1
|
Zhang K, Li C, Liu J, Zhang S, Wang M, Wang L. Defect-Rich Functional HfO 2-x for Highly Reversible Zn Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306406. [PMID: 37990371 DOI: 10.1002/smll.202306406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Indexed: 11/23/2023]
Abstract
Interface engineering attracted tremendous attention owing to its remarkable ability to impede dendrite growth and side reactions in aqueous zinc-ion batteries. Artificial interface layers composed of crystalline materials have been extensively employed to stabilize the Zn anode. However, the diffusion kinetics of Zn2+ in highly crystalline materials are hindered by steric effects from the lattice, thereby limiting the high-rate performance of the cell. Here, defect-rich HfO2-x polycrystals derived from metal-organic frameworks (MOFs) (D-HfO2-x) are developed to enhance the Zn deposition behavior. The discrepancy of dielectric constants between metallic Zn and HfO2 enables the building of an electrostatic shielding layer for uniform Zn deposition. More importantly, the oxygen vacancies in D-HfO2-x provide abundant active sites for Zn2+ adsorption, accelerating the kinetics of Zn2+ migration, which contributes to the preferential exposure of the Zn (002) plane during plating. Consequently, the D-HfO2-x-modified Zn anode delivers ultrastable durability of over 5000 h at 1 mA cm-2 and a low voltage hysteresis of 30 mV. The constructed defective coating provides a guarantee for the stable operation of Zn anodes, and the innovative approach of defective engineering also offers new ideas for the protection of other energy storage devices.
Collapse
Affiliation(s)
- Kai Zhang
- State Key Laboratory Base of Eco-Chemical Engineering International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Caixia Li
- State Key Laboratory Base of Eco-Chemical Engineering International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingwen Liu
- State Key Laboratory Base of Eco-Chemical Engineering International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shenghao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Minghui Wang
- State Key Laboratory Base of Eco-Chemical Engineering International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
2
|
Chen M, Li L, Wang Y, Liang D, Zhou Z, Xin H, Li C, Yuan G, Wang J. Sulfonated P-W modified nitrogen-containing carbon-based solid acid catalysts for one-pot conversion of cellulose to ethyl levulinate under water-ethanol medium. Int J Biol Macromol 2024; 260:129472. [PMID: 38262833 DOI: 10.1016/j.ijbiomac.2024.129472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Converting cellulose (Cel) into ethyl levulinate (EL) is one of the promising strategies for supplying liquid fuels. In this paper, the prepared sulfonated P-W-modified N-containing carbon-based solid acid catalyst (PWNCS), in which the Polyaniline (PANI) was employed as N and C precursors, successfully converted Cel into EL under the water-ethanol medium. The characterization results demonstrated that a tiny addition of P increased the Brønsted acid sites (BAS) content and defective WO3 provided the Lewis acid sites (LAS), meanwhile, the sulfonation process did not change the fundamental structure but introduced the sulfonic groups to dramatically increase the acidic content. Therefore, under optimized reaction conditions, PWNCS realized about 100% Cel conversion and 71.61% of EL yield, furthermore, the selectivity of EL reached 89.14%. In addition, the effect of water on the reaction pathway of Cel to EL over PWNCS was proposed. The addition of water generally resulted in the hydration of defective WO3 to reduce the LAS and increase BAS, which significantly inhibited the side reactions of retro-aldol condensation (RAC) and subsequent etherification reactions during Cel conversion and then improved the selectivity of EL.
Collapse
Affiliation(s)
- Mingqiang Chen
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China.
| | - Longyang Li
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Yishuang Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China.
| | - Defang Liang
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Zinan Zhou
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Haosheng Xin
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Chang Li
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Gang Yuan
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| | - Jun Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 232001 Huainan, PR China
| |
Collapse
|
3
|
Xu Y, Lai W, Cui X, Zheng D, Wang S, Fang Y. Controlled crystal facet of tungsten trioxide photoanode to improve on-demand hydrogen peroxide production for in-situ tetracycline degradation. J Colloid Interface Sci 2024; 655:822-829. [PMID: 37979288 DOI: 10.1016/j.jcis.2023.11.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Advanced oxidation processes utilizing hydrogen peroxide (H2O2) are widely employed for the treatment of organic pollutions. However, the conventional anthraquinone method for H2O2 synthesis is unsuitable for this application owing to its hazardous and costly nature. Alternative approaches involve a photoelectrochemical method. Herein, tungsten trioxide (WO3) photoanode has been used for the conversion of H2O into H2O2 through oxidation reaction from a PEC system, simultaneously utilizing in-situ generated hydroxyl (OH•) radicals for tetracycline degradation. By manipulating the ratio of crystal facets between (020) and (200) of the WO3 photoanode, a significant improvement in H2O2 production has been achieved by increasing the proportion of (020) facet. The production rate of WO3 photoanode enriched with the (020) facet is approximately 1.9 times higher than that enriched with (200) facet. This enhanced H2O2 production performance can be attributed to the improved formation of OH• radicals and the accelerated desorption of H2O2 on the (020) facet. Simultaneously, the in-situ generated OH• radicals are applied for tetracycline degradation. Under illumination of sunlight stimulator for 180 min, the optimal photoanode achieves a degradation rate of 86.7% for tetracycline. Furthermore, the resulting chemicals have been analyzed, revealing that C8H10O and C7H8O were formed as the primary products. Notably, these products exhibit significantly lower toxicity compared to tetracycline. This study presents a promising approach for the rational design of WO3 based photoanodes for oxidation reaction, including not only H2O2 production but also the efficient degradation of organic pollutants.
