1
|
Zheng Z, Zhang K, Toe CY, Amal R, Deletic A. Photo-electrochemical oxidation flow system for stormwater herbicides removal: Operational conditions and energy consumption analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166375. [PMID: 37598967 DOI: 10.1016/j.scitotenv.2023.166375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Photoelectrochemical oxidation (PECO) is a promising advanced technology for treating micropollutants in stormwater. However, it is important to understand its operation prior to practical validation. In this study, we introduced a flow PECO system designed to evaluate its potential for full-scale applications in herbicides degradation, providing valuable insights for future large-scale implementations. The PECO flow reactor demonstrated the ability to treat a larger volume of stormwater (675 mL, approximately 10 times more than previous batch experiments) with effective removal rates of 92 % for diuron and 22 % for atrazine over 6 h of operation at 2 V. To address the large volume issue in stormwater treatment, a multiple module parallel application design is being considered to increase the treatment capacity of the PECO flow reactor. During the flow reactor operations, flow rate was found to have a notable impact on removal performance, particularly for diuron. At a flow rate of 610 mL min-1, approximately 90 % removal of diuron was achieved, while at 29 mL min-1, the removal efficiency decreased to 60 %. While light intensity had minimal effect on diuron degradation (all settings achieved over 90 % removal), it enhanced atrazine degradation from 9 % to 31 % with an increase in intensity from 63 mW cm-2 to 144 mW cm-2. Remarkably, the PECO flow system exhibited excellent removal performance (>90 % removal) for diuron even at extremely high initial pollutant concentrations (240 μg L-1), demonstrating its capacity to handle varying contaminant loads in stormwater. Energy consumption analysis revealed that flow rate as the primary factor influenced the specific energy consumption rate. Higher flow rate (e.g., 610 mL min-1) were preferable in flow reactor due to its well-balanced performance between removal and energy consumption. These findings confirm that the PECO flow system offers an efficient and promising approach for stormwater treatment applications.
Collapse
Affiliation(s)
- Zhaozhi Zheng
- School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW 2052, Australia.
| | - Kefeng Zhang
- School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Cui Ying Toe
- School of Chemical Engineering, University of New South Wales, NSW 2052, Australia; School of Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales, NSW 2052, Australia
| | - Ana Deletic
- School of Civil and Environmental Engineering, University of New South Wales, Kensington, NSW 2052, Australia; School of Civil and Environmental Engineering, Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| |
Collapse
|
2
|
Zhang Q, Li Q, Li H, Shi X, Zhou Y, Ye Q, Yang R, Li D, Jiang D. Synergistic Effects of the Ni 3B Cocatalyst and N Vacancy on g-C 3N 4 for Effectively Enhanced Photocatalytic N 2 Fixation. Inorg Chem 2023; 62:12138-12147. [PMID: 37458415 DOI: 10.1021/acs.inorgchem.3c01741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The photocatalytic fixation of N2 is a promising technology for sustainable production of ammonia, while the unsatisfactory efficiency resulting from the low electron-transfer rate, narrow light absorption range, and limited active sites of the photocatalyst seriously hinder its application. Herein, we designed a noble metal-free Schottky junction photocatalyst constructed by g-C3N4 nanosheets with N vacancies (VN-CN) and metallic Ni3B nanoparticles (Ni3B/VN-CN) for N2 reduction to ammonia. The ammonia yield rate over the optimized Ni3B/VN-CN is 7.68 mM g-1 h-1, which is 6.7 times higher than that of pristine CN (1.15 mM g-1 h-1). The superior photocatalytic N2 fixation performance of Ni3B/VN-CN can be attributed not only to the formation of Schottky junctions between Ni3B and VN-CN, which facilitates the migration and separation of photogenerated electrons, but also to the incorporation of VN into g-C3N4, which enhances visible light absorption and improves electrical conductivity. More importantly, Ni3B nanoparticles can act as the cocatalyst, which provide more active sites for the adsorption and activation of N2, thereby improving the N2 reduction activity. This work provides an effective strategy of designing noble metal-free-based cocatalyst photocatalyst for sustainable and economic N2 fixation.