1
|
Wu C, Zhai Y, Ji J, Yang X, Ye L, Lu G, Shi X, Zhai G. Advances in tumor stroma-based targeted delivery. Int J Pharm 2024; 664:124580. [PMID: 39142464 DOI: 10.1016/j.ijpharm.2024.124580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The tumor stroma plays a crucial role in tumor progression, and the interactions between the extracellular matrix, tumor cells, and stromal cells collectively influence tumor progression and the efficacy of therapeutic agents. Currently, utilizing components of the tumor stroma for drug delivery is a noteworthy strategy. A number of targeted drug delivery systems designed based on tumor stromal components are entering clinical trials. Therefore, this paper provides a thorough examination of the function of tumor stroma in the advancement of targeted drug delivery systems. One approach is to use tumor stromal components for targeted drug delivery, which includes certain stromal components possessing inherent targeting capabilities like HA, laminin, along with targeting stromal cells homologously. Another method entails directly focusing on tumor stromal components to reshape the tumor stroma and facilitate drug delivery. These drug delivery systems exhibit great potential in more effective cancer therapy strategies, such as precise targeting, enhanced penetration, improved safety profile, and biocompatibility. Ultimately, the deployment of these drug delivery systems can deepen our comprehension of tumor stroma and the advanced development of corresponding drug delivery systems.
Collapse
Affiliation(s)
- Chunyan Wu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yujia Zhai
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84124, United States
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guoliang Lu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Xiaoqun Shi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
2
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Wang J, Ye M, Zhu B. Peptide Self-Assembly Facilitating DNA Transfection and the Application in Inhibiting Cancer Cells. Molecules 2024; 29:932. [PMID: 38474444 DOI: 10.3390/molecules29050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
Non-viral vectors have been developing in gene delivery due to their safety and low immunogenicity. But their transfection effect is usually very low, thus limiting the application. Hence, we designed eight peptides (compounds 1-8). We compared their performances; compound 8 had the best transfection efficacy and biocompatibility. The transfection effect was similar with that of PEI, a most-widely-employed commercial transfection reagent. Atomic force microscope (AFM) images showed that the compound could self-assemble and the self-assembled peptide might encapsulate DNA. Based on these results, we further analyzed the inhibitory result in cancer cells and found that compound 8 could partially fight against Hela cells. Therefore, the compound is promising to pave the way for the development of more effective and less toxic transfection vectors.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Min Ye
- College of Pharmacy, Southern Medical University, Guangzhou 510280, China
| | - Baokuan Zhu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
4
|
Cheng Q, Wang T, Zhang J, Tian L, Zeng C, Meng Z, Zhang C, Meng Q. Multifunctional gene delivery vectors containing different liver-targeting fragments for specifically transfecting hepatocellular carcinoma (HCC) cells. J Mater Chem B 2023; 11:9721-9731. [PMID: 37791430 DOI: 10.1039/d3tb01866k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Gene therapy is a promising strategy for HCC treatment, but it commonly faces the problem of low specificity in gene transfection. In this study, we designed and synthesized a series of peptide-based gene delivery vectors (H-01 to H-18) containing varied HCC cell-targeting fragments for specifically binding different receptors highly expressed on HCC cell membranes. The physicochemical properties of peptide vectors or peptide/DNA complexes were characterized, and the gene delivery abilities of peptide vectors were evaluated in HepG2 cell lines. The results showed that peptide vectors H-02 and H-09, which contained targeted fragments for ACE2 and c-Met receptors, respectively, could specifically transfect HCC cells in a highly -efficient manner in vitro. Furthermore, the liver-targeting function in vivo of Cy5.5 labeled H-02 (H-17) and H-09 (H-18) was investigated by fluorescence imaging.
