of the poly(ferrocenylsilane)-based polymer, several noble metal nanoparticles can be successfully prepared. As reported herein, the in situ preparation of Pd nanoparticles was performed using a redox-active platform of poly(ferrocenylmethylethylthiocarboxylpropylsilane) (PFC) micelles. PFC/Pd nanocomposites (NCs) with Pd nanoparticles uniformly dispersed at the surface of PFC nanospheres were obtained. The morphology of PFC/Pd NCs was further confirmed via high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. Taking advantage of Pd nanoparticles, the PFC/Pd NCs showed significant catalytic activity during the reduction process of 4-nitrophenol by sodium borohydride. Although PFC micelles themselves showed no catalytic activity, they promoted the catalytic behavior of Pd nanoparticles obviously by anchoring the Pd nanoparticles at their surface to avoid the aggregation and leaching of Pd nanoparticles. In all, PFC/Pd NCs exhibited great potential as a composite nanocatalyst. Moreover, the PFC micelle was found to be a desired platform for nanocatalysts.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, Bristish Columbia V8P 5C2, Canada
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
9
|
Ibrahim N, Jamaluddin ND, Tan LL, Mohd Yusof NY. A Review on the Development of Gold and Silver Nanoparticles-Based Biosensor as a Detection Strategy of Emerging and Pathogenic RNA Virus. SENSORS (BASEL, SWITZERLAND) 2021; 21:5114. [PMID: 34372350 PMCID: PMC8346961 DOI: 10.3390/s21155114] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
The emergence of highly pathogenic and deadly human coronaviruses, namely SARS-CoV and MERS-CoV within the past two decades and currently SARS-CoV-2, have resulted in millions of human death across the world. In addition, other human viral diseases, such as mosquito borne-viral diseases and blood-borne viruses, also contribute to a higher risk of death in severe cases. To date, there is no specific drug or medicine available to cure these human viral diseases. Therefore, the early and rapid detection without compromising the test accuracy is required in order to provide a suitable treatment for the containment of the diseases. Recently, nanomaterials-based biosensors have attracted enormous interest due to their biological activities and unique sensing properties, which enable the detection of analytes such as nucleic acid (DNA or RNA), aptamers, and proteins in clinical samples. In addition, the advances of nanotechnologies also enable the development of miniaturized detection systems for point-of-care (POC) biosensors, which could be a new strategy for detecting human viral diseases. The detection of virus-specific genes by using single-stranded DNA (ssDNA) probes has become a particular interest due to their higher sensitivity and specificity compared to immunological methods based on antibody or antigen for early diagnosis of viral infection. Hence, this review has been developed to provide an overview of the current development of nanoparticles-based biosensors that target pathogenic RNA viruses, toward a robust and effective detection strategy of the existing or newly emerging human viral diseases such as SARS-CoV-2. This review emphasizes the nanoparticles-based biosensors developed using noble metals such as gold (Au) and silver (Ag) by virtue of their powerful characteristics as a signal amplifier or enhancer in the detection of nucleic acid. In addition, this review provides a broad knowledge with respect to several analytical methods involved in the development of nanoparticles-based biosensors for the detection of viral nucleic acid using both optical and electrochemical techniques.
Collapse
Affiliation(s)
- Nadiah Ibrahim
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Nur Diyana Jamaluddin
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.I.); (N.D.J.)
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
10
|
You J, Liu L, Huang W, Manners I, Dou H. Redox-Active Micelle-Based Reaction Platforms for In Situ Preparation of Noble Metal Nanocomposites with Photothermal Conversion Capability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13648-13657. [PMID: 33688724 DOI: 10.1021/acsami.0c21925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polyferrocenylsilane (PFS)-based polymers are an attractive family of organometallic polymers with unique redox-active properties. Herein, we report a novel amphiphilic redox-active PFS-based homopolymer, poly(ferrocenylmethylethylthiocarboxypropylsilane) (PFC), with a hydrophobic backbone chain and hydrophilic carboxylic acid side groups in each repeating unit. Self-assembly was induced by addition of water to a molecularly dispersed solution of PFC in DMSO. Spherical PFC micelles with controllable hydrodynamic diameters (60-180 nm) were obtained under various conditions. These PFC micelles could be readily endocytosed by A549 cells and HUVEC cells and show no significant cytotoxicity toward them at the concentration of 200 μg/mL. On this basis, Au nanoparticles (AuNPs) were prepared through in situ reduction of HAuCl4 by PFC micelles as nanoreactors without requiring any other reductants. The PFC/Au nanocomposites (NCs) were found to exhibit significant photothermal behavior. Moreover, PFC micelles could also act as nanoreactors for other noble metals such as Ag, Pd, and Pt. By taking advantage of properties of the nanostructures and noble metal nanoparticles comprising these materials, the PFC micelles and PFC/noble metal NCs may have great potential in biomedical or catalytic applications.