Collapse
Affiliation(s)
- Yuntao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Wei Lai
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Xiaoqi Cui
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Dandan Zheng
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350116, PR China.
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China
| | - Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
| |
Collapse
|
4
|
Sa K, Zhang X, Zeng Z, Liang Y, Han C. Wet-chemical intercalation of Bi 4TaO 8Br with self-adaptive structural deformation for enhanced photocatalytic performance. Chem Commun (Camb) 2023; 59:10145-10148. [PMID: 37530062 DOI: 10.1039/d3cc02874g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
A small specific surface area and severe charge carrier recombination greatly limit the photocatalytic efficiency of semiconductors. Herein, we developed a novel wet-chemical intercalation strategy by using the NaBH4 reagent for in situ intercalation-assisted expansion and surface/interface reconstruction of Bi4TaO8Br, which exhibits an enhanced specific surface area and charge carrier separation features. This work highlights intercalation of semiconductors for achieving enhanced photocatalytic performance and provides a new idea to synergistically regulate the morphology and surface/interface composition of semiconductors.
Collapse
Affiliation(s)
- Ke Sa
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Xiaorui Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Zikang Zeng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| | - Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
5
|
Dong Z, Zhang N, Wang S, Liu Y, Zhang L, Chen X, Luo L. In Situ Structural Dynamics of Atomic Defects in Tungsten Oxide. J Phys Chem Lett 2022; 13:7170-7176. [PMID: 35904340 DOI: 10.1021/acs.jpclett.2c01942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic defects are critical to tuning the physical and chemical properties of functional materials such as catalysts, semiconductors, and 2D materials. However, direct structural characterization of atomic defects, especially their formation and annihilation under practical conditions, is challenging yet crucial to understanding the underlying mechanisms driving defect dynamics, which remain mostly elusive. Here, through in situ atomic imaging by an aberration-corrected environmental transmission electron microscope (AC-ETEM), we directly visualize the formation and annihilation mechanism of planar defects in monoclinic WO3 on the atomic scale in real time. We captured the atomistic process of the nucleation dynamics of the dislocation core in the [010] direction, followed by its propagation to form a planar defect. Corroborated by density functional theory-based calculations, we rationalize the formation of dislocation through O extraction from bridge sites followed by an atomic channeling process. These in situ observations shed light on the defect dynamics in oxides and provide atomic insights into forming and manipulating defects in functional materials.
Collapse
Affiliation(s)
- Zejian Dong
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Na Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Shuangbao Wang
- Key Laboratory of LCR Materials and Devices of Yunnan Province, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Yuying Liu
- School of Physical Science and Technology, Guangxi University, Nanning 530004, P. R. China
| | - Lifeng Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Langli Luo
- Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| |
Collapse
|
6
|
Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2.89) for Congo red dye removal. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Hou T, Chen H, Li Y, Wang H, Yu F, Li C, Lin H, Li S, Wang L. Unique Cd 0.5Zn 0.5S/WO 3-x direct Z-scheme heterojunction with S, O vacancies and twinning superlattices for efficient photocatalytic water-splitting. Dalton Trans 2021; 51:1150-1162. [PMID: 34939639 DOI: 10.1039/d1dt03561d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic water-splitting employing the Z-scheme semiconductor systems mimicking natural photosynthesis is regarded as a promising way to achieve efficient soalr-to-H2 conversion. Nevertheless, it still remains a big challenge to design high-performance direct Z-scheme photocatalysts without the use of noble metals as electron mediators. Herein, a unique Cd0.5Zn0.5S/WO3-x direct Z-scheme heterojunction was constructed for the first time, which consisted of smaller O-vacancy-decorated WO3-x nanocrystals anchoring on Cd0.5Zn0.5S nanocrystals with S vacancies and zinc blende/wurtzite (ZB/WZ) twinning superlattices. Under visible-light (λ > 420 nm) irradiation, the Cd0.5Zn0.5S/WO3-x composites exhibited an outstanding H2 evolution reaction (HER) activity of 20.50 mmol h-1 g-1 (corresponding to the apparent quantum efficiency of 18.0% at 420 nm), which is much superior to that of WO3-x, Cd0.5Zn0.5S, and Cd0.5Zn0.5S loaded with Pt. Interestingly, the introduced O and S vacancies contributed to improving the HER activity of Cd0.5Zn0.5S/WO3-x significantly. Moreover, the cycling and long-term HER measurements confirmed the robust photocatalytic stability of Cd0.5Zn0.5S/WO3-x for H2 production. The excellent light harvesting and efficient spatial charge separation induced by the ZB/WZ twinning homojunctions and defect-promoted direct Z-scheme charge-transfer pathway are responsible for the exceptional HER capability. Our study could enlighten the rational engineering and optimization of semiconductor nanostructures for energy and environmental applications.
