1
|
Vogel T, Kohlmann S, Abboud Z, Thusek S, Fella F, Teßmar J, Sekimizu K, Miyashita A, Beilhack A, Groll J, Yu Y, Albrecht K. Beyond the Charge: Interplay of Nanogels' Functional Group and Zeta-Potential for Antifungal Drug Delivery to Human Pathogenic Fungus Aspergillus Fumigatus. Macromol Biosci 2024; 24:e2400082. [PMID: 38850104 DOI: 10.1002/mabi.202400082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Indexed: 06/09/2024]
Abstract
The ubiquitous mold Aspergillus fumigatus (A. fumigatus) is one of the main fungal pathogens causing invasive infections in immunocompromised humans. Conventional antifungal agents exhibit limited efficacy and often cause severe side effects. Nanoparticle-based antifungal delivery provides a promising alternative, which can increase local drug concentration; while, mitigating toxicity, thereby enhancing treatment efficacy. Previous research underscores the potential of poly(glycidol)-based nanogels (NG) with negative surface charge as carriers for delivering antifungals to A. fumigatus hyphae. In this study, NG is tailored with 2-carboxyethyl acrylate (CEA) or with phosphoric acid 2-hydroxyethyl acrylate (PHA). It is discovered that quenching with PHA clearly improves the adhesion of NG to hyphal surface and the internalization of NG into the hyphae under protein-rich conditions, surpassing the outcomes of non-quenched and CEA-quenched NG. This enhancement cannot be solely attributed to an increase in negative surface charge but appears to be contingent on the functional group of the quencher. Further, it is demonstrated that itraconazole-loaded, PHA-functionalized nanogels (NGxPHA-ITZ) show lower MIC in vitro and superior therapeutic effect in vivo against A. fumigatus compared to pure itraconazole. This confirms NGxPHA as a promising antifungal delivery system.
Collapse
Affiliation(s)
- Theresa Vogel
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Simon Kohlmann
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Zahraa Abboud
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Sina Thusek
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Franziska Fella
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Joerg Teßmar
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Kazuhisa Sekimizu
- Endowed Course "Drug Discoveries by Silkworm Models,", Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, 192-0395, Japan
| | - Atsushi Miyashita
- Institute of Medical Mycology, Teikyo University, Tokyo, 192-0395, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| | - Yidong Yu
- Department of Internal Medicine II, Center for Experimental Molecular Medicine, Würzburg University Hospital, 97078, Würzburg, Germany
- JSPS International Research Fellow Endowed Course "Drug Discoveries by Silkworm Models,", Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, 192-0395, Japan
| | - Krystyna Albrecht
- Department for Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication, University of Würzburg, 97070, Würzburg, Germany
| |
Collapse
|
2
|
Rais A, Sharma S, Mishra P, Khan LA, Prasad T. Biocompatible carbon quantum dots as versatile imaging nanotrackers of fungal pathogen - Candida albicans. Nanomedicine (Lond) 2024; 19:671-688. [PMID: 38426561 DOI: 10.2217/nnm-2023-0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: The development of carbon quantum dots (C-QDs) as nanotrackers to understand drug-pathogen interactions, virulence and multidrug resistance. Methods: Microwave synthesis of C-QDs was performed using citric acid and polyethylene glycol. Further, in vitro toxicity was evaluated and imaging applications were demonstrated in Candida albicans isolates. Results: Well-dispersed, ultra small C-QDs exhibited no cyto/microbial/reactive oxygen species-mediated toxicity and internalized effectively in Candida yeast and hyphal cells. C-QDs were employed for confocal imaging of drug-sensitive and -resistant cells, and a study of the yeast-to-hyphal transition using atomic force microscopy in Candida was conducted for the first time. Conclusion: These biocompatible C-QDs have promising potential as next-generation nanotrackers for in vitro and in vivo targeted cellular and live imaging, after functionalization with biomolecules and drugs.