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qin Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Heng Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ran Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zhou Y, Ye Q, Shi X, Zhang Q, Song Q, Zhou C, Li D, Jiang D. Ni 3B as p-Block Element-Modulated Cocatalyst for Efficient Photocatalytic CO 2 Reduction. Inorg Chem 2022; 61:17268-17277. [PMID: 36259672 DOI: 10.1021/acs.inorgchem.2c02850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the multiple electron and proton transfer processes involved, the photogenerated charges are easily recombined during the photocatalytic reduction of CO2, making the generation of the eight-electron product CH4 kinetically more difficult. Herein, Ni3B nanoparticles modulated by p-block element were combined with TiO2 nanosheets to construct a novel Schottky junction photocatalyst (Ni3B/TiO2) for the selective photocatalytic conversion of CO2 to CH4. The formed Ni3B/TiO2 photocatalyst with Schottky junction ensures a transfer pathway of photogenerated electrons from TiO2 to Ni3B, which facilitates the accumulation of electrons on the surface of Ni3B and subsequently improves the activity of photocatalytic CO2 reduction to CH4. The optimized Ni3B/TiO2 Schottky junction shows an improved CH4 yield of 30.03 μmol g-1 h-1, which was much higher than those of TiO2 (1.62 μmol g-1 h-1), NiO/TiO2 (2.44 μmol g-1 h-1), and Ni/TiO2 (4.3 μmol g-1 h-1). This work demonstrated that the introduction of p-block elements can alleviate the scaling relationship effect of pure metal cocatalysts to a certain extent, and the modified Ni3B can be used as a promising new cocatalyst to effectively improve the selective photocatalytic of CO2 to CH4.
Collapse
Affiliation(s)
- Yimeng Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianjin Ye
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiangli Shi
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qiong Zhang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Qi Song
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changjian Zhou
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Di Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Deli Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Gaikwad MA, Suryawanshi UP, Ghorpade UV, Jang JS, Suryawanshi MP, Kim JH. Emerging Surface, Bulk, and Interface Engineering Strategies on BiVO 4 for Photoelectrochemical Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105084. [PMID: 34936207 DOI: 10.1002/smll.202105084] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 06/14/2023]
Abstract
The photoelectrochemical (PEC) cell that collects and stores abundant sunlight to hydrogen fuel promises a clean and renewable pathway for future energy needs and challenges. Monoclinic bismuth vanadate (BiVO4 ), having an earth-abundancy, nontoxicity, suitable optical absorption, and an ideal n-type band position, has been in the limelight for decades. BiVO4 is a potential photoanode candidate due to its favorable outstanding features like moderate bandgap, visible light activity, better chemical stability, and cost-effective synthesis methods. However, BiVO4 suffers from rapid recombination of photogenerated charge carriers that have impeded further improvements of its PEC performances and stability. This review presents a close look at the emerging surface, bulk, and interface engineering strategies on BiVO4 photoanode. First, an effective approach of surface functionalization via different cocatalysts to improve the surface kinetics of BiVO4 is discussed. Second, state-of-the-art methodologies such as nanostructuring, defect engineering, and doping to further enhance light absorption and photogenerated charge transport in bulk BiVO4 are reviewed. Third, interface engineering via heterostructuring to improve charge separation is introduced. Lastly, perspectives on the foremost challenges and some motivating outlooks to encourage the future research progress in this emerging frontier are offered.
