1
|
Nafee N, Gaber DM, Abouelfetouh A, Alseqely M, Empting M, Schneider M. Enzyme-Linked Lipid Nanocarriers for Coping Pseudomonal Pulmonary Infection. Would Nanocarriers Complement Biofilm Disruption or Pave Its Road? Int J Nanomedicine 2024; 19:3861-3890. [PMID: 38708178 PMCID: PMC11068056 DOI: 10.2147/ijn.s445955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction Cystic fibrosis (CF) is associated with pulmonary Pseudomonas aeruginosa infections persistent to antibiotics. Methods To eradicate pseudomonal biofilms, solid lipid nanoparticles (SLNs) loaded with quorum-sensing-inhibitor (QSI, disrupting bacterial crosstalk), coated with chitosan (CS, improving internalization) and immobilized with alginate lyase (AL, destroying alginate biofilms) were developed. Results SLNs (140-205 nm) showed prolonged release of QSI with no sign of acute toxicity to A549 and Calu-3 cells. The CS coating improved uptake, whereas immobilized-AL ensured >1.5-fold higher uptake and doubled SLN diffusion across the artificial biofilm sputum model. Respirable microparticles comprising SLNs in carbohydrate matrix elicited aerodynamic diameters MMAD (3.54, 2.48 µm) and fine-particle-fraction FPF (65, 48%) for anionic and cationic SLNs, respectively. The antimicrobial and/or antibiofilm activity of SLNs was explored in Pseudomonas aeruginosa reference mucoid/nonmucoid strains as well as clinical isolates. The full growth inhibition of planktonic bacteria was dependent on SLN type, concentration, growth medium, and strain. OD measurements and live/dead staining proved that anionic SLNs efficiently ceased biofilm formation and eradicated established biofilms, whereas cationic SLNs unexpectedly promoted biofilm progression. AL immobilization increased biofilm vulnerability; instead, CS coating increased biofilm formation confirmed by 3D-time lapse confocal imaging. Incubation of SLNs with mature biofilms of P. aeruginosa isolates increased biofilm density by an average of 1.5-fold. CLSM further confirmed the binding and uptake of the labeled SLNs in P. aeruginosa biofilms. Considerable uptake of CS-coated SLNs in non-mucoid strains could be observed presumably due to interaction of chitosan with LPS glycolipids in the outer cell membrane of P. aeruginosa. Conclusion The biofilm-destructive potential of QSI/SLNs/AL inhalation is promising for site-specific biofilm-targeted interventional CF therapy. Nevertheless, the intrinsic/extrinsic fundamentals of nanocarrier-biofilm interactions require further investigation.
Collapse
Affiliation(s)
- Noha Nafee
- Department of Pharmaceutics, College of Pharmacy, Kuwait University, Safat, 13110, Kuwait
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Dina M Gaber
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 1029, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alamein International University, Alamein, 5060335, Egypt
| | - Mustafa Alseqely
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Department of Antiviral and Antivirulence Drugs (AVID), Saarland University, Saarbrücken, 66123, Germany
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, 66123, Germany
| |
Collapse
|
2
|
Xiao H, Li J, Yang D, Du J, Li J, Lin S, Zhou H, Sun P, Xu J. Multidimensional Criteria for Virtual Screening of PqsR Inhibitors Based on Pharmacophore, Docking, and Molecular Dynamics. Int J Mol Sci 2024; 25:1869. [PMID: 38339148 PMCID: PMC10856439 DOI: 10.3390/ijms25031869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Pseudomonas aeruginosa is a clinically challenging pathogen due to its high resistance to antibiotics. Quorum sensing inhibitors (QSIs) have been proposed as a promising strategy to overcome this resistance by interfering with the bacterial communication system. Among the potential targets of QSIs, PqsR is a key regulator of quorum sensing in Pseudomonas aeruginosa. However, the current research on PqsR inhibitors is limited by the lack of diversity in the chemical structures and the screening methods. Therefore, this study aims to develop a multidimensional screening model for PqsR inhibitors based on both ligand- and receptor-based approaches. First, a pharmacophore model was constructed from a training set of PqsR inhibitors to identify the essential features and spatial arrangement for the activity. Then, molecular docking and dynamics simulations were performed to explore the core interactions between PqsR inhibitors and their receptor. The results indicate that an effective PqsR inhibitor should possess two aromatic rings, one hydrogen bond acceptor, and two hydrophobic groups and should form strong interactions with the following four amino acid residues: TYR_258, ILE_236, LEU_208, and GLN_194. Moreover, the docking score and the binding free energy should be lower than -8 kcal/mol and -40 kcal/mol, respectively. Finally, the validity of the multidimensional screening model was confirmed by a test set of PqsR inhibitors, which showed a higher accuracy than the existing screening methods based on single characteristics. This multidimensional screening model would be a useful tool for the discovery and optimization of PqsR inhibitors in the future.
