1
|
Sun Y, Cai X, Lai Y, Hu C, Lyu L. Simultaneous Emerging Contaminant Removal and H 2O 2 Generation Through Electron Transfer Carrier Effect of Bi─O─Ce Bond Bridge Without External Energy Consumption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308519. [PMID: 38831633 PMCID: PMC11304260 DOI: 10.1002/advs.202308519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/02/2024] [Indexed: 06/05/2024]
Abstract
Conventional advanced oxidation processes (AOPs) require significant external energy consumption to eliminate emerging contaminants (ECs) with stable structures. Herein, a catalyst consisting of nanocube BiCeO particles (BCO-NCs) prepared by an impregnation-hydrothermal process is reported for the first time, which is used for removing ECs without light/electricity or any other external energy input in water and simultaneous in situ generation of H2O2. A series of characterizations and experiments reveal that dual reaction centers (DRC) which are similar to the valence band/conducting band structure are formed on the surface of BCO-NCs. Under natural conditions without any external energy consumption, the BCO-NCs self-purification system can remove more than 80% of ECs within 30 min, and complete removal of ECs within 30 min in the presence of abundant electron acceptors, the corresponding second-order kinetic constant is increased to 3.62 times. It is found that O2 can capture electrons from ECs through the Bi─O─Ce bond bridge during the reaction process, leading to the in situ production of H2O2. This work will be a key advance in reducing energy consumption for deep wastewater treatment and generating important chemical raw materials.
Collapse
Affiliation(s)
- Yingtao Sun
- Key Laboratory for Water Quality and Conservation of the Pearl River DeltaMinistry of EducationInstitute of Environmental Research at Greater BayGuangzhou UniversityGuangzhou510006China
| | - Xuanying Cai
- Key Laboratory for Water Quality and Conservation of the Pearl River DeltaMinistry of EducationInstitute of Environmental Research at Greater BayGuangzhou UniversityGuangzhou510006China
| | - Yufeng Lai
- Key Laboratory for Water Quality and Conservation of the Pearl River DeltaMinistry of EducationInstitute of Environmental Research at Greater BayGuangzhou UniversityGuangzhou510006China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River DeltaMinistry of EducationInstitute of Environmental Research at Greater BayGuangzhou UniversityGuangzhou510006China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River DeltaMinistry of EducationInstitute of Environmental Research at Greater BayGuangzhou UniversityGuangzhou510006China
- Institute of Rural RevitalizationGuangzhou UniversityGuangzhou510006China
| |
Collapse
|
2
|
Yin X, Zhang J, Chen S, Li W, Zhu H, Wei K, Zhang Y, Chen H, Han W. Electric field-enhanced heterogeneous catalytic ozonation (EHCO) process for sulfadiazine removal: The role of cathodic reduction. CHEMOSPHERE 2024; 351:141226. [PMID: 38228193 DOI: 10.1016/j.chemosphere.2024.141226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/04/2024] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
In this work, an electric field-enhanced heterogeneous catalytic ozonation (EHCO) was systematically investigated using a prepared FeOx/PAC catalyst. The EHCO process exhibited high sulfadiazine (SDZ) and TOC removal efficiency compared with electrocatalysis (EC) and heterogeneous catalytic ozonation (HCO) process. Almost 100% of SDZ was removed within 2 min, and the TOC removal reached approximately 85% within 60 min. Quenching experiments and EPR analysis suggested that the prominent SDZ and TOC removal performance is supported by the enhanced ·OH generation ability. Further study proved that H2O2 formed by O2 electrochemical reduction, peroxone reaction and electrochemical reduction of ozone contributed to improving ·OH generation. Furthermore, the EHCO system showed satisfactory stability and recyclability compared to conventional HCO systems, and the SDZ and TOC removal rates were maintained at ≥95% and ≥70% in 16 consecutive recycles, respectively. Meanwhile, XPS analysis and Boehm's titration for the FeOx/PAC catalyst used in HCO and EHCO process confirmed that the external electron supply could restrain the oxidation of surface functional groups of PAC and maintain a balance of the Fe(II)/Fe(III) ratio, which proved the critical role of cathode reduction in catalyst in situ regeneration during long consecutive recycles. In addition, the EHCO system could achieve more than 80% SDZ removal within 2 min in different water matrices. These results confirmed that the EHCO process has a wide application perspective for refractory organics removal in actual wastewater.