Collapse
Affiliation(s)
- Qin Cheng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Taoran Wang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jing Zhang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Long Tian
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Chunlan Zeng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhao Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qingbin Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
5
|
Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the challenge: cell-penetrating peptides and membrane permeability. BIOMATERIALS AND BIOSENSORS 2023; 2. [DOI: 10.58567/bab02010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
<p>Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.</p>
Collapse
Affiliation(s)
- Yuan Gu
- The Statistics Department, The George Washington University, Washington, United States
| | - Long Wu
- Department of Surgery, University of Maryland, Baltimore, United States
| | - Yasir Hameed
- Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Yashwanth BS, Pinto N, Sathiyanarayanan A, Chaudhari A, Rasal KD, Goswami M. Functional characterization of Labeo rohita muscle cell line for in vitro research. Mol Biol Rep 2023:10.1007/s11033-023-08427-z. [PMID: 37179501 DOI: 10.1007/s11033-023-08427-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Labeo rohita represents the most dominant fish species in Indian aquaculture and the fish cell lines have been used as an excellent in vitro platform for performing various biological research. METHODS AND RESULTS The LRM cell culture developed from the muscle tissue of L. rohita was used to study the in vitro applications. The developed muscle cells were maintained in a Leibovitz's-15 (L-15) supplemented with 10% FBS (Fetal Bovine Serum) and 10 ng/ml bFGF at 28 oC temperature. The LRM cells showed fibroblastic-like morphology and was authenticated by sequencing mitochondrial gene 16S rRNA. The expression of myogenic regulatory factors (MRFs) was studied in different stages of LRM cells; however, the expression patterns varied at different passages. The MEF2A, Mrf-4, and Myogenin expressions were higher in passage 25, while the expression of MyoD was maximum in passage 15, and the expression of Myf-5 was highest in passage 1. The transfection efficiency of LRM cells revealed 14 % of the GFP expression with a pmaxGFP vector DNA. The LRM cells were susceptible to the extracellular products prepared from Aeromonas hydrophilla and Edwardsiella tarda. The acute cytotoxicity of six heavy metals (Hg, Cd, Zn, Cu, Pb, Ni) was assessed in LRM cells by a dose-dependent manner in comparison to IC50 values obtained from MTT and NR assays. A revival rate of 70-75% was achieved when the LRM cells were cryopreserved at - 196 °C using liquid nitrogen. CONCLUSION The developed muscle cells serve as an functional in vitro tool for toxicological and biotechnological studies.
Collapse
Affiliation(s)
- B S Yashwanth
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Nevil Pinto
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - A Sathiyanarayanan
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India
| | - Mukunda Goswami
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai, Maharashtra, 400061, India.
| |
Collapse
|
7
|
Kang Z, Zeng C, Tian L, Wang T, Yang S, Cheng Q, Zhang J, Meng Q, Zhang C, Meng Z. Transferrin receptor targeting segment T7 containing peptide gene delivery vectors for efficient transfection of brain tumor cells. Drug Deliv 2022; 29:2375-2385. [PMID: 35866298 PMCID: PMC9310815 DOI: 10.1080/10717544.2022.2102696] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Successful gene therapy for brain tumors are often limited by two important factors, the existence of blood brain barrier (BBB) and inefficient transfection of brain tumor cells. In this study, we designed a series of peptide-based gene delivery vectors decorated with T7 segment for binding the transferrin (Tf) receptors which were highly expressed on brain tumor cells, and evaluated their ability of gene delivery. The physicochemical properties of peptide vectors or peptide/DNA complexes were studied as well. The in vitro transfection efficiency was investigated in normal and glioma cell lines. Among these complexes, PT-02/DNA complexes showed the highest transfection efficiency in glioma cells and low cytotoxicity in normal cell lines, and it could transport DNA across the BBB model in vitro. Furthermore, PT-02/DNA could deliver pIRES2-EGFP into the brain site of zebrafish in vivo. The designed peptide vectors offered a promising way for glioma gene therapy.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chunlan Zeng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Long Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Sen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Anhui Institute for Food and Drug Control, Baohe, Hefei, China
| | - Qin Cheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, China
| | - Jing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Dual-modal polypeptide-containing contrast agents for magnetic resonance/fluorescence imaging. Bioorg Chem 2022; 129:106161. [PMID: 36162287 DOI: 10.1016/j.bioorg.2022.106161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/04/2022] [Accepted: 09/12/2022] [Indexed: 12/23/2022]
Abstract
Dual-modal magnetic resonance/fluorescent imaging (MRI/FI) attracts moreandmoreattentions in diagnosis of tumors. A corresponding dual-modal imaging agent with sufficient tumor sensitivity and specificity should be matched to improve imaging quality. Tripeptide (RGD) and pentapeptide (YIGSR) were selected as the tumor-targeting groups and attached to gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) and rhodamine B (RhB), and then make two novel polypeptide-based derivatives (RGD-Gd-DTPA-RhB and YIGSR-Gd-DTPA-RhB), respectively. These derivatives were further characterized and their properties, such as cell uptake, cell cytotoxicity, MRI and FI assay, were measured. YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB had high relaxivity, good tumor-targeting property, low cell cytotoxicity and good red FI in B16F10 melanoma cells. Moreover, YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB possessed high uptake to B16F10 melanoma, and then achieve highly enhanced FI and MRI of tumors in mice for a prolonged time. Therefore, YIGSR-Gd-DTPA-RhB and RGD-Gd-DTPA-RhB can be applied as the potential agents for tumor targeted MRI/FI in vivo.