Collapse
Affiliation(s)
- Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jiahao Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Dongdong Yang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jiarui Du
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Jie Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Shuqi Lin
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; (H.X.); (J.L.); (D.Y.); (J.D.); (J.L.); (S.L.); (H.Z.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Seebacher W, Hoffelner M, Belaj F, Pirker T, Alajlani M, Bauer R, Pferschy-Wenzig EM, Saf R, Weis R. Formation of 5-Aminomethyl-2,3-dihydropyridine-4(1 H)-ones from 4-Amino-tetrahydropyridinylidene Salts. Molecules 2023; 28:6869. [PMID: 37836712 PMCID: PMC10574582 DOI: 10.3390/molecules28196869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Various 4-aminotetrahydropyridinylidene salts were treated with aldehydes in an alkaline medium. Their conversion to 5-substituted β-hydroxyketones in a one-step reaction succeeded only with an aliphatic aldehyde. Instead, aromatic aldehydes gave 5-substituted β-aminoketones or a single δ-diketone. The new compounds were characterized using spectroscopic methods and a single crystal structure analysis. Some of them showed anticancer and antibacterial properties.
Collapse
Affiliation(s)
- Werner Seebacher
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Michael Hoffelner
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Ferdinand Belaj
- Institute of Chemistry, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| | - Teresa Pirker
- Pharmacognosy, Institute for Pharmaceutical Sciences, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria (R.B.)
| | - Muaaz Alajlani
- Faculty of Pharmacy, Al-Sham Private University, 011 Damascus, Syria
| | - Rudolf Bauer
- Pharmacognosy, Institute for Pharmaceutical Sciences, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria (R.B.)
| | - Eva-Maria Pferschy-Wenzig
- Pharmacognosy, Institute for Pharmaceutical Sciences, University of Graz, Beethovenstrasse 8, 8010 Graz, Austria (R.B.)
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Robert Weis
- Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University of Graz, Schubertstrasse 1, 8010 Graz, Austria
| |
Collapse
|
4
|
Rossetto V, Moore-Machacek A, Woods DF, Galvão HM, Shanahan RM, Hickey A, O'Leary N, O'Gara F, McGlacken GP, Reen FJ. Structural modification of the Pseudomonas aeruginosa alkylquinoline cell-cell communication signal, HHQ, leads to benzofuranoquinolines with anti-virulence behaviour in ESKAPE pathogens. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36862576 DOI: 10.1099/mic.0.001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Microbial populations have evolved intricate networks of negotiation and communication through which they can coexist in natural and host ecosystems. The nature of these systems can be complex and they are, for the most part, poorly understood at the polymicrobial level. The Pseudomonas Quinolone Signal (PQS) and its precursor 4-hydroxy-2-heptylquinoline (HHQ) are signal molecules produced by the important nosocomial pathogen
Pseudomonas aeruginosa
. They are known to modulate the behaviour of co-colonizing bacterial and fungal pathogens such as Bacillus atropheaus, Candida albicans and Aspergillus fumigatus. While the structural basis for alkyl-quinolone signalling within
P. aeruginosa
has been studied extensively, less is known about how structural derivatives of these molecules can influence multicellular behaviour and population-level decision-making in other co-colonizing organisms. In this study, we investigated a suite of small molecules derived initially from the HHQ framework, for anti-virulence activity against ESKAPE pathogens, at the species and strain levels. Somewhat surprisingly, with appropriate substitution, loss of the alkyl chain (present in HHQ and PQS) did not result in a loss of activity, presenting a more easily accessible synthetic framework for investigation. Virulence profiling uncovered significant levels of inter-strain variation among the responses of clinical and environmental isolates to small-molecule challenge. While several lead compounds were identified in this study, further work is needed to appreciate the extent of strain-level tolerance to small-molecule anti-infectives among pathogenic organisms.