Collapse
Affiliation(s)
- Anam Rais
- Special Centre for Nano Science & AIRF, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shubham Sharma
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Prashant Mishra
- Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Luqman Ahmad Khan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tulika Prasad
- Special Centre for Nano Science & AIRF, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
3
|
Zając M, Kotyńska J, Zambrowski G, Breczko J, Deptuła P, Cieśluk M, Zambrzycka M, Święcicka I, Bucki R, Naumowicz M. Exposure to polystyrene nanoparticles leads to changes in the zeta potential of bacterial cells. Sci Rep 2023; 13:9552. [PMID: 37308531 DOI: 10.1038/s41598-023-36603-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Polymer molecules, the main components of plastics, are an emerging pollutants in various environmental compartments (water, air, soil) that may induce several ecotoxicological effects on live organisms. Therefore, understanding how plastic particles interact with bacterial cell membranes is crucial in analysing their associated risks in ecosystems and human microbiota. However, relatively little is known about the interaction between nanoplastics and bacteria. The present work focuses on Staphylococcus aureus and Klebsiella pneumoniae, representing the Gram-positive and Gram-negative bacteria respectively, exposed to 100 nm diameter polystyrene nanoparticles (PS NPs). The nanoparticles attach to the cells' membranes of both bacteria, changing their electrical charge, but without the effect of killing the cells. PS NPs caused a change in zeta potential values (both species of bacterial strains), dependent on particle concentration, pH, as well as on exposure time of bacteria to them. Through the application of AFM and FTIR techniques, the presence of PS NPs on bacterial surfaces was detected, suggesting the affinity of the particles to bacterial components, but without any changes in the morphology of the tested bacteria. The zeta potential can be more widely used in the study of interactions between nanostructures and cells.
Collapse
Affiliation(s)
- Marcin Zając
- Doctoral School of Exact and Natural Sciences, University of Bialystok, 1K K. Ciolkowski Str., 15-245, Białystok, Poland
| | - Joanna Kotyńska
- Laboratory of Bioelectrochemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, 1K K. Ciolkowski Str., 15-245, Białystok, Poland
| | - Grzegorz Zambrowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 1J K. Ciolkowski Str., 15-245, Białystok, Poland
- Laboratory of Applied Microbiology, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 1J K. Ciolkowski Str., 15-245, Białystok, Poland
| | - Joanna Breczko
- Laboratory of Materials Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, 1K K. Ciolkowski Str., 15-245, Białystok, Poland
| | - Piotr Deptuła
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 2C A. Mickiewicz Str., 15-222, Białystok, Poland
| | - Mateusz Cieśluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 2C A. Mickiewicz Str., 15-222, Białystok, Poland
| | - Monika Zambrzycka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 1J K. Ciolkowski Str., 15-245, Białystok, Poland
| | - Izabela Święcicka
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 1J K. Ciolkowski Str., 15-245, Białystok, Poland
- Laboratory of Applied Microbiology, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, 1J K. Ciolkowski Str., 15-245, Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 2C A. Mickiewicz Str., 15-222, Białystok, Poland
| | - Monika Naumowicz
- Laboratory of Bioelectrochemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Bialystok, 1K K. Ciolkowski Str., 15-245, Białystok, Poland.
| |
Collapse
|
4
|
Dong BR, Jiang R, Chen JF, Xiao Y, Lv ZY, Chen WS. Strategic nanoparticle-mediated plant disease resistance. Crit Rev Biotechnol 2023; 43:22-37. [PMID: 35282729 DOI: 10.1080/07388551.2021.2007842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanotechnology is a promising means for development of sustainable agriculture while the study of nanoparticle-mediated plant disease resistance is still in its primary stage. Nanotechnology has shown great promise in regulating: the content of secondary metabolites, inducing disease resistance genes, delivering hormones, delivering biomolecules (such as: nucleotides, proteins, and activators), and obtaining transgenic plants to resist plant diseases. In this review, we conclude its versatility and applicability in disease management strategies and diagnostics and as molecular tools. With the advent of new biotechnologies (e.g. de novo regeneration, CRISPR/Cas9, and GRF4-GIF1 fusion protein), we discuss the potential of nanoparticles as an optimal platform to deliver biomolecules to plants for genetic engineering. In order to ensure the safe use and social acceptance of plant nanoparticle technology, its adverse effects are discussed, including the risk of transferring nanoparticles through the food chain.