Collapse
Affiliation(s)
- Mayur A Gaikwad
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Umesh P Suryawanshi
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Uma V Ghorpade
- Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jun Sung Jang
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| | - Mahesh P Suryawanshi
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Hyeok Kim
- Optoelectronics Convergence Research Center and Department of Materials Science and Engineering, Chonnam National University, 300, Yongbong-Dong, Buk-Gu, Gwangju, 61186, South Korea
| |
Collapse
|
5
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
6
|
Li F, Yang H, Zhuo Q, Zhou D, Wu X, Zhang P, Yao Z, Sun L. A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2021; 60:1976-1985. [PMID: 33051952 PMCID: PMC7894348 DOI: 10.1002/anie.202011069] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/25/2020] [Indexed: 11/07/2022]
Abstract
A host-guest complex self-assembled through Co2+ and cucurbit[5]uril (Co@CB[5]) is used as a supramolecular catalyst on the surface of metal oxides including porous indium tin oxide (ITO) and porous BiVO4 for efficient electrochemical and photoelectrochemical water oxidation. When immobilized on ITO, Co@CB[5] exhibited a turnover frequency (TOF) of 9.9 s-1 at overpotential η=550 mV in a pH 9.2 borate buffer. Meanwhile, when Co@CB[5] complex was immobilized onto the surface of BiVO4 semiconductor, the assembled Co@CB[5]/BiVO4 photoanode exhibited a low onset potential of 0.15 V (vs. RHE) and a high photocurrent of 4.8 mA cm-2 at 1.23 V (vs. RHE) under 100 mW cm-2 (AM 1.5) light illumination. Kinetic studies confirmed that Co@CB[5] acts as a supramolecular water oxidation catalyst, and can effectively accelerate interfacial charge transfer between BiVO4 and electrolyte. Surface charge recombination of BiVO4 can be also significantly suppressed by Co@CB[5].
Collapse
Affiliation(s)
- Fusheng Li
- State Key Laboratory of Fine ChemicalsInstitute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
| | - Hao Yang
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Qiming Zhuo
- State Key Laboratory of Fine ChemicalsInstitute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
| | - Dinghua Zhou
- State Key Laboratory of Fine ChemicalsInstitute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
| | - Xiujuan Wu
- State Key Laboratory of Fine ChemicalsInstitute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
| | - PeiLi Zhang
- State Key Laboratory of Fine ChemicalsInstitute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
| | - Zhaoyang Yao
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
| | - Licheng Sun
- State Key Laboratory of Fine ChemicalsInstitute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular DevicesDalian University of Technology116024DalianChina
- Department of ChemistrySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of Technology10044StockholmSweden
- Center of Artificial Photosynthesis for Solar FuelsSchool of ScienceWestlake University310024HangzhouChina
| |
Collapse
|
7
|
Zhou D, Fan K, Zhuo Q, Zhao Y, Sun L. In Situ Induced Crystalline-Amorphous Heterophase Junction by K + to Improve Photoelectrochemical Water Oxidation of BiVO 4. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2723-2733. [PMID: 33411507 DOI: 10.1021/acsami.0c19948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar water splitting is one of the most efficient technologies to produce H2, which is a clean and renewable energy carrier. Photoanodes for water oxidation play the determining roles in solar water splitting, while its photoelectrochemical (PEC) performance is severely limited by the hole injection efficiency at the interface of semiconductor/electrolyte. To address this problem, in this research, by employing BiVO4 as the model semiconductor for photoanodes, we develop a novel, facile, and efficient method, which simply applies K cations in the preparation process of BiVO4 photoanodes, to in situ induce a crystalline-amorphous heterophase junction by the formation of an amorphous BiVO4 layer (a-BiVO4) on the surface of the crystalline BiVO4 (c-BiVO4) film for PEC water oxidation. The K cation is the key to stimulate the formation of the heterophase, but not incorporated in the final photoelectrodes. Without sacrificing the light absorption, the in situ formed a-BiVO4 layer accelerates the kinetics of the hole transfer at the photoanode/electrolyte interface, leading to the significantly increased efficiency of the surface hole injection to water molecules. Consequently, the BiVO4 photoanode with the crystalline-amorphous heterophase junction (a-BiVO4/c-BiVO4) exhibits almost twice the photocurrent density at 1.23 V (vs reversible hydrogen electrode) for water oxidation than the bare c-BiVO4 ones. Such advantages from the crystalline-amorphous heterophase junction are still effective even when the a-BiVO4/c-BiVO4 is coated by the cocatalyst of FeOOH, reflecting its broad applications in PEC devices. We believe this study can supply an efficient and simple protocol to enhance the PEC water oxidation performance of photoanodes, and provide a new strategy for the potential large-scale application of the solar energy-conversion related devices.