Collapse
|
9
|
Hooshmand SE, Sabet MJ, Hasanzadeh A, Mousavi SMK, Moghadam NH, Hooshmand SA, Rabiee N, Liu Y, Hamblin MR, Karimi M. Histidine‐enhanced gene delivery systems: The state of the art. J Gene Med 2022; 24:e3415. [DOI: 10.1002/jgm.3415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyyed Emad Hooshmand
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Makkieh Jahanpeimay Sabet
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Akbar Hasanzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyede Mahtab Kamrani Mousavi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Niloofar Haeri Moghadam
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
| | - Seyed Aghil Hooshmand
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics University of Tehran Tehran Iran
| | - Navid Rabiee
- Department of Physics Sharif University of Technology Tehran Iran
- School of Engineering Macquarie University Sydney New South Wales Australia
| | - Yong Liu
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu China
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science University of Johannesburg South Africa
| | - Mahdi Karimi
- Cellular and Molecular Research Center Iran University of Medical Sciences Tehran Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine Iran University of Medical Sciences Tehran Iran
- Oncopathology Research Center Iran University of Medical Sciences Tehran Iran
- Research Center for Science and Technology in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
10
|
Hadianamrei R, Zhao X. Current state of the art in peptide-based gene delivery. J Control Release 2022; 343:600-619. [PMID: 35157938 DOI: 10.1016/j.jconrel.2022.02.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022]
|
11
|
Li Y, Sun Y, Dong W, Zhu C, Guan Y, Shang D. Acylation of antimicrobial peptide-plasmid DNA vectors formulation for efficient gene delivery in cancer therapy. Colloids Surf B Biointerfaces 2021; 208:112069. [PMID: 34478957 DOI: 10.1016/j.colsurfb.2021.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Antimicrobial peptides/DNA complexes were designed based on AMPs chensinin-1b and its corresponding lipo-chensinin-1b conjugated with an aliphatic acid with different chain lengths and therapeutic genes. The main goal of such a complex includes two aspects: first, antimicrobial peptides deliver therapeutic genes to cancer cells and genes expressed in targeted tissue for cancer gene therapy, and, second, the antimicrobial peptide kills cancer cells when used alone as an anticancer agent. This study presents a model composed of chensinin-1b and its lipo-chensinin-1b and eGFP plasmids, which were used as reporter genes, and the final peptide/eGFP plasmid complexes were analyzed by TEM and DLS. The gene transfection efficiency of the complex was evaluated by a microplate reader, FACS and CLSM. Compared with Lipo2000, the antimicrobial peptide showed specific selectivity for transfection against cancer cells and mammalian cells. The peptides chensinin-1b and lipo-chensinin-1b binding with the eGFP plasmid displayed optimal transfection efficiencies at a mass ratio of 8. In addition, PA-C1b can deliver p53-eGFP plasmids into MCF-7 cancer cells, and the proliferation of cells was inhibited and even caused cell death. Overall, PA-C1b was screened and found to have the highest transfection efficiency for gene delivery and good cellular uptake capability. The in vivo transfection ability of PA-C1b was investigated using a tumor-bearing mouse model, and the transfection efficiency reflected by the fluorescence of expressed GFP was determined by in vivo imaging. Conclusively, the antimicrobial peptide PA-C1b could be used as the nonviral vector with high efficiency for cancer gene therapy.