Collapse
Affiliation(s)
- Teng Hou
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Hanchu Chen
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. .,Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyan Li
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Hui Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. .,Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Fengli Yu
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Caixia Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Haifeng Lin
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shaoxiang Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Key Laboratory of Optic-electric Sensing and Analytical Chemistry of Life Science, Shandong Provincial Key Laboratory of Olefin Catalysis and Polymerization, Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China. .,Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Shi M, Rhimi B, Zhang K, Xu J, Bahnemann DW, Wang C. Visible light-driven novel Bi 2Ti 2O 7/CaTiO 3 composite photocatalyst with enhanced photocatalytic activity towards NO removal. CHEMOSPHERE 2021; 275:130083. [PMID: 33662727 DOI: 10.1016/j.chemosphere.2021.130083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 05/29/2023]
Abstract
Photocatalysis is regarded as a promising technology for removal of nitrogen oxide (NO), however, the low photocatalytic efficiencies under visible light irradiation and the deactivation of the photocatalyst are as yet the significant issues that should be addressed. In this work, visible-light-driven Bi2Ti2O7/CaTiO3 heterojunction composites were synthesized by a facile in-situ hydrothermal method. The Bi2Ti2O7/CaTiO3 composites displayed superior visible light photocatalytic activity than pure CaTiO3 and pure Bi2Ti2O7 in the removal of NO at the 600 ppb level in air. Among all the composites, Bi2Ti2O7/CaTiO3 containing 20 wt% Bi2Ti2O7 exhibited the best photocatalytic activity, achieving a maximum removal efficiency of 59%. The improved photocatalytic performance is mainly attributed to the strong visible-light-absorbing ability, the presence of an appropriate density of oxygen vacancy defects and the formation of heterojunction between CaTiO3 and Bi2Ti2O7, resulting in an efficient charge separation at the interface as proven by photoluminescence (PL) and photo-induced current measurements. According to trapping experiments and spin-trapping ESR analysis, the •O2- and h+ are the principal reactive species involved in the photocatalytic NO removal. In addition, the as-obtained Bi2Ti2O7/CaTiO3 composite showed good chemical stability, which is beneficial for practical applications in air pollution removal.
Collapse
Affiliation(s)
- Menglin Shi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Baker Rhimi
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Ke Zhang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Jingkun Xu
- Flexible Electronics Innovation Institute (FEII), Jiangxi Science & Technology Normal University, PR China
| | - Detlef W Bahnemann
- Institut Fuer Technische Chemie, Gottfried Wilhelm Leibniz Universitaet Hannover, Callinstrasse 3, D-30167, Hannover, Germany; Laboratory of Photoactive Nanocomposite Materials, Saint-Petersburg State University, Ulyanovskaya Str. 1, Peterhof, Saint-Petersburg, 198504, Russia
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| |
Collapse
|
9
|
Salkar AV, Naik AP, Bhosale SV, Morajkar PP. Designing a Rare DNA-Like Double Helical Microfiber Superstructure via Self-Assembly of In Situ Carbon Fiber-Encapsulated WO 3-x Nanorods as an Advanced Supercapacitor Material. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1288-1300. [PMID: 33356091 DOI: 10.1021/acsami.0c21105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Double helical DNA structure is one of the most beautiful and fascinating nanoarchitecture nature has produced. Mimicking nature's design by the tailored synthesis of semiconductor nanomaterials such as WO3 into a DNA-like double helical superstructure could impart special properties, such as enhanced stability, electrical conductivity, information storage, signal processing, and catalysis, owing to the synergistic interaction across helices. However, double helical WO3 synthesis is extremely challenging and has never been reported earlier. This investigation presents the first-ever report on a facile synthesis route for designing a DNA-like double helical WO3-x/C microfiber superstructure via self-assembly of in situ carbon fiber-encapsulated WO3-x nanorods. This innovative design strategy is completely template-free and does not require predesigned helical templates or hydro/solvothermal treatment. Detailed spectroscopic material characterization and electrochemical studies confirmed that the double helical structure with carbon fiber-WO3-x heterostructures enabled effective induction and distribution of oxygen vacancies along with W5+/W6+ redox surface states. Furthermore, faster electrode-electrolyte interfacial kinetics, improved electrical conductivity, and cycling stability has been observed in the carbon fiber-WO3-x heterostructures which resulted in a high area specific capacitance of 401 mF cm-2 at 2 mA cm-2 with excellent capacitance retention of >94% for more than 5000 cycles. Additionally, the carbon fiber-WO3-x heterostructures demonstrated promising performance when fabricated in a solid-state asymmetric supercapacitor device with the power density of 498 W kg-1 at an energy density of 15.4 W h kg-1. Therefore, the rare DNA-like double helical WO3-x/C superstructure synthesized in this study could open new doorways toward in situ, facile fabrication of double helical superstructures for energy and environmental applications.