Collapse
Affiliation(s)
- Dinghua Zhou
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, P. R. China
| | - Ke Fan
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, P. R. China
| | - Qiming Zhuo
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, P. R. China
| | - Yilong Zhao
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, P. R. China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, 116024 Dalian, P. R. China
- Department of Chemistry, KTH Royal Institute of Technology, Stockholm 10044, Sweden
- Center of Artificial Photosynthesis for Solar Fuels, School of Science, Westlake University, 310024 Hangzhou, P. R. China
| |
Collapse
|
8
|
Li F, Yang H, Zhuo Q, Zhou D, Wu X, Zhang P, Yao Z, Sun L. A Cobalt@Cucurbit[5]uril Complex as a Highly Efficient Supramolecular Catalyst for Electrochemical and Photoelectrochemical Water Splitting. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fusheng Li
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
| | - Hao Yang
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Qiming Zhuo
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
| | - Dinghua Zhou
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
| | - Xiujuan Wu
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
| | - PeiLi Zhang
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
| | - Zhaoyang Yao
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices Dalian University of Technology 116024 Dalian China
- Department of Chemistry School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology 10044 Stockholm Sweden
- Center of Artificial Photosynthesis for Solar Fuels School of Science Westlake University 310024 Hangzhou China
| |
Collapse
|
9
|
Development of biosensors for detection of alpha-fetoprotein: As a major biomarker for hepatocellular carcinoma. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115961] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
10
|
Cui L, Zhang W, Zheng R, Liu J. Electrocatalysts Based on Transition Metal Borides and Borates for the Oxygen Evolution Reaction. Chemistry 2020; 26:11661-11672. [DOI: 10.1002/chem.202000880] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/14/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Liang Cui
- College of Materials Science and Engineering Linyi University Linyi 276400 Shandong P. R. China
| | - Wenxiu Zhang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 P. R. China
| | - Rongkun Zheng
- College of Materials Science and Engineering Linyi University Linyi 276400 Shandong P. R. China
| | - Jingquan Liu
- College of Materials Science and Engineering Linyi University Linyi 276400 Shandong P. R. China
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province Qingdao University Qingdao 266071 P. R. China
| |
Collapse
|
11
|
Recent advances in optical biosensors for the detection of cancer biomarker α-fetoprotein (AFP). Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115920] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Xie G, Wang H, Zhou Y, Du Y, Liang C, Long L, Lai K, Li W, Tan X, Jin Q, Qiu G, Zhou D, Huo H, Hu X, Xu X. Simultaneous remediation of methylene blue and Cr(VI) by mesoporous BiVO4 photocatalyst under visible-light illumination. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Krysiak OA, Junqueira JR, Conzuelo F, Bobrowski T, Masa J, Wysmolek A, Schuhmann W. Importance of catalyst–photoabsorber interface design configuration on the performance of Mo-doped BiVO4 water splitting photoanodes. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04636-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractPhotoelectrochemical water splitting is mostly impeded by the slow kinetics of the oxygen evolution reaction. The construction of photoanodes that appreciably enhance the efficiency of this process is of vital technological importance towards solar fuel synthesis. In this work, Mo-modified BiVO4 (Mo:BiVO4), a promising water splitting photoanode, was modified with various oxygen evolution catalysts in two distinct configurations, with the catalysts either deposited on the surface of Mo:BiVO4 or embedded inside a Mo:BiVO4 film. The investigated catalysts included monometallic, bimetallic, and trimetallic oxides with spinel and layered structures, and nickel boride (NixB). In order to follow the influence of the incorporated catalysts and their respective properties, as well as the photoanode architecture on photoelectrochemical water oxidation, the fabricated photoanodes were characterised for their optical, morphological, and structural properties, photoelectrocatalytic activity with respect to evolved oxygen, and recombination rates of the photogenerated charge carriers. The architecture of the catalyst-modified Mo:BiVO4 photoanode was found to play a more decisive role than the nature of the catalyst on the performance of the photoanode in photoelectrocatalytic water oxidation. Differences in the photoelectrocatalytic activity of the various catalyst-modified Mo:BiVO4 photoanodes are attributed to the electronic structure of the materials revealed through differences in the Fermi energy levels. This work thus expands on the current knowledge towards the design of future practical photoanodes for photoelectrocatalytic water oxidation.