Collapse
Affiliation(s)
- Yue Li
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yue Sun
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| | - Chengdong Zhu
- School of Life Science, Liaoning Normal University, Dalian 116081, China; School of Physical Education, Liaoning Normal University, Dalian 116081, China
| | - Yue Guan
- School of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Dejing Shang
- School of Life Science, Liaoning Normal University, Dalian 116081, China; Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian 116081, China.
| |
Collapse
|
12
|
Ding G, Wang T, Han Z, Tian L, Cheng Q, Luo L, Zhao B, Wang C, Feng S, Wang L, Meng Z, Meng Q. Substance P containing peptide gene delivery vectors for specifically transfecting glioma cells mediated by a neurokinin-1 receptor. J Mater Chem B 2021; 9:6347-6356. [PMID: 34251002 DOI: 10.1039/d1tb00577d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene therapy provides a promising treatment for glioblastoma multiforme, which mainly depends on two key aspects, crossing the blood brain barrier (BBB) effectively and transfecting target cells selectively. In this work, we reported a series of peptide-based vectors for transfecting glioma cells specifically consisting of several functional segments including a cell-penetrating peptide, targeting segment substance P (SP), an endosomal escape segment, a PEG linker and a stearyl moiety. The conformations and DNA-loading capacities of peptide vectors and the self-assembly behaviors of peptide/pGL3 complexes were characterized. The in vitro gene transfection was evaluated in U87, 293T-NK1R, and normal 293T cell lines. The transfection efficiency ratio of P-02 (SP-PEG4-K(C18)-(LLHH)3-R9) to Lipo2000 in the U87 cell line was about 36% higher than that in the 293T cell line. The neurokinin-1 receptor (NK1R) in U87 cells mediated the transfection process via interactions with the ligand SP in peptide vectors. The mechanism of NK1R mediated transfection was demonstrated by the use of gene-modified 293T cells expressing NK1R, as well as the gene transfection in the presence of free SP. Besides, P-02 could promote the pGL3 plasmids to cross the BBB model in vitro and achieved the EGFP gene transfection in the brain of zebrafish successfully. The designed peptide vectors, owing to their specific transfection capacity in glioma cells, provide a potential approach for glioblastoma multiforme gene therapy.
Collapse
Affiliation(s)
- Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Nirasawa K, Hamada K, Naraki Y, Kikkawa Y, Sasaki E, Endo-Takahashi Y, Hamano N, Katagiri F, Nomizu M, Negishi Y. Development of A2G80 peptide-gene complex for targeted delivery to muscle cells. J Control Release 2021; 329:988-996. [PMID: 33091529 DOI: 10.1016/j.jconrel.2020.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 12/22/2022]
Abstract
Therapeutic strategies based on antisense oligonucleotides and therapeutic genes are being extensively investigated for the treatment of hereditary muscle diseases and hold great promise. However, the cellular uptake of these polyanions to the muscle cells is inefficient. Therefore, it is necessary to develop more effective methods of gene delivery into the muscle tissue. The A2G80 peptide (VQLRNGFPYFSY) from the laminin α2 chain has high affinity for α-dystroglycan (α-DG) which is expressed on the membrane of muscle cells. In this study, we designed a peptide-modified A2G80 with oligoarginine and oligohistidine (A2G80-R9-H8), and prepared peptide/plasmid DNA (pDNA) complex, to develop an efficient gene delivery system for the muscle tissue. The peptide/pDNA complex showed α-DG-dependent cellular uptake of the A2G80 sequence and significantly improved gene transfection efficiency mediated by the oligohistidine sequence in C2C12 myoblast cells. Further, the peptide/pDNA complex promoted efficient and sustained gene expression in the Duchenne muscular dystrophy mouse models. The A2G80-R9-H8 peptide has the potential for use as a specific carrier for targeting muscle in gene therapy in muscular dystrophy.