Collapse
Affiliation(s)
- Akshay V Salkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| | - Amarja P Naik
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, 403206 Goa, India
| |
Collapse
|
10
|
Zou Z, Qin H, Xia H, Xia D, Li D, Xu H. Modulating formation rates of active species population by optimizing electron transport channels for boosting the photocatalytic activity of a Bi 2S 3/BiO 1−xCl heterojunction. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00266j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bi2S3/BiO1−xCl heterojunction with OVs can regulate PS to produce ASP through optimizing ETCs and modulating ASP formation rates by cooperation of OVs with IEF to hinder the invalid consumption of ASP and significantly enhance the catalytic efficiency.
Collapse
Affiliation(s)
- Zhongwei Zou
- School of Environmental Engineering
- Wuhan Textile University
- Wuhan 430073
- PR China
| | - Hailan Qin
- School of Environmental Engineering
- Wuhan Textile University
- Wuhan 430073
- PR China
| | - Huan Xia
- School of Environmental Engineering
- Wuhan Textile University
- Wuhan 430073
- PR China
| | - Dongsheng Xia
- School of Environmental Engineering
- Wuhan Textile University
- Wuhan 430073
- PR China
- Engineering Research Center for Clean Production of Textile Dyeing and Printing
| | - Dongya Li
- Engineering Research Center for Clean Production of Textile Dyeing and Printing
- Ministry of Education
- Wuhan Textile University
- Wuhan 430073
- PR China
| | - Haiming Xu
- School of Environmental Engineering
- Wuhan Textile University
- Wuhan 430073
- PR China
| |
Collapse
|
11
|
Rafat MN, Cho KY, Jung CH, Oh WC. New modeling of 3D quaternary type BaCuZnS-graphene-TiO 2 (BCZS-G-T) composite for photosonocatalytic hydrogen evolution with scavenger effect. Photochem Photobiol Sci 2020; 19:1765-1775. [PMID: 33300540 DOI: 10.1039/d0pp00295j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the efficient evolution of hydrogen, we designed a 3D quaternary BaCuZnS-graphene-TiO2 (BCZS-G-T) composite by an ultrasonic method. Herein, we prepared a quaternary material to minimize the bandgap energy and size. We characterized the "as-prepared" composites by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy, and electrochemical impedance spectroscopy (EIS). The high hydrogen evolution was attributed to the 3D quaternary BCZS-G-T composite with small bandgap energy because of its high photoelectron recombination properties. In addition, we demonstrated the combination effects with photocatalytic and sonocatalytic treatments with a scavenger. This work highlights the potential application of quaternary graphene-based composites in the field of energy conversion.
Collapse
Affiliation(s)
- Md Nazmodduha Rafat
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si, Chungnam 356-706, Korea.
| | | | | | | |
Collapse
|
12
|
Microwave-assisted synthesis of defective tungsten trioxide for photocatalytic bacterial inactivation: Role of the oxygen vacancy. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63409-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Microwave–assisted synthesis of nanoscale tungsten trioxide hydrate with excellent photocatalytic activity under visible irradiation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Oxygen vacancy O-terminated surface: The most exposed surface of hexagonal WO3 (001) surface. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Preparation of nitrogen-doped aluminium titanate (Al2TiO5) nanostructures: Application to removal of organic pollutants from aqueous media. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Shaheen K, Shah Z, Asad A, Arshad T, Khan SB, Suo H. Synthesis, Characterization, and Multifunctional Applications of Cu-Fe and Ni-Fe Nanomaterials. ACS OMEGA 2020; 5:15992-16002. [PMID: 32656420 PMCID: PMC7346260 DOI: 10.1021/acsomega.0c01259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Cu-Fe and Ni-Fe nanomaterials (NMs) were successfully obtained via a coprecipitation route. Phase analysis and the micro- and physiochemical structure studies for the as-synthesized NMs were carried out with advanced techniques such as TEM, SEM, XRD, XPS, BET, DRS, TGA, and FTIR. Particles with size ranging from 25 to 70 nm were displayed by all the characterization techniques. A surface area of ∼4.48 and 36.52m2/g and band gap energies of ∼1.79 and 1.48 eV were calculated for Cu-Fe and Ni-Fe NMs, respectively. Saturation magnetization (Ms) ∼77.95 emu/g (for Cu-Fe) and 27.70 emu/g (for Ni-Fe) revealed superparamagnetism for both the NMs. The presence of ethanol and methanol as sacrificial agents contributed effectively toward electrocatalytic H-evolution as compared to pure NMs. Furthermore, under solar light irradiations, Cu-Fe and Ni-Fe NMs displayed 85 and 91% degradation during a time interval of 50 and 110 min, respectively, for toxic industrial methylene blue (MB) dye. Different operational variables such as the catalyst amount, pH values, various scavengers, reusability, and stability were thoroughly investigated. Moreover, in situ analysis was carried out in order to determine the mechanism for degradation reactions. A detailed study about various applications categorized the synthesized NMs as efficient candidates for toxic industrial waste cleanup and energy production at an industrial level.