Collapse
Affiliation(s)
- Xu Yin
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Jie Zhang
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Siru Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Wei Li
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Hongwei Zhu
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Kajia Wei
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Haoming Chen
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China
| | - Weiqing Han
- Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu Province, China.
| |
Collapse
|
3
|
Ren Y, You S, Wang Y, Yang J, Liu Y. Bioinspired Tandem Electrode for Selective Electrocatalytic Synthesis of Ammonia from Aqueous Nitrate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2144-2152. [PMID: 38234209 DOI: 10.1021/acs.est.3c09759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
The electrocatalytic nitrate reduction reaction (NO3RR) has recently emerged as a promising technique for readily converting aqueous nitrate (NO3-) pollutants into valuable ammonia (NH3). It is vital to thoroughly understand the mechanism of the reaction to rationally design and construct advanced electrocatalytic systems that can effectively and selectively drive the NO3RR. There are several natural enzymes that incorporate molybdenum (Mo) and that can activate NO3-. Based on this, a cadmium (Cd) single-atom anchored Mo2TiC2Tx electrocatalyst (referred to as CdSA-Mo2TiC2Tx) through the NO3RR to generate NH3 was rationally designed and demonstrated. In an H-type electrolysis cell and at a current density of 42.5 mA cm-2, the electrocatalyst had a Faradaic efficiency of >95% and an impressive NH3 yield rate of 48.5 mg h-1 cm-2. Moreover, the conversion of NO3- to NH3 on the CdSA-Mo2TiC2Tx surface was further revealed by operando attenuated total reflection Fourier-transform infrared spectroscopy and an electrochemical differential mass spectrometer. The electrocatalyst significantly outperformed Mo2TiC2Tx as well as reported state-of-the-art catalysts. Density functional theory calculations revealed that CdSA-Mo2TiC2Tx decreased the ability of the d-p orbital to hybridize with NH3* intermediates, thereby decreasing the activation energy of the potential-determining step. This work not only highlights the application prospects of heavy metal single-atom catalysts in the NO3RR but also provides examples of bio-inspired electrocatalysts for the synthesis of NH3.
Collapse
Affiliation(s)
- Yifan Ren
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ying Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Roy S, Darabdhara J, Ahmaruzzaman M. Sustainable degradation of pollutants, generation of electricity and hydrogen evolution via photocatalytic fuel cells: An Inclusive Review. ENVIRONMENTAL RESEARCH 2023; 236:116702. [PMID: 37490976 DOI: 10.1016/j.envres.2023.116702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
Environmental pollution and energy crisis have recently become one of the major global concerns. Insincere discharge of massive amount of organic and inorganic wastes into the aqueous bodies causes serious impact on our environment. However, these organic substances are significant sources of carbon and energy that could be sustainably utilized rather than being discarded. Photocatalytic fuel cell (PFC) is a smart and novel energy conversion device that has the ability to achieve dual benefits: degrading the organic contaminants and simultaneously generating electricity, thereby helping in environmental remediation. This article presents a detailed study of the recent advancements in the development of PFC systems and focuses on the fundamental working principles of PFCs. The degradation of various common organic and inorganic contaminants including dyes and antibiotics with simultaneous power generation and hydrogen evolution has been outlined. The impact of various operational factors on the PFC activity has also been briefly discussed. Moreover, it provides an overview of the design guidelines of the different PFC systems that has been developed recently. It also includes a mention of the materials employed for the construction of the photo electrodes and highlights the major limitations and relevant research scopes that are anticipated to be of interest in the days to come. The review is intended to serve as a handy resource for researchers and budding scientists opting to work in this area of PFC devices.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
5
|
Zhang Y, Gu L, Zhang Y, Yang J, Li Q, Yu S, Li C, Wei K. Energy-efficient reuse of bio-treated textile wastewater by a porous-structure electrochemical PbO2 filter: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116254. [PMID: 37245572 DOI: 10.1016/j.envres.2023.116254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
In this work, a novel porous-structure electrochemical PbO2 filter (PEF-PbO2) was developed to achieve the reuse of bio-treated textile wastewater. The characterization of PEF-PbO2 confirmed that its coating has a variable pore size that increases with depth from the substrate, and the pores with a size of 5 μm account for the largest proportion. The study on the role of this unique structure illustrated that PEF-PbO2 possesses a larger electroactive area (4.09 times) than the conventional electrochemical PbO2 filter (EF-PbO2) and enhanced mass transfer (1.39 times) in flow mode. The investigation of operating parameters with a special discussion of electric energy consumption suggested that the optimal conditions were a current density of 3 mA cm-2, Na2SO4 concentration of 10 g L-1 and pH value of 3, which resulted in 99.07% and 53.3% removal of Rhodamine B and TOC, respectively, together with an MCETOC of 24.6%. A stable removal of 65.9% COD and 99.5% Rhodamine B with a low electric energy consumption of 5.19 kWh kg-1 COD under long-term reuse of bio-treated textile wastewater indicated that PEF-PbO2 was durable and energy-efficient in practical applications. Mechanism study by simulation calculation illustrated that the part of the pore of the PEF-PbO2's coating with small size (5 μm) plays an important role in this excellent performance which provides the advantage of rich ·OH concentration, short pollutant diffusion distance and high contact possibility.