Collapse
Affiliation(s)
- Bo-Ran Dong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Jiang
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun-Feng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Xiao
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zong-You Lv
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan-Sheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
5
|
Liu W, Li M, Tian B, Yang X, Du W, Wang X, Zhou H, Ding C, Sai S. Calcofluor white-cholesteryl hydrogen succinate conjugate mediated liposomes for enhanced targeted delivery of voriconazole into Candida albicans. Biomater Sci 2023; 11:307-321. [DOI: 10.1039/d2bm01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A nano antifungal-drug delivery system is designed to increase voriconazole efficacy by specifically binding to chitin in the fungal cell wall.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Mengshun Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xuesong Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Wei Du
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Xiuwen Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong 266071, China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| |
Collapse
|
6
|
Aftab M, Butt MZ, Ali D, Aftab ZH, Tanveer MU, Fayyaz B. Investigation of antifungal response of NiO and copper-doped NiO thin films against Aspergillus niger and Macrophomina phaseolina fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3840-3852. [PMID: 34402016 DOI: 10.1007/s11356-021-15945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pure NiO and NiO thin films doped with 0.1 to 25% Cu were grown on pre-heated soda-lime glass substrates via spray pyrolysis technique. The surface roughness of the NiO:Cu thin films decreased as Cu/Ni ratio was increased. Antifungal activity of these thin films against Aspergillus niger (A. niger) which affects some of the fruits, and Macrophomina phaseolina (M. phaseolina) which is a soil borne fungus responsible for the infection of root and lower stem of several plants, was then investigated by bioassay and broth dilution methods. The antifungal response of pure NiO thin film was weak but it improved considerably on doping with copper. The higher the copper content in NiO:Cu thin film, the better was its antifungal response. Moreover, for the given Cu/Ni ratio range of 0-25%, the optical density (OD) of Potato Dextrose (PD) broth inoculated with A. niger and containing NiO:Cu material was reduced or antifungal ability was enhanced by 8.3, 9.9, 11.7, and 13.4 times for the exposure time of 6, 8, 10, and 12 days, respectively. Similarly, the OD of PD broth inoculated with M. phaseolina and containing NiO:Cu material was reduced or antifungal ability was enhanced by 16-37 times in the exposure temperature range of 20-40 °C. A linear relationship of OD with crystallite size and lattice strain of the thin films showed that NiO:Cu material possessed memory of the structural modifications induced by the dopant atoms though its phase changed from crystalline to non-crystalline state. These results can be utilized in agricultural sector. Graphical abstract.
Collapse
Affiliation(s)
- Muzamil Aftab
- Center for Advanced Studies in Physics, GC University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Zakria Butt
- Center for Advanced Studies in Physics, GC University Lahore, Lahore, 54000, Pakistan.
| | - Dilawar Ali
- Department of Physics, GC University Lahore, Lahore, 54000, Pakistan
| | - Zille Huma Aftab
- Institute of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Bakhtawar Fayyaz
- Institute of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
7
|
Livshits MY, Yang J, Maghsoodi F, Scheberl A, Greer SM, Khalil MI, Strach E, Brown D, Stein BW, Reimhult E, Rack JJ, Chi E, Whitten DG. Understanding the Photochemical Properties of Polythiophene Polyelectrolyte Soft Aggregates with Sodium Dodecyl Sulfate for Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55953-55965. [PMID: 34788015 DOI: 10.1021/acsami.1c18553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The threat of antibiotic-resistant bacteria is an ever-increasing problem in public health. In this report, we examine the photochemical properties with a proof-of-principle biocidal assay for a novel series of regio-regular imidazolium derivative poly-(3-hexylthiophene)/sodium dodecyl sulfate (P3HT-Im/SDS) materials from ultrafast sub-ps dynamics to μs generation of reactive oxygen species (ROS) and 30 min biocidal reactivity with Escherichia coli (E. coli). This broad series encompassing pure P3HT-Im to cationic, neutral, and anionic P3HT-Im/SDS materials are all interrogated by a variety of techniques to characterize the physical material structure, electronic structure, and antimicrobial activity. Our results show that SDS complexation with P3HT-Im results in aggregate materials with reduced ROS generation and light-induced anti-microbial activity. However, our characterization reveals that the presence of non-aggregated or lightly SDS-covered polymer segments is still capable of ROS generation. Full encapsulation of the P3HT-Im polymer completely deactivates the light killing pathway. High SDS concentrations, near and above critical micelle concentration, further deactivate all anti-microbial activity (light and dark) even though the P3HT-Im regains its electronic properties to generate ROS.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jianzhong Yang