Collapse
Affiliation(s)
- Kausar Shaheen
- The
Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
- Department
of Physics, Jinnah College for Women, University
of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan
| | - Zarbad Shah
- Department
of Chemistry, Bacha Khan University Charsadda, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Ambreen Asad
- Department
of Chemistry, Bacha Khan University Charsadda, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Tofail Arshad
- Department
of Chemistry, Bacha Khan University Charsadda, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Sher Bahadar Khan
- Center
of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, P.O. Box
80203, Saudi Arabia
- Chemistry
Department, Faculty of Science, King Abdulaziz
University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Hongli Suo
- The
Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
17
|
Shen M, Ding T, Luo J, Tan C, Mahmood K, Wang Z, Zhang D, Mishra R, Lew MD, Sadtler B. Competing Activation and Deactivation Mechanisms in Photodoped Bismuth Oxybromide Nanoplates Probed by Single-Molecule Fluorescence Imaging. J Phys Chem Lett 2020; 11:5219-5227. [PMID: 32516535 DOI: 10.1021/acs.jpclett.0c01237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen vacancies in semiconductor photocatalysts play several competing roles, serving to both enhance light absorption and charge separation of photoexcited carriers as well as act as recombination centers for their deactivation. In this Letter, we show that single-molecule fluorescence imaging of a chemically activated fluorogenic probe can be used to monitor changes in the photocatalytic activity of bismuth oxybromide (BiOBr) nanoplates in situ during the light-induced formation of oxygen vacancies. We observe that the specific activities of individual nanoplates for the photocatalytic reduction of resazurin first increase and then progressively decrease under continuous laser irradiation. Ensemble structural characterization, supported by electronic-structure calculations, shows that irradiation increases the concentration of surface oxygen vacancies in the nanoplates, reduces Bi ions, and creates donor defect levels within the band gap of the semiconductor particles. These combined changes first enhance photocatalytic activity by increasing light absorption at visible wavelengths. However, high concentrations of oxygen vacancies lower the photocatalytic activity both by introducing new relaxation pathways that promote charge recombination before photoexcited electrons can be extracted and by weakening binding of resazurin to the surface of the nanoplates.
Collapse
Affiliation(s)
- Meikun Shen
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Tianben Ding
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Jiang Luo
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Che Tan
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Khalid Mahmood
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Zheyu Wang
- Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Dongyan Zhang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Rohan Mishra
- Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri 63130, United States
| | - Matthew D Lew
- Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Bryce Sadtler
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
18
|
Quan H, Gao Y, Wang W. Tungsten oxide-based visible light-driven photocatalysts: crystal and electronic structures and strategies for photocatalytic efficiency enhancement. Inorg Chem Front 2020. [DOI: 10.1039/c9qi01516g] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocatalysis (PC) technology has received global attention due to its high potential of addressing both environmental and energy issues using only solar light as energy input.
Collapse
Affiliation(s)
- Haiqin Quan
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Yanfeng Gao
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Wenzhong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Science
- Shanghai 200050
- People's Republic of China
| |
Collapse
|
19
|
Zhang S, Liu G, Qiao W, Wang J, Ling L. Oxygen vacancies enhance the lithium ion intercalation pseudocapacitive properties of orthorhombic niobium pentoxide. J Colloid Interface Sci 2019; 562:193-203. [PMID: 31838355 DOI: 10.1016/j.jcis.2019.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/19/2023]
Abstract
While orthorhombic niobium pentoxide (T-Nb2O5) is one of the most promising energy storage material with rapid lithium ion (Li+) intercalation pseudocapacitive response, a key challenge remains the achievement of high-rate charge-transfer reaction when fabricated into thick electrodes. Herein, we report a facile method to create intrinsic defects in T-Nb2O5 through a hydrogen (H2) reduction, which is effective to overcome the limitations of electrochemical utilization and rate capability. Due to the high number of active sites introduced, the specific capacity of hydrogenated (H-) Nb2O5 with oxygen vacancies reaches 649 C g-1 at 0.5 A g-1, greatly exceeding that of T-Nb2O5 which is 580 C g-1. In addition, theformation of oxygen vacancies leads to increased donor density and enhanced electrical conductivity, which accelerates charge storage kinetics and enables excellent long-term cycling stability (86% retention after 2000 cycles). The analysis of electrochemical impedance spectroscopy (EIS) plots and the calculation of Li+ diffusion coefficients (DLi) further explains the high rate-performance of H-Nb2O5. When the electrode thickness increased to 150 μm, the H-Nb2O5 still delivers excellent electrochemical properties. Therefore, the introduction of oxygen vacancies provides a new method towards the improvement of the electrochemical properties of various transition metal oxides.