Collapse
Affiliation(s)
- Kei Nirasawa
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keisuke Hamada
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yukiko Naraki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yamato Kikkawa
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Eri Sasaki
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoko Endo-Takahashi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Nobuhito Hamano
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Fumihiko Katagiri
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Motoyoshi Nomizu
- Department of Clinical Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoichi Negishi
- Department of Drug Delivery and Molecular Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
14
|
Wang T, Meng Z, Kang Z, Ding G, Zhao B, Han Z, Zheng Z, Wang C, Meng Q. Peptide Gene Delivery Vectors for Specific Transfection of Glioma Cells. ACS Biomater Sci Eng 2020; 6:6778-6789. [DOI: 10.1021/acsbiomaterials.0c01336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhenbin Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Zhibing Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Chenhong Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P. R. China
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin 133002, China
| |
Collapse
|
15
|
Albuquerque T, Faria R, Sousa Â, Neves AR, Queiroz JA, Costa D. Polymer-peptide ternary systems as a tool to improve the properties of plasmid DNA vectors in gene delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Liu F, Yan JR, Chen S, Yan GP, Pan BQ, Zhang Q, Wang YF, Gu YT. Polypeptide-rhodamine B probes containing laminin/fibronectin receptor-targeting sequence (YIGSR/RGD) for fluorescent imaging in cancers. Talanta 2020; 212:120718. [DOI: 10.1016/j.talanta.2020.120718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
|
17
|
Laroui N, Cubedo N, Rossel M, Bettache N. Improvement of Cell Penetrating Peptide for Efficient siRNA Targeting of Tumor Xenografts in Zebrafish Embryos. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nabila Laroui
- Institut des Biomolécules Max MousseronUMR 5247University of MontpellierCNRSENSCM 15, avenue Charles Flahault, BP14491 F‐34093 Montpellier cedex 5 France
| | - Nicolas Cubedo
- INSERMU1198University of Montpellier F‐34095, Montpellier France
- EPHE 4 rue Ferrus Paris F‐75014 France
| | - Mireille Rossel
- INSERMU1198University of Montpellier F‐34095, Montpellier France
- EPHE 4 rue Ferrus Paris F‐75014 France
| | - Nadir Bettache
- Institut des Biomolécules Max MousseronUMR 5247University of MontpellierCNRSENSCM 15, avenue Charles Flahault, BP14491 F‐34093 Montpellier cedex 5 France
| |
Collapse
|
18
|
Peng S, Wang Q, Xiao X, Wang R, Lin J, Zhou Q, Wu L. Redox‐responsive polyethyleneimine‐coated magnetic iron oxide nanoparticles for controllable gene delivery and magnetic resonance imaging. POLYM INT 2019. [DOI: 10.1002/pi.5943] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Si Peng
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Qiu‐yue Wang
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Xue Xiao
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Rui Wang
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Juan Lin
- School of Biomedical Sciences and TechnologyChengdu Medical College Chengdu China
| | - Qing‐han Zhou
- College of Chemical and Environment ProtectionSouthwest Minzu University Chengdu Sichuan China
| | - Li‐na Wu
- Department of Anatomy and Histology and EmbryologyDevelopment and Regeneration Key Lab of Sichuan Province, Chengdu Medical College Chengdu China
| |
Collapse
|
19
|
Kang Z, Ding G, Meng Z, Meng Q. The rational design of cell-penetrating peptides for application in delivery systems. Peptides 2019; 121:170149. [PMID: 31491454 DOI: 10.1016/j.peptides.2019.170149] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
Cell penetrating peptides (CPPs) play a crucial role in the transportation of bioactive molecules. Although CPPs have been used widely in various delivery systems, further applications of CPPs are hampered by several drawbacks, such as high toxicity, low delivery efficiency, proteolytic instability and poor specificity. To design CPPs with great cell-penetrating ability, physicochemical properties and safety, researchers have tried to develop new methods to overcome the defects of CPPs. Briefly, (1) the side chain of arginine containing the guanidinium group is essential for the facilitation of cellular uptake; (2) the hydrophobic counterion complex around the guanidinium-rich backbone can "coat" the highly cationic structure with lipophilic moieties and act as an activator; (3) the conformation-constrained strategy was pursued to shield the peptide, thereby impeding access of the proteolytic enzyme; (4) targeting strategies can increase cell-type specificity of CPPs. In this review, the above four aspects were discussed in detail.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Guihua Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, 100850, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China; Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
20
|