Collapse
|
14
|
Jiang Y, Lu Y. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. NANOSCALE 2020; 12:9327-9351. [PMID: 32315016 DOI: 10.1039/d0nr01279c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Investigating renewable and clean energy materials as alternatives to fossil fuels can be foreseen as a potential solution to the global problems of energy shortages and environmental pollution. Recently, transition metal boride (TMB)-based materials have emerged as the rising star as efficient electrocatalysts for hydrogen evolution reaction (HER) and/or oxygen evolution reaction (OER). In this review, an overview of the most recent developments in the use of TMB-based materials as electrocatalysts for HER/OER or overall water splitting has been presented. Initially, we provide a comprehensive introduction of the fundamentals of electrochemical water splitting. Then, the synthesis approaches of TMB materials are summarized and compared. Emphasis is put on the various strategies for further improving the electrocatalytic performance of TMBs. Finally, challenges and future perspectives for TMBs in water-splitting applications are proposed.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
15
|
Lu C, Jothi PR, Thersleff T, Budnyak TM, Rokicinska A, Yubuta K, Dronskowski R, Kuśtrowski P, Fokwa BPT, Slabon A. Nanostructured core-shell metal borides-oxides as highly efficient electrocatalysts for photoelectrochemical water oxidation. NANOSCALE 2020; 12:3121-3128. [PMID: 31965133 DOI: 10.1039/c9nr09818f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxygen evolution reaction (OER) catalysts are critical components of photoanodes for photoelectrochemical (PEC) water oxidation. Herein, nanostructured metal boride MB (M = Co, Fe) electrocatalysts, which have been synthesized by a Sn/SnCl2 redox assisted solid-state method, were integrated with WO3 thin films to build heterojunction photoanodes. As-obtained MB modified WO3 photoanodes exhibit enhanced charge carrier transport, amended separation of photogenerated electrons and holes, prolonged hole lifetime and increased charge carrier density. Surface modification of CoB and FeB significantly enhances the photocurrent density of WO3 photoanodes from 0.53 to 0.83 and 0.85 mA cm-2, respectively, in transient chronoamperometry (CA) at 1.23 V vs. RHE (VRHE) under interrupted illumination in 0.1 M Na2SO4 electrolyte (pH 7), corresponding to an increase of 1.6 relative to pristine WO3. In contrast, the pristine MB thin film electrodes do not produce noticeable photocurrent during water oxidation. The metal boride catalysts transform in situ to a core-shell structure with a metal boride core and a metal oxide (MO, M = Co, Fe) surface layer. When coupled to WO3 thin films, the CoB@CoOx nanostructures exhibit a higher catalytic enhancement than corresponding pure cobalt borate (Co-Bi) and cobalt hydroxide (Co(OH)x) electrocatalysts. Our results emphasize the role of the semiconductor-electrocatalyst interface for photoelectrodes and their high dependency on materials combination.
Collapse
Affiliation(s)
- Can Lu
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany
| | - Palani R Jothi
- Department of Chemistry and Center for Catalysis, University of California, Riverside, 92507 California, USA.
| | - Thomas Thersleff
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
| | - Tetyana M Budnyak
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
| | - Anna Rokicinska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kunio Yubuta
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | - Richard Dronskowski
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany and Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Liuxian Blvd 7098, 518055 Shenzhen, China
| | - Piotr Kuśtrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Boniface P T Fokwa
- Department of Chemistry and Center for Catalysis, University of California, Riverside, 92507 California, USA.
| | - Adam Slabon
- Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, 10691 Stockholm, Sweden.
| |
Collapse
|
16
|
Li F, Zhao Z, Yang H, Zhou D, Zhao Y, Li Y, Li W, Wu X, Zhang P, Sun L. Electrochemical and photoelectrochemical water splitting with a CoO x catalyst prepared by flame assisted deposition. Dalton Trans 2020; 49:588-592. [PMID: 31825037 DOI: 10.1039/c9dt03983j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel flame-assisted deposition (FAD) method was used to generate and immobilize cobalt oxide (CoOx) on the surface of fluorine-doped tin oxide (FTO) and TiO2 modified hematite (TiO2/Fe2O3) for electrochemical and photoelectrochemical (PEC) water oxidation, respectively, with significant performance.