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fahimeh Maghsoodi
- Nanoscience and Microsystems Engineering Graduate Program, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Andrea Scheberl
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU Wien) Muthgasse 11-II, Vienna A-1190, Austria
| | - Samuel M Greer
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, United States
| | - Mohammed I Khalil
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Edward Strach
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dylan Brown
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Benjamin W Stein
- Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87545, United States
| | - Erik Reimhult
- Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna (BOKU Wien) Muthgasse 11-II, Vienna A-1190, Austria
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Eva Chi
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David G Whitten
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
8
|
Shen H, Jiang C, Li W, Wei Q, Ghiladi RA, Wang Q. Synergistic Photodynamic and Photothermal Antibacterial Activity of In Situ Grown Bacterial Cellulose/MoS 2-Chitosan Nanocomposite Materials with Visible Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31193-31205. [PMID: 34164984 DOI: 10.1021/acsami.1c08178] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the rise in prevalence of multidrug-resistant pathogens attributed to the overuse of antibiotics, infectious diseases caused by the transmission of microbes from contaminated surfaces to new hosts are an ever-increasing threat to public health. Thus, novel materials that can stem this crisis, while also functioning via multiple antimicrobial mechanisms so that pathogens are unable to develop resistance to them, are in urgent need. Toward this goal, in this work, we developed in situ grown bacterial cellulose/MoS2-chitosan nanocomposite materials (termed BC/MoS2-CS) that utilize synergistic membrane disruption and photodynamic and photothermal antibacterial activities to achieve more efficient bactericidal activity. The BC/MoS2-CS nanocomposite exhibited excellent antibacterial efficacy, achieving 99.998% (4.7 log units) and 99.988% (3.9 log units) photoinactivation of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively, under visible-light illumination (xenon lamp, 500 W, λ ≥ 420 nm, and 30 min). Mechanistic studies revealed that the use of cationic chitosan likely facilitated bacterial membrane disruption and/or permeability, with hyperthermia (photothermal) and reactive oxygen species (photodynamic) leading to synergistic pathogen inactivation upon visible-light illumination. No mammalian cell cytotoxicity was observed for the BC/MoS2-CS membrane, suggesting that such composite nanomaterials are attractive as functional materials for infection control applications.
Collapse
Affiliation(s)
- Huiying Shen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Hassan G, Forsman N, Wan X, Keurulainen L, Bimbo LM, Stehl S, van Charante F, Chrubasik M, Prakash AS, Johansson LS, Mullen DC, Johnston BF, Zimmermann R, Werner C, Yli-Kauhaluoma J, Coenye T, Saris PEJ, Österberg M, Moreira VM. Non-leaching, Highly Biocompatible Nanocellulose Surfaces That Efficiently Resist Fouling by Bacteria in an Artificial Dermis Model. ACS APPLIED BIO MATERIALS 2020; 3:4095-4108. [PMID: 35025484 DOI: 10.1021/acsabm.0c00203] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial biofilm infections incur massive costs on healthcare systems worldwide. Particularly worrisome are the infections associated with pressure ulcers and prosthetic, plastic, and reconstructive surgeries, where staphylococci are the major biofilm-forming pathogens. Non-leaching antimicrobial surfaces offer great promise for the design of bioactive coatings to be used in medical devices. However, the vast majority are cationic, which brings about undesirable toxicity. To circumvent this issue, we have developed antimicrobial nanocellulose films by direct functionalization of the surface with dehydroabietic acid derivatives. Our conceptually unique design generates non-leaching anionic surfaces that reduce the number of viable staphylococci in suspension, including drug-resistant Staphylococcus aureus, by an impressive 4-5 log units, upon contact. Moreover, the films clearly prevent bacterial colonization of the surface in a model mimicking the physiological environment in chronic wounds. Their activity is not hampered by high protein content, and they nurture fibroblast growth at the surface without causing significant hemolysis. In this work, we have generated nanocellulose films with indisputable antimicrobial activity demonstrated using state-of-the-art models that best depict an "in vivo scenario". Our approach is to use fully renewable polymers and find suitable alternatives to silver and cationic antimicrobials.