Subia B, Reinisalo M, Dey N, Tavakoli S, Subrizi A, Ganguli M, Ruponen M. Nucleic acid delivery to differentiated retinal pigment epithelial cells using cell-penetrating peptide as a carrier. Eur J Pharm Biopharm 2019; 140:91-99. [PMID: 31085311 DOI: 10.1016/j.ejpb.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/16/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Nucleic acid delivery to the eye is a promising treatment strategy for many retinal disorders. In this manuscript, retinal gene delivery with non-coated and chondroitin sulphate (CS) coated amphipathic and cationic peptides was tested. The transfection and gene knockdown efficiencies were evaluated in different retinal pigment epithelial (RPE) cell models including both dividing and differentiated cells. In addition, the mobility of peptide-based gene delivery systems was examined in porcine vitreous by particle tracking analysis. The results indicate that amphipathic and cationic peptides are safe in vitro and are capable of high transgene expression and gene knockdown in dividing cells. We further demonstrate that incorporation of CS improves the efficiency of gene delivery of peptide-based systems. Most importantly, the transgene expression mediated by both non-coated and CS coated peptides was high in differentiated as well as in human primary RPE cells which are typically difficult to transfect. Coating of peptide-based gene delivery systems with CS improved diffusion in the vitreous and enhanced the stability of the polyplexes. The results indicate that a peptide-based system can be fine-tuned as a promising approach for retinal gene delivery.
Collapse
Affiliation(s)
- Bano Subia
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland.
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| | - Namit Dey
- Delhi Technological University, Delhi 110042, India
| | | | - Astrid Subrizi
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C 800, Denmark
| | - Munia Ganguli
- CSIR-Institute of Genomics and Integrative Biology, New Delhi 110021, India
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
21
|
O'Driscoll CM, Bernkop-Schnürch A, Friedl JD, Préat V, Jannin V. Oral delivery of non-viral nucleic acid-based therapeutics - do we have the guts for this? Eur J Pharm Sci 2019; 133:190-204. [PMID: 30946964 DOI: 10.1016/j.ejps.2019.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/22/2022]
Abstract
Gene therapy with RNA and pDNA-based drugs is limited by poor enzymatic stability and poor cellular permeation. The delivery of nucleic acids, in particular by the oral route, remains a major hurdle. This review will focus on the barriers to the oral delivery of nucleic acids and the strategies, in particular formulation strategies, which have been developed to overcome these barriers. Due to their very low oral bioavailability, the most obvious and most investigated biomedical applications for their oral delivery are related to the local treatment of inflammatory bowel diseases and colorectal cancers. Preclinical data but not yet clinical studies support the potential use of the oral route for the local delivery of formulated nucleic acid-based drugs.
Collapse
Affiliation(s)
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Julian D Friedl
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Véronique Préat
- Universite catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73 bte B1.73.12, 1200 Brussels, Belgium.
| | - Vincent Jannin
- Gattefossé SAS, 36 chemin de Genas, 69804 Saint-Priest cedex, France.
| |
Collapse
|
22
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
23
|
Gallo M, Defaus S, Andreu D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch Biochem Biophys 2018; 661:74-86. [PMID: 30447207 DOI: 10.1016/j.abb.2018.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022]
Abstract
In 1988, two unrelated papers reported the discovery of peptide vectors with innate cell translocation properties, setting the ground for a new area of research that over the years has grown into considerable therapeutic potential. The vectors, named cell-penetrating peptides (CPPs), constitute a now large and diversified family, sharing the extraordinary ability to diffuse unaltered across cell membranes while ferrying diverse associated cargos. Such properties have made CPPs ideal tools for delivery of nucleic acids, proteins and other therapeutic/diagnostic molecules to cells and tissues via covalent conjugation or complexation. This year 2018 marks the 30th anniversary of a peptide research landmark opening new perspectives in drug delivery. Given its vastness, exhaustive coverage of the main features and accomplishments in the CPP field is virtually impossible. Hence this manuscript, after saluting the above 30th jubilee, focuses by necessity on the most recent contributions, providing a comprehensive list of recognized CPPs and their latest-reported applications over the last two years. In addition, it thoroughly reviews three areas of peptide vector research of particular interest to us, namely (i) efficient transport of low-bioavailability drugs into the brain; (ii) CPP-delivered disruptors of G protein-coupled receptor (GPCRs) heteromers related to several disorders, and (iii) CPP-mediated delivery of useful but poorly internalized drugs into parasites.