Collapse
Affiliation(s)
- Songmin Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guanglan Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenming Qiao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jitong Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Licheng Ling
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
20
|
Hong W, Zhu T, Sun Y, Wang H, Li X, Shen F. Enhancing Oxygen Vacancies by Introducing Na + into OMS-2 Tunnels To Promote Catalytic Ozone Decomposition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13332-13343. [PMID: 31642660 DOI: 10.1021/acs.est.9b03689] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A series of Na-OMS-2 catalysts was prepared by a facile solid-state reaction method. Their physiochemical properties were characterized, and the catalytic activity for ozone decomposition was evaluated. The results showed that the introduction of Na+ in the tunnel framework of OMS-2 facilitated lattice defect formation, which significantly enhanced oxygen vacancies, which are believed to be the active sites for ozone decomposition. Density functional theory calculations also showed that both the oxygen vacancy formation energy and ozone adsorption energy over Na-OMS-2 decreased because of Na+ introduction. Sodium ion introduction significantly improved the OMS-2 catalytic activity for ozone decomposition. The Na-OMS-2 catalyst with a Na/Mn molar ratio of 1/4 exhibited ozone conversion at 92.5% at 25 ± 1 °C after reaction for 6 h under an initial ozone concentration of 45 ± 2 ppm, a relative humidity of 30 ± 2%, and a space velocity of 660 000 h-1. This showed that this catalyst was far superior to manganese oxide catalysts reported to date. Furthermore, the research results also showed that the catalytic activity of Na-OMS-2 deactivated by the accumulation of oxygen-related intermediates was recovered by calcination at 425 °C under N2 atmosphere for 0.5 h. Finally, a complete mechanism for ozone decomposition, catalyst deactivation, and regeneration was proposed.
Collapse
Affiliation(s)
- Wei Hong
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices , Beihang University , Beijing 100191 , China
| | - Tianle Zhu
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices , Beihang University , Beijing 100191 , China
| | - Ye Sun
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices , Beihang University , Beijing 100191 , China
| | - Haining Wang
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices , Beihang University , Beijing 100191 , China
| | - Xiang Li
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices , Beihang University , Beijing 100191 , China
| | - Fangxia Shen
- School of Space and Environment, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices , Beihang University , Beijing 100191 , China
| |
Collapse
|
21
|
Li H, Ba G, Liang Z, Deng Q, Hou W. Construction of direct all-solid-state Z-scheme p-n copper indium disulfide/tungsten oxide heterojunction photocatalysts: Function of interfacial electric field. J Colloid Interface Sci 2019; 555:72-81. [DOI: 10.1016/j.jcis.2019.07.073] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/01/2022]
|
22
|
Zhang M, Lai C, Li B, Huang D, Liu S, Qin L, Yi H, Fu Y, Xu F, Li M, Li L. Ultrathin oxygen-vacancy abundant WO3 decorated monolayer Bi2WO6 nanosheet: A 2D/2D heterojunction for the degradation of Ciprofloxacin under visible and NIR light irradiation. J Colloid Interface Sci 2019; 556:557-567. [DOI: 10.1016/j.jcis.2019.08.101] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 01/08/2023]
|
23
|
Huang S, Long Y, Ruan S, Zeng YJ. Enhanced Photocatalytic CO 2 Reduction in Defect-Engineered Z-Scheme WO 3-x /g-C 3N 4 Heterostructures. ACS OMEGA 2019; 4:15593-15599. [PMID: 31572860 PMCID: PMC6761746 DOI: 10.1021/acsomega.9b01969] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/30/2019] [Indexed: 05/30/2023]
Abstract
Oxygen vacancy-modified WO3-x nanorods composited with g-C3N4 have been synthesized via the chemisorption method. The crystalline structure, morphology, composition, band structure, and charge separation mechanism for WO3-x /g-C3N4 heterostructures are studied in detail. The g-C3N4 nanosheets are attached on the surface of WO3-x nanorods. The Z-scheme separation is confirmed by the analysis of generated hydroxyl radicals. The electrons in the lowest unoccupied molecular orbital of g-C3N4 and the holes in the valence band of WO3 can participate in the photocatalytic reaction to reduce CO2 into CO. New energy levels of oxygen vacancies are formed in the band gap of WO3, further extending the visible-light response, separating the charge carriers in Z-scheme and prolonging the lifetime of electrons. Therefore, the WO3-x /g-C3N4 heterostructures exhibit much higher photocatalytic activity than the pristine g-C3N4.