Collapse
Affiliation(s)
- Jiayi You
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Lingshan Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Wanqiu Huang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Hongjing Dou
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
11
|
Varga G, Somosi Z, Kónya Z, Kukovecz Á, Pálinkó I, Szilagyi I. A colloid chemistry route for the preparation of hierarchically ordered mesoporous layered double hydroxides using surfactants as sacrificial templates. J Colloid Interface Sci 2020; 581:928-938. [PMID: 32956912 DOI: 10.1016/j.jcis.2020.08.118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
Abstract
An efficient synthetic route was developed to prepare hierarchically ordered mesoporous layered double hydroxide (LDH) materials. Sodium dodecyl sulfate (SDS) was used as a sacrificial template to tune the interfacial properties of the LDH materials during the synthetic process. The SDS dose was optimized to obtain stable dispersions of the SDS-LDH composites, which were calcined, then rehydrated to prepare the desired LDH structures. Results of various characterization studies revealed a clear relationship between the colloidal stability of the SDS-LDH precursors and the structural features of the final materials, which was entirely SDS-free. A comparison to the reference LDH prepared by the traditional co-precipitation-calcination-rehydration method in the absence of SDS shed light on a remarkable increase in the specific surface area (one of the highest within the previously reported LDH materials) and pore volume as well as on the formation of a beneficial pore size distribution. As a proof of concept, the mesoporous LDH was applied as adsorbent for removal of nitrate and dichromate anions from aqueous samples, and excellent efficiency was observed in both sorption capacity and recyclability. These results make the obtained LDH a promising candidate as adsorbent in various industrial and environmental processes, wherever the use of mesoporous and organic content-free materials is required.
Collapse
Affiliation(s)
- Gábor Varga
- Materials and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Somosi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Zoltán Kónya
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, H-6720 Szeged, Hungary; Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - István Pálinkó
- Materials and Solution Structure Research Group, Department of Organic Chemistry, University of Szeged, H-6720 Szeged, Hungary
| | - Istvan Szilagyi
- MTA-SZTE Lendület Biocolloids Research Group, Interdisciplinary Excellence Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
12
|
Tavakkoli Yaraki M, Hu F, Daqiqeh Rezaei S, Liu B, Tan YN. Metal-enhancement study of dual functional photosensitizers with aggregation-induced emission and singlet oxygen generation. NANOSCALE ADVANCES 2020; 2:2859-2869. [PMID: 36132415 PMCID: PMC9419615 DOI: 10.1039/d0na00182a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/09/2020] [Indexed: 05/10/2023]
Abstract
Photosensitizers with aggregation-induced emission (AIE-PS) are attractive for image-guided photodynamic therapy due to their dual functional role in generating singlet oxygen and producing high fluorescent signal in the aggregated state. However, their brightness and treatment efficiency maybe limited in current practice. Herein we report the first systematic investigation on the metal-enhanced fluorescence (MEF) and singlet oxygen generation (ME-SOG) ability of our newly synthesized AIE-photosensitizers. The Ag@AIE-PS of varied sizes were prepared via layer-by-layer assembly with controlled distance between silver nanoparticles (AgNPs) and AIE-PS. A maximum of 6-fold enhancement in fluorescence and 2-fold increment in SOG were observed for the 85nmAg@AIE-PS. Comprehensive characterization and simulation were conducted to unravel the plasmon-enhancement mechanisms of Ag@AIE-PS. Results show that MEF of AIE-PS is determined by the enhanced electric field around AgNPs, while ME-SOG is dictated by the scattering efficiency of the metal core, where bigger AgNPs would result in larger enhancement factor. Furthermore, the optimum distance between AgNPs and AIE-PS to achieve maximum SOG enhancement is shorter than that required for the highest MEF. The correlation of MEF and ME-SOG found in this study is useful for designing new a generation of AIE-photosensitizers with high brightness and treatment efficiency towards practical theranostic application in the future.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Fang Hu
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Soroosh Daqiqeh Rezaei
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Department of Mechanical Engineering, National University of Singapore 9 Engineering Drive 1 117575 Singapore
| | - Bin Liu
- Department Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (ASTAR) 138634 Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
13
|