Collapse
Affiliation(s)
- Maria Gallo
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Sira Defaus
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| | - David Andreu
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, 08003 Barcelona, Spain.
| |
Collapse
|
24
|
Hao X, Li Q, Ali H, Zaidi SSA, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. POSS-cored and peptide functionalized ternary gene delivery systems with enhanced endosomal escape ability for efficient intracellular delivery of plasmid DNA. J Mater Chem B 2018; 6:4251-4263. [PMID: 32254599 DOI: 10.1039/c8tb00786a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biocompatibility, stability and high efficiency profiles are critical points for promoting the practical applications of gene delivery systems. The incorporation of cell-penetrating peptides (CPPs), REDV, and a nuclear localization signal (NLS) peptide sequence has been considered to be a promising strategy for developing efficient gene carriers to transfect vascular endothelial cells (ECs). However, these integrated multifunctional peptide carriers are usually limited by their inefficient targeting function and weak endosomal escape ability. Aiming to develop more efficient gene carriers, the integrated multifunctional REDV-G-TAT-G-NLS-C sequence was conjugated to polyhedral oligomeric silsesquioxane (POSS) by heterobifunctional poly(ethylene glycol) in the current study. This star-shaped polymer carrier complexed with the pZNF580 plasmid to form gene complexes, and then the histidine-rich peptide of REDV-TAT-NLS-H12 (TP-H12) was incorporated into their surface to obtain ternary gene delivery systems with enhanced endosomal escape ability. These ternary gene delivery systems exhibited low cytotoxicity towards ECs and possessed high REDV-mediated cellular uptake, excellent internalization efficiency, rapid endosomal escape and high nucleus translocation capacity. The endosomal escape of the ternary complexes was improved due to the pH buffering capacity of the histidine residue in TP-H12 and the optimized macropinocytosis internalization pathway. Moreover, these CPP-based ternary gene delivery systems have high gene delivery efficiency and could improve the migration of ECs as demonstrated by gene expression and transwell assay. These systems may serve as a promising candidate for gene delivery and transfection in ECs, which is advantageous for EC migration and endothelialization on the biomaterial surface.
Collapse
Affiliation(s)
- Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang S, Meng Z, Kang Z, Sun C, Wang T, Feng S, Meng Q, Liu K. The structure and configuration changes of multifunctional peptide vectors enhance gene delivery efficiency. RSC Adv 2018; 8:28356-28366. [PMID: 35542475 PMCID: PMC9084241 DOI: 10.1039/c8ra04101f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/23/2018] [Indexed: 11/25/2022] Open
Abstract
We designed a series of peptide vectors that contain functional fragments with the goal of enhancing cellular internalization and gene transfection efficiency. The functional fragments included a cell-penetrating peptide (R9), a cationic amphiphilic α-helical peptide [(LLKK)3-H6 or (LLHH)3], a stearyl moiety, and cysteine residues. Vectors were also synthesized with D-type amino acids to improve their proteolytic stability. The conformations, particle sizes, and zeta potentials for complexes of these peptides with pGL3 plasmid DNA were characterized by circular dichroism and dynamic light scattering. In addition, cellular uptake of the peptide/DNA complexes and gene transfection efficiency were investigated with fluorescence-activated cell sorting and confocal laser-scanning microscopy. Greater transfection efficiency was achieved with the vectors containing the R9 segment, and the efficiency was greater than Lipo2000. In addition, the D-type C18-c(llkk)3ch6-r9 had about 7 times and 5.5 times the transfection efficiency of Lipo2000 in 293T cells and NIH-3T3 cells at the N/P ratio of 6, respectively. Overall, the multifunctional peptide gene vectors containing the R9 segment exhibited enhanced cellular internalization, a high gene transfection efficiency, and low cytotoxicity. The R9 containing peptide vectors can improve the gene transfection efficiency.![]()
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Zhao Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Chao Sun
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Taoran Wang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Siliang Feng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|