Collapse
Affiliation(s)
- Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liankai Gu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jing Yang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Qian Li
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuyan Yu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Congju Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kajia Wei
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
6
|
Jiang Y, An N, Sun Q, Guo B, Wang Z, Zhou W, Gao B, Li Q. Biomass hydrogels combined with carbon nanotubes for water purification via efficient and continuous solar-driven steam generation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155757. [PMID: 35525369 DOI: 10.1016/j.scitotenv.2022.155757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/02/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Solar vapor generation is a promising, environmentally friendly solution for water purification. The development and design of new materials and supporting devices for efficient energy conversion and clean water production are essential for the practical application of solar-driven desalination and water purification. In this study, an environmentally friendly and economical biomass hydrogel-based solar evaporator with a controllable shape was developed in a simple method by integrating carbon nanotubes (CNTs) into a sodium alginate (SA) hydrogel network. The evaporator had a high solar absorption rate (94.3%) and satisfactory hydrophilicity and could effectively avoid salt crystallization during the desalination process. This study took advantage of the aforementioned merits, and a high evaporation rate of 1.699 kg m-2 h-1 and a conversion efficiency of 86% were achieved under 1.0 sun irradiation. The evaporator could efficiently remove Na+, K+, Ca2+, and Mg2+ from seawater with a removal rate of up to 99.3% and a good decolorization effect on methylene blue (MB) and methyl orange (MO) dye wastewater, whose colour could be completely removed. This study provides a simple, practical, and economical method to prepare hydrogel-based evaporators that utilize abundant solar energy for large-scale desalination and wastewater treatment.
Collapse
Affiliation(s)
- Yuhao Jiang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Ning An
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Qianyun Sun
- Shandong Institute of Metrology, Jinan 250014, PR China
| | - Bo Guo
- Shandong Institute of Metrology, Jinan 250014, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Weizhi Zhou
- School of Civil Engineering, Shandong University, Jinan 250100, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266200, PR China.
| |
Collapse
|
7
|
Zhen Y, Sun Z, Jia Z, Liu C, Zhu S, Li X, Wang W, Ma J. Facile preparation of α-MnO2 nanowires for assembling free-standing membrane with efficient Fenton-like catalytic activity. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Li J, Zhang Z, Li T, Zhao B, Liu Y, Liu Y, Wang L, Dionysiou DD. Efficient synergism of K2FeO4 preoxidation/ MIEX adsorption in ultrafiltration membrane fouling control and mechanisms. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Huang M, Huang W, Li A, Yang H, Jia Y, Yu Z, Xu Z, Wang X, Zhou Y, Wei Q. Effect of Gallium as an Additive Over Corresponding Ni–Mo/γ-Al2O3 Catalysts on the Hydrodesulfurization Performance of 4,6-DMDBT. Front Chem 2022; 10:865375. [PMID: 35372288 PMCID: PMC8965378 DOI: 10.3389/fchem.2022.865375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
Experiments were carried out to research the different contents of Ga2O3 modification effects on the hydrodesulfurization (HDS) performance of 4,6-dimethyldibenzothiophene (4,6-DMDBT) catalyzed by the stepwise impregnation method. Characterization techniques such as XRD, BET, HRTEM, NH3-TPD, and Py-FTIR were performed to determine the effects of each modification of the catalyst by Ga on the properties of the prepared supports and catalysts. The catalytic effect of gallium is reflected in the fact that the empty d-orbitals of Ga elements participate in the formation of molecular orbitals in the active center and change their orbital properties, thus generating a direct desulfurization active phase suitable for complex sulfides for endpoint adsorption. The characterization results indicated that the introduction of Ga2O3 with appropriate content (2 wt.%) promoted Ni and Mo species to disperse uniformly and doping of more Ni atoms into the MoS2 crystals, which also increased the average stacking number and the length of MoS2. As a result, more NiMoS active phases were favored to form in the system. The specific surface area and the amounts of acid sites were increased, facilitating the adsorption of reactant molecules and the HDS reactions. The HDS results also suggested the effects of Ga modification play a very important role in the catalytic performance of the corresponding catalysts. The catalyst Ga–Ni–Mo/Al2O3 exhibited the highest conversion rate towards 4,6-DMDBT HDS when the amount of Ga2O3 loading was 2 wt.% with an LHSV of 2.5 h−1 at 290°C and Ga modification also can effectively improve the direct desulfurization (DDS) route selectivity in varying degrees.