Zhu T, Zhang J, Tang C. Metallo-Polyelectrolytes: Correlating Macromolecular Architectures with Properties and Applications. TRENDS IN CHEMISTRY 2020; 2:227-240. [PMID: 34337370 PMCID: PMC8323828 DOI: 10.1016/j.trechm.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Since the middle of the 20th century, metallopolymers have represented a standalone subfield with a beneficial combination of functionality from inorganic metal centers and processability from the organic polymeric frameworks. Metallo-polyelectrolytes are a new class of soft materials that showcase fundamentally different properties from neutral polymers due to their intrinsically ionic behaviors. This review describes recent trends in metallo-polyelectrolytes and discusses emerging properties and challenges, as well as future directions from a perspective of macromolecular architectures. The correlations between macromolecular architectures and properties are discussed from copolymer self-assembly, metallo-enzymes for biomedical applications, metallo-peptides for catalysis, crosslinked networks, and metallogels.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Jiuyang Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, 211189, Nanjing, PR China
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Zheng XT, Tan YN. Development of Blood-Cell-Selective Fluorescent Biodots for Lysis-Free Leukocyte Imaging and Differential Counting in Whole Blood. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903328. [PMID: 31414726 DOI: 10.1002/smll.201903328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Indexed: 05/23/2023]
Abstract
Complete blood count with leukocyte (white blood cell, WBC) differential is one of the most frequently ordered clinical test for disease diagnosis. Herein, multifunctional fluorescent carbon dots derived from biomolecules (biodots) for rapid lysis-free whole blood analysis are developed. Specifically, two types of biodots are molecularly engineered through hydrothermal synthesis for differential blood cells labeling. Type I biodots synthesized from amino acid (serine/threonine) precursors and passivated with polyethylenimine can label both red blood cells (RBCs) and WBCs with excellent contrast in fluorescence intensity, enabling direct counting of leukocytes in whole blood samples without a tedious RBC lysis step. It also allows three-part leukocyte differential counting by flow cytometry without using expensive fluorophore-conjugated antibodies. On the other hand, Type II biodots synthesized from the same amino acid precursors but passivated with a biopolymer (chitosan) are able to selectively lyse RBCs with greater than 98% efficiency to allow simultaneous fluorescent labeling of leukocytes for WBC counting in whole blood. It is envisioned that these novel nanoreagents, which eliminate the cumbersome lysis and antibody conjugation steps for selective labeling of different blood cells, would revolutionize disease diagnostics toward achieving faster, cheaper, and more accurate whole blood analyses in one test.
Collapse
Affiliation(s)
- Xin Ting Zheng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Singapore
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Department of Chemistry, National University of Singapore, 3 Science Drive, Singapore, 117543, Singapore
| |
Collapse
|
15
|
Tavakkoli Yaraki M, Daqiqeh Rezaei S, Tan YN. Simulation guided design of silver nanostructures for plasmon-enhanced fluorescence, singlet oxygen generation and SERS applications. Phys Chem Chem Phys 2020; 22:5673-5687. [PMID: 32103209 DOI: 10.1039/c9cp06029d] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasmonic nanostructures such as gold and silver could alter the intrinsic properties of fluorophores, photosensitizers or Raman reporters in their close vicinity. In this study, we have conducted systematic simulations to provide insight for the design of silver nanostructures with appropriate geometrical features for metal-enhanced fluorescence (MEF), metal-enhanced singlet oxygen generation (ME-SOG) and surface-enhanced Raman scattering (SERS) applications. The size-dependent optical properties and electric field enhancement of single and dimeric nanocubes were simulated. The extinction spectra of silver nanocubes were analysed by the multipole expansion method. Results show that a suitable size of Ag nanocubes for MEF and ME-SOG can be selected based on their maximum light scattering yield, the excitation and emission wavelengths of a particular fluorophore/photosensitizer and their maximum spectral overlap. Simulations of the 'hot-spot' or gap distance between two silver nanocubes with different configurations (i.e., face-to-face, edge-to-edge and corner-to-corner) were also performed. A direct correlation was found between the size and enhanced electric field around the Ag nanocubes simulated under 15 common Raman laser wavelengths from the UV to near-infrared region. The maximum SERS enhancement factor can be achieved by selecting the silver nanocubes with the right orientation, suitable edge length and gap distance that give the highest electric field at a specific Raman laser wavelength. It was also found that the higher order of silver nanostructures, e.g., trimer and tetramer, can lead to better enhancement effects. These simulation results can serve as generic guidelines to rationally design metal-enhancement systems including MEF, ME-SOG and SERS for different application needs without cumbersome optimization and tedious trial-and-error experimentation.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138634, Singapore