Collapse
Affiliation(s)
- Veronica Rossetto
- Faculty of Science and Technology, Universidade do Algarve, Algarve, Portugal.,School of Microbiology, University College Cork, Cork, Ireland
| | | | - David F Woods
- School of Microbiology, University College Cork, Cork, Ireland
| | - Helena M Galvão
- Faculty of Science and Technology, Universidade do Algarve, Algarve, Portugal
| | - Rachel M Shanahan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Aobha Hickey
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Niall O'Leary
- School of Microbiology, University College Cork, Cork, Ireland
| | - Fergal O'Gara
- School of Microbiology, University College Cork, Cork, Ireland.,Biomerit Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, WA, Australia
| | - Gerard P McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland.,Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
5
|
Victoria-Muñoz F, Sánchez-Cruz N, Medina-Franco JL, Lopez-Vallejo F. Cheminformatics analysis of molecular datasets of transcription factors associated with quorum sensing in Pseudomonas aeruginosa. RSC Adv 2022; 12:6783-6790. [PMID: 35424595 PMCID: PMC8981735 DOI: 10.1039/d1ra08352j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/20/2022] [Indexed: 11/21/2022] Open
Abstract
There are molecular structural features that are key to defining the agonist or antagonist activity on LasR, RhlR and PqsR transcription factors, associated with quorum sensing in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Felipe Victoria-Muñoz
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Farmacia, Av. Cra 30 # 45-03, Bogotá D.C., 11001 Colombia
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Av. Cra 30 # 45-03, Bogotá D.C., 11001 Colombia
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510 Mexico
| | - José L. Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City, 04510 Mexico
| | - Fabian Lopez-Vallejo
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias, Departamento de Química, Grupo de Investigación en Productos Naturales Vegetales Bioactivos, Av. Cra 30 # 45-03, Bogotá D.C., 11001 Colombia
| |
Collapse
|
6
|
Duplantier M, Lohou E, Sonnet P. Quorum Sensing Inhibitors to Quench P. aeruginosa Pathogenicity. Pharmaceuticals (Basel) 2021; 14:1262. [PMID: 34959667 PMCID: PMC8707152 DOI: 10.3390/ph14121262] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence and the dissemination of multidrug-resistant bacteria constitute a major public health issue. Among incriminated Gram-negative bacteria, Pseudomonas aeruginosa has been designated by the WHO as a critical priority threat. During the infection process, this pathogen secretes various virulence factors in order to adhere and colonize host tissues. Furthermore, P. aeruginosa has the capacity to establish biofilms that reinforce its virulence and intrinsic drug resistance. The regulation of biofilm and virulence factor production of this micro-organism is controlled by a specific bacterial communication system named Quorum Sensing (QS). The development of anti-virulence agents targeting QS that could attenuate P. aeruginosa pathogenicity without affecting its growth seems to be a promising new therapeutic strategy. This could prevent the selective pressure put on bacteria by the conventional antibiotics that cause their death and promote resistant strain survival. This review describes the QS-controlled pathogenicity of P. aeruginosa and its different specific QS molecular pathways, as well as the recent advances in the development of innovative QS-quenching anti-virulence agents to fight anti-bioresistance.
Collapse
Affiliation(s)
| | | | - Pascal Sonnet
- AGIR, UR4294, UFR of Pharmacy, Jules Verne University of Picardie, 80037 Amiens, France; (M.D.); (E.L.)
| |
Collapse
|
7
|
Schütz C, Hodzic A, Hamed M, Abdelsamie AS, Kany AM, Bauer M, Röhrig T, Schmelz S, Scrima A, Blankenfeldt W, Empting M. Divergent synthesis and biological evaluation of 2-(trifluoromethyl)pyridines as virulence-attenuating inverse agonists targeting PqsR. Eur J Med Chem 2021; 226:113797. [PMID: 34520957 DOI: 10.1016/j.ejmech.2021.113797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/10/2021] [Accepted: 08/22/2021] [Indexed: 11/19/2022]
Abstract
A short and divergent route towards new derivatives of 2-(trifluoromethyl)pyridines as potent inverse agonists of the bacterial target PqsR against Pseudomonas aeruginosa (PA) infections is described. This Gram-negative pathogen causes severe nosocomial infections and common antibiotic treatment options are rendered ineffective due to resistance issues. Based on an earlier identified optimized hit, we conducted derivatization and rigidification attempts employing two central building blocks. The western part of the molecule is built up via a 2-(trifluoromethyl)pyridine head group equipped with a terminal alkyne. The eastern section is then introduced through aryliode motifs exploiting Sonogashira as well as Suzuki-type chemistry. Subsequent modification provided quick access to an array of compounds, allowed for deep SAR insights, and enabled to optimize the hit scaffold into a lead structure of nanomolar potency combined with favorable in vitro ADME/T features.