Collapse
Affiliation(s)
- Meng Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Wenbin Huang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Anqi Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
- Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC, Fushun, China
| | - Han Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Yijing Jia
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Zhiqing Yu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Zhusong Xu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Xiaohan Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Yasong Zhou
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
| | - Qiang Wei
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, China
- *Correspondence: Qiang Wei,
| |
Collapse
|
10
|
Ahmed SF, Mofijur M, Rafa N, Chowdhury AT, Chowdhury S, Nahrin M, Islam ABMS, Ong HC. Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. ENVIRONMENTAL RESEARCH 2022; 204:111967. [PMID: 34450159 DOI: 10.1016/j.envres.2021.111967] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 05/27/2023]
Abstract
Green synthesis approaches of nanomaterials (NMs) have received considerable attention in recent years as it addresses the sustainability issues posed by conventional synthesis methods. However, recent works of literature do not present the complete picture of biogenic NMs. This paper addresses the previous gaps by providing insights into the stability and toxicity of NMs, critically reviewing the various biological agents and solvents required for synthesis, sheds light on the factors that affect biosynthesis, and outlines the applications of NMs across various sectors. Despite the advantages of green synthesis, current methods face challenges with safe and appropriate solvent selection, process parameters that affect the synthesis process, nanomaterial cytotoxicity, bulk production and NM morphology control, tedious maintenance, and knowledge deficiencies. Consequently, the green synthesis of NMs is largely trapped in the laboratory phase. Nevertheless, the environmental friendliness, biocompatibility, and sensitivities of the resulting NMs have wider applications in biomedical science, environmental remediation, and consumer industries. To the scale-up application of biogenic NMs, future research should be focused on understanding the mechanisms of the synthesis processes, identifying more biological and chemical agents that can be used in synthesis, and developing the practicality of green synthesis at the industrial scale, and optimizing the factors affecting the synthesis process.
Collapse
Affiliation(s)
- Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh.
| | - M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | | | - Sidratun Chowdhury
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh; Bangladesh Center for Advanced Studies (BCAS), Bangladesh
| | - Muntasha Nahrin
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - A B M Saiful Islam
- Department of Civil and Construction Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, 31451, Saudi Arabia
| | - Hwai Chyuan Ong
- Centre for Green Technology, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW, 2007, Australia.
| |
Collapse
|
11
|
Zhang Q, Sun X, Dang Y, Zhu JJ, Zhao Y, Xu X, Zhou Y. A novel electrochemically enhanced homogeneous PMS-heterogeneous CoFe 2O 4 synergistic catalysis for the efficient removal of levofloxacin. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127651. [PMID: 34772555 DOI: 10.1016/j.jhazmat.2021.127651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/06/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
A novel electrochemically enhanced homogeneous-heterogeneous catalytic system was constructed by placing the prepared heterogeneous catalyst (CoFe2O4/NF) in parallel between the anode and the cathode for peroxymonosulfate (PMS) activation to remove levofloxacin (LVF) in this work. Over 90% of LVF could be effectively removed by the constructed system after 40 min's degradation. And the electrical energy consumption was only 2.51 kWh/m3, which was lower than 54.5% of the traditional electrochemical advanced oxidation process. Besides, the system broadened the response range of pH and overcame the inhibitory effect of alkaline conditions on degradation. These activities were mainly due to the high generation ability of free radical (SO4·-, ·OH and O2·-) and non-radical (1O2). And the SO4·- was found to be the main radical for LVF degradation. The high SO4·- generation ability was demonstrated to be resulted from the dual effects of synergy of CoFe2O4/PMS and enhancement of electrochemistry in EC/CoFe2O4/PMS system. In detail, electrochemistry could effectively promote the continuous circulation of Co2+/Co3+ and Fe2+/Fe3+ redox cycles on the surface of CoFe2O4 to enhance the activation of PMS, thereby generating SO4·-. This work can provide a promising and cost-effective approach to construct highly efficient organic pollutant degradation system.
Collapse
Affiliation(s)
- Qianyu Zhang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiaoqin Sun
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China.
| | - Yuan Zhao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xiaoxiang Xu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
12
|
Balasurya S, Syed A, Swedha M, Harini G, Elgorban AM, Zaghloul NSS, Das A, Khan SS. A novel SPR based Fe@Ag core-shell nanosphere entrapped on starch matrix an optical probe for sensing of mercury(II) ion: A nanomolar detection, wide pH range and real water sample application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120204. [PMID: 34333401 DOI: 10.1016/j.saa.2021.120204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Recent trends in nanotechnology paved a way for the development of detection systems for heavy metals, toxins and environmental pollutants. The present study focused on Hg2+ detection by a core shell Fe@Ag-starch nanosphere phenylalanine conjugate. The characterization of core shell Fe@Ag-starch nanosphere was performed by using TEM, zetasizer, particlesize analyzer, UV-visible absorption spectrophotometer, EDAX, FTIR and TGA. The NPs showed λmax at 408 nm. The effective diameter of synthesized nanosphere was 37 ± 2 nm and it possessed the surfaces charge of -36.12 ± 2.5 mV. The Fe@Ag-starch-phenylalanine conjugate reacted with Hg2+, the yellow colour of the nanosphere phenylalanine conjugate became colourless. The real water sample was collected and the amount of Hg2+ was calculated by using the prepared nanosphere. The detection of Hg2+ at different conditions including various saline concentrations, temperature and pH were also studied and the detection was found to be effective at 40 °C, pH 5 and 0.1% of saline concentration. The LOD of Hg2+ ions by Fe@Ag-starch nanosphere were calculated to be 1.84 nM. The influence of other metal ions present in the analyte did not show any interference on Hg2+ detection. In addition, the photocatalytic and antibacterial activities of Fe@Ag-starch nanosphere were also studied. The study confirmed that the core shell nanosphere can also be used for environmental cleanup and disinfection.