Collapse
Affiliation(s)
- Fusheng Li
- State Key Laboratory of Fine Chemicals, Institute of Artificial Photosynthesis, DUT-KTH Joint Education and Research Centre on Molecular Devices, Institute for Energy Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Enhancement of Photoelectrochemical Reduction by LaFeO3 Photocathodes Coated with Electroless Deposited Nickel Boride Catalyst. Catal Letters 2019. [DOI: 10.1007/s10562-019-03002-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Enhanced photoelectrochemical water oxidation activity of BiVO4 by coating of Co-phenolic networks as hole-transfer and co-catalyst. J Catal 2019. [DOI: 10.1016/j.jcat.2019.08.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Li M, Xu G, Guan Z, Wang Y, Yu H, Yu Y. Synthesis of Ag/BiVO 4/rGO composite with enhanced photocatalytic degradation of triclosan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:230-239. [PMID: 30743116 DOI: 10.1016/j.scitotenv.2019.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/01/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
A ternary visible-light driven photocatalyst, Ag/BiVO4/reduced graphene oxide (rGO) composite was manufactured by hydrothermal strategy. The optimized products were characterized by XRD, SEM, HRTEM, EDS, XPS, DRS, Raman spectra, PL, BET, photocurrent density and EIS analysis. Compared to pure BiVO4, the fabricated ternary composite showed enhanced photocatalytic ability to decompose pollutant under visible light. Triclosan was completely removed after 100 min in solution with 1 mg/mL photocatalyst under visible light irradiation. Repeated cycle tests demonstrated the photo-stability and reusability of composite to decompose triclosan, indicating that this material could be utilized repeatedly. The upgraded photocatalytic ability was attributed to the addition of Ag and rGO, which enhanced the charge separation and inhibited the recombination of photogenerated electrons and holes. The EPR spin-trap technique (with DMPO) was performed to identify the radicals produced in Ag/BiVO4/rGO under the visible light, and trapping experiments were conducted to determine the main active species in the photocatalytic process of decomposing triclosan. Finally, seven reaction intermediates of triclosan were detected by LC-MS/MS and possible degradation routes were proposed.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengyu Guan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
| | - Yang Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yong Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
20
|
Yu C, Zhang X. Synthesis of a Cu
2
O/Carbon Film/NiCoB‐Graphene Oxide Heterostructure as Photocathode for Photoelectrochemical Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201801701] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological EngineeringZhejiang University Hangzhou
| | - Xingwang Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education College of Chemical and Biological EngineeringZhejiang University Hangzhou
| |
Collapse
|
21
|
Xu X, Pan L, Zhang X, Wang L, Zou J. Rational Design and Construction of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen Evolution: A Comprehensive Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801505. [PMID: 30693190 PMCID: PMC6343073 DOI: 10.1002/advs.201801505] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/14/2018] [Indexed: 05/21/2023]
Abstract
Photo-electrochemical (PEC) water splitting, as an essential and indispensable research branch of solar energy applications, has achieved increasing attention in the past decades. Between the two photoelectrodes, the photoanodes for PEC water oxidation are mostly studied for the facile selection of n-type semiconductors. Initially, the efficiency of the PEC process is rather limited, which mainly results from the existing drawbacks of photoanodes such as instability and serious charge-carrier recombination. To improve PEC performances, researchers gradually focus on exploring many strategies, among which engineering photoelectrodes with suitable cocatalysts is one of the most feasible and promising methods to lower reaction obstacles and boost PEC water splitting ability. Here, the basic principles, modules of the PEC system, evaluation parameters in PEC water oxidation reactions occurring on the surface of photoanodes, and the basic functions of cocatalysts on the promotion of PEC performance are demonstrated. Then, the key progress of cocatalyst design and construction applied to photoanodes for PEC oxygen evolution is emphatically introduced and the influences of different kinds of water oxidation cocatalysts are elucidated in detail. Finally, the outlook of highly active cocatalysts for the photosynthesis process is also included.