| | | | | |
Collapse
|
16
|
Long Y, Song B, Shi C, Liu W, Gu H. AuNPs composites of gelatin hydrogels crosslinked by ferrocene‐containing polymer as recyclable supported catalysts. J Appl Polym Sci 2019. [DOI: 10.1002/app.48653] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanru Long
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Bin Song
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Chutong Shi
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
| | - Wentao Liu
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of EducationSichuan University Chengdu 610065 China
- National Engineering Laboratory for Clean Technology of Leather ManufactureSichuan University Chengdu 610065 China
| |
Collapse
|
17
|
Zhao VXT, Wong TI, Zheng XT, Tan YN, Zhou X. Colorimetric biosensors for point-of-care virus detections. MATERIALS SCIENCE FOR ENERGY TECHNOLOGIES 2019; 3:237-249. [PMID: 33604529 PMCID: PMC7148662 DOI: 10.1016/j.mset.2019.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 05/05/2023]
Abstract
Colorimetric biosensors can be used to detect a particular analyte through color changes easily by naked eyes or simple portable optical detectors for quantitative measurement. Thus, it is highly attractive for point-of-care detections of harmful viruses to prevent potential pandemic outbreak, as antiviral medication must be administered in a timely fashion. This review paper summaries existing and emerging techniques that can be employed to detect viruses through colorimetric assay design with detailed discussion of their sensing principles, performances as well as pros and cons, with an aim to provide guideline on the selection of suitable colorimetric biosensors for detecting different species of viruses. Among the colorimetric methods for virus detections, loop-mediated isothermal amplification (LAMP) method is more favourable for its faster detection, high efficiency, cheaper cost, and more reliable with high reproducible assay results. Nanoparticle-based colorimetric biosensors, on the other hand, are most suitable to be fabricated into lateral flow or lab-on-a-chip devices, and can be coupled with LAMP or portable PCR systems for highly sensitive on-site detection of viruses, which is very critical for early diagnosis of virus infections and to prevent outbreak in a swift and controlled manner.
Collapse
Affiliation(s)
- Victoria Xin Ting Zhao
- College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Ten It Wong
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Xin Ting Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
- Faculty of Science, Agriculture & Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Xiaodong Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03, Innovis, Singapore 138634, Singapore
| |
Collapse
|
18
|
Antimicrobial AgNPs composites of gelatin hydrogels crosslinked by ferrocene-containing tetrablock terpolymer. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.02.047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Feng X, Hempenius MA, Vancso GJ. Metal Nanoparticle Foundry with Redox Responsive Hydrogels. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xueling Feng
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| | - Gyula J. Vancso
- Materials Science and Technology of Polymers; MESA+ Institute for Nanotechnology; University of Twente; P.O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
20
|
Gallei M, Rüttiger C. Recent Trends in Metallopolymer Design: Redox-Controlled Surfaces, Porous Membranes, and Switchable Optical Materials Using Ferrocene-Containing Polymers. Chemistry 2018; 24:10006-10021. [PMID: 29532972 DOI: 10.1002/chem.201800412] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/06/2018] [Indexed: 01/24/2023]
Abstract
Metallopolymers with metal functionalities are a unique class of functional materials. Their redox-mediated optoelectronic and catalytic switching capabilities, their outstanding structure formation and separation capabilities have been reported recently. Within this Minireview, the scope and limitations of intriguing ferrocene-containing systems will be discussed. In the first section recent advances in metallopolymer design will be given leading to a plethora of novel metallopolymer architectures. Discussed synthetic pathways comprise controlled and living polymerization protocols as well as surface immobilization strategies. In the following sections, we focus on recent advances and new applications for side-chain and main-chain ferrocene-containing polymers as (i) remote-switchable materials, (ii) smart surfaces, (iii) redox-responsive membranes, and some recent trends in (iv) photonic structures and (v) other optical applications.
Collapse
Affiliation(s)
- Markus Gallei
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| | - Christian Rüttiger
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287, Darmstadt, Germany
| |
Collapse
|