Collapse
Affiliation(s)
- S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - M Swedha
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - G Harini
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1FD, UK
| | - Arunava Das
- Faculty of Life Sciences, Mandsaur University, SH-31, Mhow - Neemuch By-pass Square, Rewas-Dewda Road, Mandsaur, Madhya Pradesh, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
13
|
Hassan A, Liaquat R, Iqbal N, Ali G, Fan X, Hu Z, Anwar M, Ahmad A. Photo-electrochemical water splitting through graphene-based ZnS composites for H2 production. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115223] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Liu W, Wu X, Ou Y, Liu H, Zhang C. Electrically conductive and light-weight branched polylactic acid-based carbon nanotube foams. E-POLYMERS 2021. [DOI: 10.1515/epoly-2021-0013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Abstract
In spite of the high electrical conductivity of carbon nanotube (CNT), its tendency to aggregate and expensive cost in fabricating aerogel, foams, and porous materials remains a problem. Therefore, we described a simple and feasible way to design light-weight, high electrically conductive, and cost-efficient polylactic acid (PLA)/CNT foams. The branched PLA (BPLA) resin with excellent melt elasticity and foamability was induced by nucleophilic ring-opening reaction of epoxy-based acrylic/styrene copolymer and PLA. After that, BPLA/CNT composites and foams were prepared by melt-mixing and supercritical carbon dioxide foaming technology, respectively. The thermal, electrical, and foaming properties were studied. The resultant BPLA/CNT foam possessed a low density of 0.174 g/cm3 and high crystallinity of 3.03%. An improvement of the oriented structure of CNT induced by cell growth in BPLA matrix increased the conductivity of the foam up to 3.51 × 104 Ω/m. The proposed foaming materials provided a way for designing and preparing high performance CNT products.
Collapse
Affiliation(s)
- Wei Liu
- School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550003 , China
| | - Xian Wu
- School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550003 , China
| | - Yangjia Ou
- School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550003 , China
| | - Hao Liu
- School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550003 , China
| | - Chun Zhang
- School of Materials and Energy Engineering, Guizhou Institute of Technology , Guiyang 550003 , China
| |
Collapse
|
15
|
Almusawy AM, Al-Anbari RH, Alsalhy QF, Al-Najar AI. Carbon Nanotubes-Sponge Modified Electro Membrane Bioreactor (EMBR) and Their Prospects for Wastewater Treatment Applications. MEMBRANES 2020; 10:membranes10120433. [PMID: 33348767 PMCID: PMC7766409 DOI: 10.3390/membranes10120433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
A novel membrane bioreactor system utilizes Multi-Walled Carbon Nanotubes (MWCNTs) coated polyurethane sponge (PUs), an electrical field, and a nanocomposite membrane has been successfully designed to diminish membrane with fouling caused by activated sludge. The classical phase inversion was harnessed to prepare Zinc Oxide/Polyphenylsulfone (ZnO/PPSU) nanocomposite membranes using 1.5 g of ZnO nanoparticles (NPs). The prepared nanocomposite membrane surface was fully characterized by a series of experimental tools, e.g., Scanning electron microscope (SEM), Atomic force microscopy (AFM), contact angle (CA), pore size, and pore size distribution. The testing procedure was performed through an Activated Sludge-Membrane Bioreactor (ASMBR) as a reference and results were compared with those obtained with nanotubes coated sponge-MBR (NSMBR) and nanotubes coated sponge-MBR in the presence of an electrical field (ENSMBR) system. Observed fouling reduction of the membrane has improved significantly and, thus, the overall long-term was increased by 190% compared with the control ASMBR configuration. The experimental results showcased that sponge-carbon nanotubes (CNTs) were capable of adsorbing activated sludge and other contaminants to minimize the membrane fouling. At a dosage of 0.3 mg/mL CNT and 2 mg/mL of SDBS, the sponge-CNT was capable of eliminating nitrogen and phosphorus by 81% and >90%, respectively.