Collapse
Affiliation(s)
- Ghada Hassan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Nina Forsman
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Xing Wan
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Leena Keurulainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Luis M Bimbo
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K
| | - Susanne Stehl
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Frits van Charante
- Laboratory of Pharmaceutical Microbiology, Ghent University, 460 Ottergemsesteenweg, 9000 Gent, Belgium
| | - Michael Chrubasik
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, U.K.,National Physical Laboratory, Hampton Road, TW11 0LW Teddington, U.K
| | - Aruna S Prakash
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, U.K.,National Physical Laboratory, Hampton Road, TW11 0LW Teddington, U.K
| | - Leena-Sisko Johansson
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Declan C Mullen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K
| | - Blair F Johnston
- EPSRC Future Manufacturing Research Hub for Continuous Manufacturing and Advanced Crystallisation, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Technology and Innovation Centre, 99 George Street, G1 1RD Glasgow, U.K.,National Physical Laboratory, Hampton Road, TW11 0LW Teddington, U.K
| | - Ralf Zimmermann
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Centre for Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, 460 Ottergemsesteenweg, 9000 Gent, Belgium
| | - Per E J Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Viikinkaari 9, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, Aalto University, Vuorimiehentie 1, P.O. Box 16300, FI-00076 Aalto, Finland
| | - Vânia M Moreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5 E, P.O. Box 56, FI-00014 Helsinki, Finland.,Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, U.K
| |
Collapse
|
10
|
Sidhu A, Bala A, Singh H, Ahuja R, Kumar A. Development of MgO-sepoilite Nanocomposites against Phytopathogenic Fungi of Rice ( Oryzae sativa): A Green Approach. ACS OMEGA 2020; 5:13557-13565. [PMID: 32566820 PMCID: PMC7301367 DOI: 10.1021/acsomega.0c00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Innovation in agriculture is a vital organ of research for sustainable food supply to the increasing global population. Organic compounds used as fungicidal agents against seed-borne pathogens are bracketed due to their toxic nature and residual effects, which are either already banned or may get banned in the near future. In this study, the surface and electric properties of nontoxic sepiolite have been blended with the antimicrobial properties of metabolizable MgO nanoforms (nMgO) as a greener alternative to prepare their nanocomposites. We compared a sepiolite-MgO (SE-MgO) nanocomposite with MgO nanoparticles in an aqua dispersed form (aqMgO-NPs) for their antifungal evaluation against various phytopathogenic fungi of rice. The SE-MgO nanocomposite was more potent in comparison to aqMgO-NPs with ED90 > 230 and 249 μg/mL, respectively, against the test fungi better than standard fungicides. Ultramicroscopic studies revealed hyphal distortion and spore collapse as the cause of antimycotic activity. The in vitro seed treatment revealed 100% hyphal reduction with SE-MgO at 250 μg/mL of MgO as an active ingredient (a.i.). MgO and sepiolite both have been regarded as safe materials by international agencies; therefore, using their nanocomposites can be an effective, sustainable, nontoxic, eco-friendly, and residue-free strategy for combating fungal menace against phytopathogens.