Collapse
Affiliation(s)
- Christian Schütz
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Amir Hodzic
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Mostafa Hamed
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Ahmed S Abdelsamie
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany; Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, 12622, Cairo, Egypt
| | - Andreas M Kany
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Maximilian Bauer
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Teresa Röhrig
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Stefan Schmelz
- Department of Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Andrea Scrima
- Department of Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department of Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany; Biotechnology and Bioinformatics, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Martin Empting
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.
| |
Collapse
|
8
|
Schütz C, Ho D, Hamed MM, Abdelsamie AS, Röhrig T, Herr C, Kany AM, Rox K, Schmelz S, Siebenbürger L, Wirth M, Börger C, Yahiaoui S, Bals R, Scrima A, Blankenfeldt W, Horstmann JC, Christmann R, Murgia X, Koch M, Berwanger A, Loretz B, Hirsch AKH, Hartmann RW, Lehr C, Empting M. A New PqsR Inverse Agonist Potentiates Tobramycin Efficacy to Eradicate Pseudomonas aeruginosa Biofilms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004369. [PMID: 34165899 PMCID: PMC8224453 DOI: 10.1002/advs.202004369] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Indexed: 05/21/2023]
Abstract
Pseudomonas aeruginosa (PA) infections can be notoriously difficult to treat and are often accompanied by the development of antimicrobial resistance (AMR). Quorum sensing inhibitors (QSI) acting on PqsR (MvfR) - a crucial transcriptional regulator serving major functions in PA virulence - can enhance antibiotic efficacy and eventually prevent the AMR. An integrated drug discovery campaign including design, medicinal chemistry-driven hit-to-lead optimization and in-depth biological profiling of a new QSI generation is reported. The QSI possess excellent activity in inhibiting pyocyanin production and PqsR reporter-gene with IC50 values as low as 200 and 11 × 10-9 m, respectively. Drug metabolism and pharmacokinetics (DMPK) as well as safety pharmacology studies especially highlight the promising translational properties of the lead QSI for pulmonary applications. Moreover, target engagement of the lead QSI is shown in a PA mucoid lung infection mouse model. Beyond that, a significant synergistic effect of a QSI-tobramycin (Tob) combination against PA biofilms using a tailor-made squalene-derived nanoparticle (NP) formulation, which enhance the minimum biofilm eradicating concentration (MBEC) of Tob more than 32-fold is demonstrated. The novel lead QSI and the accompanying NP formulation highlight the potential of adjunctive pathoblocker-mediated therapy against PA infections opening up avenues for preclinical development.
Collapse
|
9
|
GPCR_LigandClassify.py; a rigorous machine learning classifier for GPCR targeting compounds. Sci Rep 2021; 11:9510. [PMID: 33947911 PMCID: PMC8097070 DOI: 10.1038/s41598-021-88939-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
The current study describes the construction of various ligand-based machine learning models to be used for drug-repurposing against the family of G-Protein Coupled Receptors (GPCRs). In building these models, we collected > 500,000 data points, encompassing experimentally measured molecular association data of > 160,000 unique ligands against > 250 GPCRs. These data points were retrieved from the GPCR-Ligand Association (GLASS) database. We have used diverse molecular featurization methods to describe the input molecules. Multiple supervised ML algorithms were developed, tested and compared for their accuracy, F scores, as well as for their Matthews' correlation coefficient scores (MCC). Our data suggest that combined with molecular fingerprinting, ensemble decision trees and gradient boosted trees ML algorithms are on the accuracy border of the rather sophisticated deep neural nets (DNNs)-based algorithms. On a test dataset, these models displayed an excellent performance, reaching a ~ 90% classification accuracy. Additionally, we showcase a few examples where our models were able to identify interesting connections between known drugs from the Drug-Bank database and members of the GPCR family of receptors. Our findings are in excellent agreement with previously reported experimental observations in the literature. We hope the models presented in this paper synergize with the currently ongoing interest of applying machine learning modeling in the field of drug repurposing and computational drug discovery in general.
Collapse
|
10
|
Thioether-linked dihydropyrrol-2-one analogues as PqsR antagonists against antibiotic resistant Pseudomonas aeruginosa. Bioorg Med Chem 2021; 31:115967. [PMID: 33434766 DOI: 10.1016/j.bmc.2020.115967] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
The Pseudomonas quinolone system (pqs) is one of the key quorum sensing systems in antibiotic-resistant P. aeruginosa and is responsible for the production of virulence factors and biofilm formation. Thus, synthetic small molecules that can target the PqsR (MvfR) receptor can be utilized as quorum sensing inhibitors to treat P. aeruginosa infections. In this study, we report the synthesis of novel thioether-linked dihydropyrrol-2-one (DHP) analogues as PqsR antagonists. Compound 7g containing a 2-mercaptopyridyl linkage effectively inhibited the pqs system with an IC50 of 32 µM in P. aeruginosa PAO1. Additionally, these inhibitors significantly reduced bacterial aggregation and biofilm formation without affecting planktonic growth. The molecular docking study suggest that these inhibitors bind with the ligand binding domain of the MvfR as a competitive antagonist.