Collapse
Affiliation(s)
- Ali M. Almusawy
- Civil Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (R.H.A.-A.); (A.I.A.-N.)
| | - Riyad H. Al-Anbari
- Civil Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (R.H.A.-A.); (A.I.A.-N.)
| | - Qusay F. Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq
- Correspondence: or ; Tel.: +964-790-173-0181
| | - Arshed Imad Al-Najar
- Civil Engineering Department, University of Technology, Alsinaa Street 52, Baghdad 10066, Iraq; (A.M.A.); (R.H.A.-A.); (A.I.A.-N.)
| |
Collapse
|
16
|
|
17
|
Jin X, Chen F, Jia D, Cao Y, Duan H, Long M. Facile strategy for the fabrication of noble metal/ZnS composites with enhanced photocatalytic activities. RSC Adv 2020; 10:4455-4463. [PMID: 35495247 PMCID: PMC9048999 DOI: 10.1039/c9ra07163f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/14/2019] [Indexed: 11/21/2022] Open
Abstract
The introduction of noble metal nanoparticles to photocatalysts can effectively improve the separation efficiency of the photogenerated electron-holes. Therefore, noble metal/ZnS composites were synthesized using a low-temperature solid-phase chemical method with sodium borohydride as the reducing agent. The characterization results showed that the noble metal/ZnS composites have been successfully obtained and that the noble metals were distributed on the surface of ZnS. The catalytic results suggested that the composites exhibited improved activity after introduction of noble metals, which can be attributed to the rapid migration of carriers and the enhancement of the light absorption, mainly owing to the tight combination between the ZnS and noble metals and the plasmon resonance effect of the noble metals. The catalytic mechanism was explored by using photoluminescence spectroscopy, photocurrent spectra, valence band X-ray photoelectron spectroscopy (XPS-VB) spectra and capture agent experiments, and a possible mechanism was proposed. This work provides a new strategy for the high-volume synthesis of noble metal-based composite photocatalysts, which could be helpful for sustainable development.
Collapse
Affiliation(s)
- Xuekun Jin
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University Urumqi Xinjiang 830046 China
| | - Fengjuan Chen
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University Urumqi Xinjiang 830046 China
- School of Physics Science and Technology, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University Urumqi Xinjiang 830046 China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University Urumqi Xinjiang 830046 China
| | - Haiming Duan
- School of Physics Science and Technology, Xinjiang University Urumqi 830046 Xinjiang PR China
| | - Mengqiu Long
- Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, Central South University Changsha 410083 China
| |
Collapse
|
18
|
Ye H, Chen D, Li N, Xu Q, Li H, He J, Lu J. Durable and Robust Self-Healing Superhydrophobic Co-PDMS@ZIF-8-Coated MWCNT Films for Extremely Efficient Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38313-38320. [PMID: 31552730 DOI: 10.1021/acsami.9b13539] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The discharge of large amounts of sewage has caused enormous damage to the environment and human health. There is an urgent need for efficient and environmentally friendly materials to deal with such troubles. Materials with emulsion separation have attracted everyone's attention. In this study, zeolitic imidazolate framework (ZIF)-8- and Co-polydimethylsiloxane (PDMS)-modified multiwalled carbon nanotube films were fabricated. First, the surface of the nanotube films was modified with ZIF-8 by in situ growth, and then a Co-PDMS layer was added by dip coating. The membrane has excellent wettability, and it is superhydrophobic and superoleophilic in air. The separation efficiency of water-in-oil emulsions reaches more than 99.9%, and it has an outstanding separation ability for corrosive emulsions. Moreover, the membrane has an excellent self-healing ability, and it can rapidly heal at normal temperature after being damaged. This makes the film more suitable for practical oily wastewater treatment. We performed related research and propose a possible self-healing mechanism.