Collapse
Affiliation(s)
- Anjali Sidhu
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Anju Bala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana 141004, India
| | - Harmandeep Singh
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Radha Ahuja
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| | - Amit Kumar
- Department of Chemistry, Punjab Agricultural University, Ludhiana 141004, India
| |
Collapse
|
11
|
Wang Y, Han X, Cui Z, Shi D. Bioelectricity, Its Fundamentals, Characterization Methodology, and Applications in Nano-Bioprobing and Cancer Diagnosis. ACTA ACUST UNITED AC 2019; 3:e1900101. [PMID: 32648718 DOI: 10.1002/adbi.201900101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Bioelectricity is an essential characteristic of a biological system that has played an important role in medical diagnosis particularly in cancer liquid biopsy. However, its biophysical origin and measurements have presented great challenges in experimental methodologies. For instance, in dynamic cell processes, bioelectricity cannot be accurately determined as a static electrical potential via electrophoresis. Cancer cells fundamentally differ from normal cells by having a much higher rate of glycolysis resulting in net negative charges on cell surfaces. The most recent investigations on cancer cell surface charge that is the direct bio-electrical manifestation of the "Warburg Effect," which can be directly monitored by specially designed nanoprobes, has been provided. The most up-to-date research results from charge-mediated cell targeting are reviewed. Correlations between the cell surface charge and cancer cell metabolism are established based on cell/probe electrostatic interactions. Bioelectricity is utilized not only as an analyte for investigation of the metabolic state of the cancer cells, but also applied in electrostatically and magnetically capturing of the circulating tumor cells from whole blood. Also reviewed is on the isolation of Candida albicans via bioelectricity-driven nanoparticle binding on fungus with surface charges.
Collapse
Affiliation(s)
- Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Xiao Han
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China
| | - Zheng Cui
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200092, P. R. China.,Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA
| | - Donglu Shi
- Materials Science and Engineering Program, Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
12
|
Kasemets K, Käosaar S, Vija H, Fascio U, Mantecca P. Toxicity of differently sized and charged silver nanoparticles to yeast Saccharomyces cerevisiae BY4741: a nano-biointeraction perspective. Nanotoxicology 2019; 13:1041-1059. [PMID: 31107118 DOI: 10.1080/17435390.2019.1621401] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the current study, we evaluated the modulatory effects of size and surface coating/charge of AgNPs on their toxicity to a unicellular yeast Saccharomyces cerevisiae BY4741 - a fungal model. For that, the toxicity of a set of 10 and 80 nm citrate-coated (negatively charged) and branched polyethylenimine (bPEI) coated (positively charged) AgNPs was evaluated in parallel with AgNO3 as ionic control. Yeast cells were exposed to different concentrations of studied compounds in deionized water for 24 h at 30 °C and evaluated for the viability by the post-exposure colony-forming ability. Particle-cell interactions were assessed by SEM, TEM and confocal laser scanning microscopy (CLSM) in the reflection mode. AgNPs toxicity to yeast was size and charge-dependent: 24-h IC50 values ranged from 0.04 (10nAg-bPEI) up to 8.3 mg Ag/L (80nAg-Cit). 10 nm AgNPs were 5-27 times more toxic than 80 nm AgNPs and bPEI-AgNPs 8-44 times more toxic than citrate-AgNPs. SEM and TEM visualization showed that bPEI-AgNPs but not citrate-AgNPs adsorbed onto the yeast cell's surface. However, according to CLSM all the studied AgNPs, whatever the size and coating, ended up within the yeast cell. Toxicity of citrate-AgNPs was largely explained by the dissolved Ag ions but the bPEI-AgNPs showed mainly particle-driven effects leading to the cellular internalization and/or to more pronounced dissolution of AgNPs in the close vicinity of the cell wall. Therefore, the size, and especially the coating/charge of AgNPs can be efficiently used for the design of new more efficient antifungals.
Collapse
Affiliation(s)
- Kaja Kasemets
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Sandra Käosaar
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Heiki Vija
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Umberto Fascio
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca , Milano , Italy
| | - Paride Mantecca
- Department of Earth and Environmental Sciences, Research Centre POLARIS, University of Milano-Bicocca , Milano , Italy
| |
Collapse
|
13
|
Tian W, Li F, Wu S, Li G, Fan L, Qu X, Jia X, Wang Y. Efficient Capture and T2 Magnetic Resonance Assay of Candida albicans with Inorganic Nanoparticles: Role of Nanoparticle Surface Charge and Fungal Cell Wall. ACS Biomater Sci Eng 2019; 5:3270-3278. [PMID: 33405570 DOI: 10.1021/acsbiomaterials.9b00069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wei Tian
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Fan Li
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Shengming Wu
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Gen Li
- Department of Clinical Lab, Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Lieying Fan
- Department of Clinical Lab, Shanghai East Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P. R. China
| | - Xinming Jia
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Yilong Wang
- The Institute for Translational Nanomedicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|