Collapse
|
24
|
Zhang J, Feng F, Pu Y, Li X, Lau CH, Huang W. Tailoring the Porosity in Iron Phosphosulfide Nanosheets to Improve the Performance of Photocatalytic Hydrogen Evolution. CHEMSUSCHEM 2019; 12:2651-2659. [PMID: 30972932 DOI: 10.1002/cssc.201900789] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/08/2019] [Indexed: 06/09/2023]
Abstract
Metal sulfide photocatalysts are typically required during water splitting to produce hydrogen. However, the rapid recombination of photogenerated electron-hole pairs in these highly unstable photocatalysts has restricted hydrogen production to small-scale batch reactions. In this work, porous transition-metal thiophosphites were used to enable continuous long-term hydrogen production through photocatalysis. A wide bandgap (2.04 eV) was essential for generating hydrogen at a rate of 305.6 μmol h-1 g-1 , 180 % faster than nonporous FePS3 nanosheets. More importantly, the high in-plane stiffness of these approximately 7 nm thick porous FePS3 nanosheets ensured structural stability during 56 h of continuous photocatalysis reactions. The reaction results with D2 O instead of H2 O indicated that hydrogen mainly came from H2 O. Furthermore, a sacrificial reagent (triethylamine) was photodegraded into diethylamine and acetaldehyde through a monoelectronic oxidation process, as indicated by HPLC and LC-MS. This synthesis strategy reported for FePS3 porous nanosheets paves a new pathway for designing other dianion-based inorganic nanocrystals for hydrogen energy applications.
Collapse
Affiliation(s)
- Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, School of Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Fang Feng
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Yong Pu
- New Energy Technology Engineering Lab of Jiangsu Province, School of Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Xing'ao Li
- New Energy Technology Engineering Lab of Jiangsu Province, School of Science, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
| | - Cher Hon Lau
- School of Engineering, University of Edinburgh, Robert Stevenson Rd, Kings Building, Edinburgh, EH9 3FB, Midlothian, UK
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays &, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P.R. China
- Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, P.R. China
| |
Collapse
|
25
|
Han Z, Hong W, Xing W, Hu Y, Zhou Y, Li C, Chen G. Shockley Partial Dislocation-Induced Self-Rectified 1D Hydrogen Evolution Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20521-20527. [PMID: 31081314 DOI: 10.1021/acsami.9b03465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photocatalytic stability and efficient charge separation are key factors to photocatalytic performance for visible-light-driven H2 evolution from water. Here, we report a whole novel self-rectified photocatalyst constructed from the Shockley partial dislocation-induced multiple faults, using a ternary chalcogenide, that is, Cd0.8Zn0.2S nanorod as a model material. The introduction of multiple faults, which are typical planar defects, constructs a nanorectifier that aligns along the axial direction and constitutes a relatively ordered superstructure. The band bending and Fermi-level flattening at the nanorectifier would cause the photogenerated charge carriers to be transferred reversely at the axial direction on account of the charge type and then realize the separation of the charge carriers.
Collapse
Affiliation(s)
- Zhonghui Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Weizhao Hong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Weinan Xing
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
- College of Biology and the Enviroment , Nanjing Forestry University , Nanjing 210037 , PR China
| | - Yidong Hu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Yansong Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Chunmei Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , PR China
| | - Gang Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
26
|
Zhang Y, Afzal N, Pan L, Zhang X, Zou J. Structure-Activity Relationship of Defective Metal-Based Photocatalysts for Water Splitting: Experimental and Theoretical Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900053. [PMID: 31131201 PMCID: PMC6524102 DOI: 10.1002/advs.201900053] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Indexed: 05/05/2023]
Abstract
Photocatalytic water splitting is promising for hydrogen energy production using solar energy and developing highly efficient photocatalysts is challenging. Defect engineering is proved to be a very useful strategy to promote the photocatalytic performance of metal-based photocatalysts, however, the vital role of defects is still ambiguous. This work comprehensively reviews point defective metal-based photocatalysts for water splitting, focusing on understanding the defects' disorder effect on optical adsorption, charge separation and migration, and surface reaction. The controllable synthesis and tuning strategies of defective structure to improve the photocatalytic performance are summarized, then the characterization techniques and density functional theory calculations are discussed to unveil the defect structure, and analyze the defects induced electronic structure change of catalysts and its ultimate effect on the photocatalytic activity at the molecular level. Finally, the challenge in developing more efficient defective metal-based photocatalysts is outlined. This work may help further the understanding of the fundamental role of defect structure in the photocatalytic reaction process and guide the rational design and fabrication of highly efficient and low-cost photocatalysts.
Collapse
Affiliation(s)
- Yong‐Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Nisha Afzal
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
27
|
Wei W, Yao Y, Zhao Q, Xu Z, Wang Q, Zhang Z, Gao Y. Oxygen defect-induced localized surface plasmon resonance at the WO 3-x quantum dot/silver nanowire interface: SERS and photocatalysis. NANOSCALE 2019; 11:5535-5547. [PMID: 30860537 DOI: 10.1039/c9nr01059a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Oxygen defects play a crucial role in a variety of functional transition metal oxides, ranging from photocatalytic materials to photoelectric devices. Tungsten oxide (WO3-x) is a type of transition metal oxide that has rich substoichiometric compositions and possesses oxygen defects. These oxygen defects determine the photon-electron interactions in the WO3-x structures. Therein, WO3-x quantum dots (QDs) exhibit fast carrier-transport for photon-electron interactions due to their strong quantum-size effects. Here, we report the use of non-stoichiometric WO3-x QDs, as a model material, in combination with silver nanowires (Ag NWs) to study photon-electron interactions on the nanoscale. We demonstrate that the incident photon-to-electron conversion efficiency can be increased by 8.5% and that the dye photodegradation performance was improved by 40% in a WO2.72 QD@Ag NW (WO2.72 QDs supported on AgNWs) composite compared to those of individual WO2.72 QDs under simulated AM 1.5G light. Furthermore, the WO3-x QD@Ag NW composite exhibits both photocatalytic activity and surface-enhanced Raman scattering (SERS) features, and the WO3-x QDs can be switched between a "photocatalytic state" and a "SERS state" by changing the stoichiometric ratio. The synergistic effects are ascribed to the "plasmonic state" of WO2.72 QDs upon light irradiation. This work provides new insight into the design of highly efficient transition metal oxide/plasmonic metal nanocomposites for photoelectric devices.