Collapse
Affiliation(s)
- Hanchen Ye
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
19
|
Ramlow H, Machado RAF, Bierhalz ACK, Marangoni C. Direct contact membrane distillation applied to wastewaters from different stages of the textile process. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1640683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Heloisa Ramlow
- Graduate Program in Chemical Engineering, Federal University of Santa Catarina, Universitário Reitor João David Ferreira Lima Campus, Florianópolis, Santa Catarina, Brazil
| | - Ricardo Antonio Francisco Machado
- Graduate Program in Chemical Engineering, Federal University of Santa Catarina, Universitário Reitor João David Ferreira Lima Campus, Florianópolis, Santa Catarina, Brazil
| | | | - Cintia Marangoni
- Graduate Program in Chemical Engineering, Federal University of Santa Catarina, Universitário Reitor João David Ferreira Lima Campus, Florianópolis, Santa Catarina, Brazil
- Department of Textile Engineering, Federal University of Santa Catarina, Blumenau, Santa Catarina, Brazil
| |
Collapse
|
20
|
Li M, Liu Y, Dong L, Shen C, Li F, Huang M, Ma C, Yang B, An X, Sand W. Recent advances on photocatalytic fuel cell for environmental applications-The marriage of photocatalysis and fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:966-978. [PMID: 31018475 DOI: 10.1016/j.scitotenv.2019.03.071] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 05/03/2023]
Abstract
Environmental pollution and energy crisis have become recent worldwide concerns. Huge amounts of organic wastes are discharged into water bodies, causing serious environmental pollution. Meanwhile, these organic compounds are important carbon and energy sources that could be utilized instead of being discarded. A smart design of a photocatalytic fuel cell (PFC) can achieve double benefits: it can degrade organic pollutants and at the same time generate energy. In this review article, we discuss recent progress in the development of PFC systems, and summarize the principles for constructing advanced PFC systems. We particularly focus on the rational design of electrode materials in terms of surface, morphology, facet, and interfacial reaction engineering. The impact of important operational parameters on PFC performance is further discussed in detail. We then discuss the major limitations and opportunities for future PFCs research. The development of smart and advanced PFC systems depends on highly interdisciplinary collaborations, which require concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.
Collapse
Affiliation(s)
- Mohua Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chensi Shen
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Manhong Huang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaoqiang An
- Center for Water and Ecology, Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| |
Collapse
|
21
|
Narula A, Rao CP. Hydrogel of the Supramolecular Complex of Graphene Oxide and Sulfonatocalix[4]arene as Reusable Material for the Degradation of Organic Dyes: Demonstration of Adsorption and Degradation by Spectroscopy and Microscopy. ACS OMEGA 2019; 4:5731-5740. [PMID: 31459726 PMCID: PMC6648904 DOI: 10.1021/acsomega.9b00545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 05/23/2023]
Abstract
Industrial modernization causes severe contamination of water resources due to which the presence of organic dyes poses a great threat to human life. To address this, we have synthesized a hydrogel GSCg using graphene oxide (GO), sulphonatocalix[4]arene (SC4a), and l-Cys by heating at 90 °C for 30 min and characterized by analytic, spectroscopy, and microscopy techniques. The GSCg possessing porous structure and adsorbs all three types of dyes, viz., eosin yellow (anionic), neutral red, and methylene blue (cationic), as shown by scanning electron microscopy, and the adsorption kinetics are addressed. The dye adsorbed by the gel (dye@GSCg) has been degraded by the treatment of Cu2+/N2H4, which regenerates the gel. The regenerated gel has been demonstrated for further cycles of adsorption followed by degradation. Alternatively, the degradation of the organic dyes was also demonstrated by an in situ approach by taking GO, SC4a, l-Cys, and the organic dye together and subjecting the mixture to hydrothermal conditions and the process leaves out free gel (GSCg d). This was proven to be true in the case of each of the 12 dyes studied individually and also for their mixture, supporting that this methodology can be employed for large scale purification of contaminated water with high efficiency. GSCg d was repeatedly used for the adsorption and degradation (with the use of Cu2+/N2H4) cycles wherein the gel does not lose its adsorption capability even after several cycles. Therefore, {GO···SC4a} hybrid is a smart, sustainable, and reusable material suitable for the purification of water contaminated with industrial organic dye effluents.
Collapse
|
22
|
Wang Y, Pan C, Chu W, Vipin AK, Sun L. Environmental Remediation Applications of Carbon Nanotubes and Graphene Oxide: Adsorption and Catalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E439. [PMID: 30875970 PMCID: PMC6474092 DOI: 10.3390/nano9030439] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/30/2022]
Abstract
Environmental issues such as the wastewater have influenced each aspect of our lives. Coupling the existing remediation solutions with exploring new functional carbon nanomaterials (e.g., carbon nanotubes, graphene oxide, graphene) by various perspectives shall open up a new venue to understand the environmental issues, phenomenon and find out the ways to get along with the nature. This review makes an attempt to provide an overview of potential environmental remediation solutions to the diverse challenges happening by using low-dimensional carbon nanomaterials and their composites as adsorbents, catalysts or catalysts support towards for the social sustainability.