Collapse
Affiliation(s)
- Xiao‐Ting Xu
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
22
|
Qi J, Kong D, Liu D, Pan L, Chen Y, Zhang X, Zou JJ. Bimetallic phosphide decorated Mo–BiVO4 for significantly improved photoelectrochemical activity and stability. RSC Adv 2019; 9:15629-15634. [PMID: 35514825 PMCID: PMC9064341 DOI: 10.1039/c9ra02105a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Bimetallic phosphide NiCoP decorated Mo–BiVO4 photoanode was fabricated, and showed significantly improved photoelectrochemical activity and stability.
Collapse
Affiliation(s)
- Jie Qi
- Key Laboratory for Green Chemical Technology of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dechao Kong
- Key Laboratory for Green Chemical Technology of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Danyang Liu
- People's Public Security University of China
- Beijing 100038
- China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Ying Chen
- Key Laboratory for Green Chemical Technology of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
23
|
Eichhorn J, Kastl C, Schwartzberg AM, Sharp ID, Toma FM. Disentangling the Role of Surface Chemical Interactions on Interfacial Charge Transport at BiVO 4 Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35129-35136. [PMID: 30230810 DOI: 10.1021/acsami.8b11366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Chemical transformations that occur on photoactive materials, such as photoelectrochemical water splitting, are strongly influenced by the surface properties as well as by the surrounding environment. Herein, we elucidate the effects of oxygen and water surface adsorption on band alignment, interfacial charge transfer, and charge-carrier transport by using complementary Kelvin probe measurements and photoconductive atomic force microscopy on bismuth vanadate. By observing variations in surface potential, we show that adsorbed oxygen acts as an electron-trap state at the surface of bismuth vanadate, whereas adsorbed water results in formation of a dipole layer without inducing interfacial charge transfer. The apparent change of trap state density under dry or humid nitrogen, as well as under oxygen-rich atmosphere, proves that surface adsorbates influence charge-carrier transport properties in the material. The finding that oxygen introduces electronically active states on the surface of bismuth vanadate may have important implications for understanding functional characteristics of water splitting photoanodes, devising strategies to passivate interfacial trap states, and elucidating important couplings between energetics and charge transport in reaction environments.
Collapse
Affiliation(s)
| | | | | | - Ian D Sharp
- Walter Schottky Institut and Physik Department , Technische Universität München , Am Coulombwall 4 , Garching 85748 , Germany
| | | |
Collapse
|
24
|
Zang Y, Fan J, Ju Y, Xue H, Pang H. Current Advances in Semiconductor Nanomaterial‐Based Photoelectrochemical Biosensing. Chemistry 2018; 24:14010-14027. [DOI: 10.1002/chem.201801358] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Jing Fan
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Yun Ju
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P.R. China
| |
Collapse
|
25
|
Jiang Y, Qian X, Zhu C, Liu H, Hou L. Nickel Cobalt Sulfide Double-Shelled Hollow Nanospheres as Superior Bifunctional Electrocatalysts for Photovoltaics and Alkaline Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9379-9389. [PMID: 29481033 DOI: 10.1021/acsami.7b18439] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Transition metal chalcogenides with hollow nanostructures have been considered as promising substitutes as precious metal electrocatalysts for energy conversion and storage. We synthesized NiCo2S4 double-shelled ball-in-ball hollow spheres (BHSs) via a simple solvothermal route and applied them in both dye-sensitized solar cells (DSSCs) and hydrogen evolution reactions (HERs) at the same time, which were clean and sustainable ways to convert energy. Benefiting from their remarkable structure features and advantageous chemical compositions, NiCo2S4 BHSs composed of tiny crystals possessed large surface area, well-defined interior voids, and high catalytic activity. The DSSC with NiCo2S4 BHSs under 100 mW cm-2 irradiation possessed a power conversion efficiency of 9.49% (Pt, 8.30%). Besides, NiCo2S4 BHSs as a HER catalyst also possessed a small onset overpotential (27.9 mV) and a low overpotential (89.7 mV at 10 mA cm-2) under alkaline conditions. Therefore, this work offers a sensible strategy to synthesize bifunctional electrocatalysts for DSSCs and HERs.
Collapse
Affiliation(s)
- Yiqing Jiang
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Xing Qian
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Changli Zhu
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Hongyu Liu
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| | - Linxi Hou
- College of Chemical Engineering , Fuzhou University , Xueyuan Road No. 2 , Fuzhou 350116 , China
| |
Collapse
|