Collapse
Affiliation(s)
- Wei Wei
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
28
|
McDonald KD, Bartlett BM. Photocatalytic primary alcohol oxidation on WO3 nanoplatelets. RSC Adv 2019; 9:28688-28694. [PMID: 35529668 PMCID: PMC9071196 DOI: 10.1039/c9ra04839a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/30/2019] [Indexed: 01/27/2023] Open
Abstract
With the aid of direct heating through microwave irradiation in non-aqueous media, nanocrystalline tungsten(vi) oxide is achievable in 30 minutes at 200 °C, faster and at a lower temperature than conventional synthesis methods.
Collapse
|
29
|
Xie T, Zhang Y, Yao W, Liu Y, Wang H, Wu Z. Synthesis of Bi-deficient monolayered Bi2WO6 nanosheets with enhanced photocatalytic activity under visible light irradiation. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02344a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The strong protonated hydroxyl groups around Bi vacancies could efficiently promote the separation of photoexcited electron–hole pairs.
Collapse
Affiliation(s)
- Taiping Xie
- Department of Environmental Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Yaoyu Zhang
- Department of Environmental Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Weiyuan Yao
- Department of Environmental Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Yue Liu
- Department of Environmental Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Haiqiang Wang
- Department of Environmental Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Zhongbiao Wu
- Department of Environmental Engineering
- Zhejiang University
- Hangzhou
- P. R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control
| |
Collapse
|
30
|
Wei G, Zhou Z, Zhao X, Zhang W, An C. Ultrathin Metal-Organic Framework Nanosheet-Derived Ultrathin Co 3O 4 Nanomeshes with Robust Oxygen-Evolving Performance and Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23721-23730. [PMID: 29947226 DOI: 10.1021/acsami.8b04026] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrathin metal-organic framework (MOF) nanosheets possessing inherent advantages of both two-dimensional (2D) features and MOFs are attracting intensive research interest. The direct manufacture of MOF nanosheets is still a challenge up to now. Here, we have developed a novel bottom-up approach to synthesize zeolitic imidazolate framework-67 (ZIF-67) nanosheets, which can be in situ converted into Co3O4 ultrathin nanomeshes after thermal treatment. Interestingly, the obtained Co3O4 nanomeshes are rich in oxygen defects, providing fruitful active sites for the faradaic reaction. The modified electrode exhibits a large specific capacitance (1216.4 F g-1 at 1 A g-1), as well as a high rate capability (925.5 F g-1 at 20 A g-1). Moreover, an asymmetric supercapacitor made of Co3O4//activated carbon shows an energy density of 46.5 Wh kg-1 at 790.7 W kg-1. Furthermore, the 2D Co3O4 ultrathin nanomeshes show an outstanding performance for the oxygen evolution reaction with an overpotential of 230 mV at the onset potential and a small Tafel slope of 74.0 mV dec-1. The present method presents a facile avenue to the preparation of other 2D ultrathin metal oxide nanostructures with various applications in energy catalysis and conversion.
Collapse
Affiliation(s)
- Guijuan Wei
- College of Science and College of Chemical Engineering , China University of Petroleum , Qingdao 266580 , P. R. China
| | - Zhen Zhou
- College of Science and College of Chemical Engineering , China University of Petroleum , Qingdao 266580 , P. R. China
| | - Xixia Zhao
- College of Science and College of Chemical Engineering , China University of Petroleum , Qingdao 266580 , P. R. China
| | | | - Changhua An
- College of Science and College of Chemical Engineering , China University of Petroleum , Qingdao 266580 , P. R. China
| |
Collapse
|
31
|
Hu J, Jia W, Xie J, Cao Y, Zhang X, Jia D. An in situ solid-state heredity-restriction strategy to introduce oxygen defects into TiO2 with enhanced photocatalytic performance. CrystEngComm 2018. [DOI: 10.1039/c8ce01267a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green, solid-state heredity-restriction strategy was constructed to create in situ oxygen vacancies in TiO2 without the aid of reductant.
Collapse
Affiliation(s)
- Jindou Hu
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, and Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi
| | - Wei Jia
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, and Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi
| | - Jing Xie
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, and Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, and Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi
| | - Xinhua Zhang
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, and Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry
- Ministry of Education, and Key Laboratory of Advanced Functional Materials, Autonomous Region
- Institute of Applied Chemistry
- Xinjiang University
- Urumqi
| |
Collapse
|