Collapse
Affiliation(s)
- Yanqing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, China.
| | - Can Pan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | | | - Ling Sun
- Beijing Guyue New Materials Research Institute, Beijing University of Technology, 100 Pingleyuan, Chaoyang District, Beijing 100124, China.
| |
Collapse
|
23
|
Li S, Huang J, Mao J, Zhang L, He C, Chen G, Parkin IP, Lai Y. In vivo and in vitro efficient textile wastewater remediation by Aspergillus niger biosorbent. NANOSCALE ADVANCES 2019; 1:168-176. [PMID: 36132482 PMCID: PMC9473216 DOI: 10.1039/c8na00132d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/22/2018] [Indexed: 05/16/2023]
Abstract
In this work, the treatment of textile wastewater by a facile and high-efficiency technology using eco-friendly Aspergillus niger as a biosorbent was investigated. We measured physical changes (weight, size) during the formation and growth of fungus pellets and the pH values that influence the adsorption performance and biosorption mechanism. Three acid anionic dyes containing Acid Orange 56, Acid Blue 40 and Methyl Blue were chosen as model dyes to investigate batch adsorption efficiency. Two adsorption models (in vivo and in vitro) were adopted to decolorize the acid dyes. The results show that fungus pellets have excellent decoloration abilities with a high adsorption efficiency of 98% for 200 mg L-1 of acid dye. The pH value of the dye solution varied with the adsorption time and the dye removal efficiency greatly depended on the pH. The bioadsorption mechanism of nano-scale hyphae was revealed to be mainly due to electrostatic interactions caused by the pH change. Furthermore, the surface morphologies of the fungus after adsorption indicated that the dyes had been adsorbed on the surface of the fungus mycelia. Moreover, prepared 3D fungus/GO aerogels demonstrated superior dye removal abilities compared with fungus aerogels.
Collapse
Affiliation(s)
- Shuhui Li
- College of Chemical Engineering, Fuzhou University Fuzhou 350116 China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University Fuzhou 350116 China
| | - Jiajun Mao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Liyuan Zhang
- Department of Civil Engineering, The University of Hong Kong Hong Kong China
| | - Chenglin He
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Guoqiang Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| | - Ivan P Parkin
- Department of Chemistry, University College London London WC1H 0AJ UK
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University Fuzhou 350116 China
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University Suzhou 215123 China
| |
Collapse
|
24
|
Xu H, Liu Y, Gao Y, Li F, Yang B, Wang M, Ma C, Tian Q, Song X, Sand W. Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial population. BIORESOURCE TECHNOLOGY 2018; 269:153-161. [PMID: 30172178 DOI: 10.1016/j.biortech.2018.08.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
In this study, an expanded granular sludge blanket (EGSB) reactor was used for the treatment of low-strength domestic sewage and the sludge granulation process was systematically investigated. At an optimized hydraulic retention time (HRT) of 5 h, up-flow velocity (Vup) of 1.9 m/h, and organic loading rate (OLR) of 2.16 kg COD/m3/d, the average COD removal efficiency was 71.5 ± 2.3%. Completely granular sludge can be observed after 107 d of continuous operation. Analysis of the distribution and composition of the extracellular polymeric substances (EPS) indicates that the tightly bound EPS (TB-EPS) content shows an increasing trend, while the loosely bound EPS (LB-EPS) content did not significantly alter after the granular sludge was formed. The three-dimensional excitation-emission matrix technique (3D-EEM) confirms that aromatic protein-like substances are of key importance to sludge granulation. High-throughput sequencing analysis indicates that the metabolism shifted from hydrogenotrophic (Methanobaterium) to aceticlastic methanogens (Methanosaeta) during sludge granulation.
Collapse
Affiliation(s)
- Hui Xu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yanbiao Liu
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Yingying Gao
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Fang Li
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Bo Yang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Man Wang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Chunyan Ma
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Qing Tian
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xinshan Song
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Wolfgang Sand
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Institute of Biosciences, Freiberg University of Mining and Technology, Freiberg 09599, Germany
| |
Collapse
|
25
|
Karimifard S, Alavi Moghaddam MR. Application of response surface methodology in physicochemical removal of dyes from wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:772-797. [PMID: 30021324 DOI: 10.1016/j.scitotenv.2018.05.355] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 05/22/2023]
Abstract
Response surface methodology (RSM) is a powerful tool in designing the experiments and optimizing different environmental processes. However, when it comes to wastewater treatment and specifically dye-containing wastewater, two questions arise; "Is RSM being used correctly?" and "Are all capabilities of RSM being exploited properly?". The current review paper aims to answer these questions by scrutinizing different physicochemical processes that utilized RSM in dye removal. The literature that applied RSM to adsorption, advanced oxidation processes, coagulation/flocculation and electrocoagulation processes were critically reviewed in this paper. The common errors in applying RSM to physicochemical removal of dyes are identified and some suggestions are made for future studies.
Collapse
Affiliation(s)
- Shahab Karimifard
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran; Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - Mohammad Reza Alavi Moghaddam
- Department of Civil and Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez St., Tehran 15875-4413, Iran.
| |
Collapse
|
26
|
A Proof-of-Concept Portable Water Purification Device Obtained from PET Bottles and a Magnetite-Carbon Nanocomposite. RECYCLING 2018. [DOI: 10.3390/recycling3030031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Cai Y, Chen D, Li N, Xu Q, Li H, He J, Lu J. A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.03.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|