Collapse
|
11
|
Ramos AF, Woods DF, Shanahan R, Cano R, McGlacken GP, Serra C, O'Gara F, Reen FJ. A structure-function analysis of interspecies antagonism by the 2-heptyl-4-alkyl-quinolone signal molecule from Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2020; 166:169-179. [PMID: 31860435 DOI: 10.1099/mic.0.000876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, the alkyl-quinolone molecular framework has already provided a rich source of bioactivity for the development of novel anti-infective compounds. Based on the quorum-sensing signalling molecules 4-hydroxy-2-heptylquinoline (HHQ) and 3,4-dihydroxy-2-heptylquinoline (PQS) from the nosocomial pathogen Pseudomonas aeruginosa, modifications have been developed with markedly enhanced anti-biofilm bioactivity towards important fungal and bacterial pathogens, including Candida albicans and Aspergillus fumigatus. Here we show that antibacterial activity of HHQ against Vibrionaceae is species-specific and it requires an exquisite level of structural fidelity within the alkyl-quinolone molecular framework. Antibacterial activity was demonstrated against the serious human pathogens Vibrio vulnificus and Vibrio cholerae as well as a panel of bioluminescent squid symbiont Allivibrio fischeri isolates. In contrast, Vibrio parahaemolyticus growth and biofilm formation was unaffected in the presence of HHQ and all the structural variants tested. In general, modification to almost all of the molecule except the alkyl-chain end, led to loss of activity. This suggests that the bacteriostatic activity of HHQ requires the concerted action of the entire framework components. The only exception to this pattern was deuteration of HHQ at the C3 position. HHQ modified with a terminal alkene at the quinolone alkyl chain retained bacteriostatic activity and was also found to activate PqsR signalling comparable to the native agonist. The data from this integrated analysis provides novel insights into the structural flexibility underpinning the signalling activity of the complex alkyl-quinolone molecular communication system.
Collapse
Affiliation(s)
- Ana F Ramos
- CIIMAR, -Centro Interdisciplinar de Investigação Marinha e Ambiental University of Porto, Porto Matosinhos, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - David F Woods
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland
| | - Rachel Shanahan
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Rafael Cano
- School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Gerard P McGlacken
- SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland.,School of Chemistry and Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Claudia Serra
- CIIMAR, -Centro Interdisciplinar de Investigação Marinha e Ambiental University of Porto, Porto Matosinhos, Portugal
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland.,Telethon Kids Institute, Perth Children's Hospital, PerthWA 6009, Australia.,SSPC, Synthesis and Solid State Pharmaceutical Centre, Ireland.,School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, PerthWA, Australia
| | - F Jerry Reen
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Majumdar M, Khan SA, Nandi NB, Roy S, Panja AS, Roy DN, Misra TK. Green Synthesis of Iron Nanoparticles for Investigation of Biofilm Inhibition Property. ChemistrySelect 2020. [DOI: 10.1002/slct.202003033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Moumita Majumdar
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| | - Shamim Ahmed Khan
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Shaktibrata Roy
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| | | | - Dijendra Nath Roy
- Department of Bioengineering National Institute of Technology Agartala Agartala Tripura 799046 India
| | - Tarun Kumar Misra
- Department of Chemistry National Institute of Technology Agartala Agartala Tripura 799046 India
| |
Collapse
|
13
|
Ho DK, De Rossi C, Loretz B, Murgia X, Lehr CM. Itaconic Acid Increases the Efficacy of Tobramycin against Pseudomonas aeruginosa Biofilms. Pharmaceutics 2020; 12:E691. [PMID: 32707837 PMCID: PMC7463765 DOI: 10.3390/pharmaceutics12080691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 01/28/2023] Open
Abstract
The search for novel therapeutics against pulmonary infections, in particular Pseudomonas aeruginosa (PA) biofilm infections, has been intense to deal with the emergent rise of antimicrobial resistance. Despite the numerous achievements in drug discovery and delivery strategies, only a limited number of therapeutics reach the clinic. To allow a timely preclinical development, a formulation should be highly effective, safe, and most importantly facile to produce. Thus, a simple combination of known actives that enhances the therapeutic efficacy would be a preferential choice compared to advanced drug delivery systems. In this study, we propose a novel combination of an anti-inflammatory agent-itaconic acid (itaconate, IA)-and an approved antibiotic-tobramycin (Tob) or ciprofloxacin (Cipro). The combination of Tob and IA at a molar ratio of 1:5 increased the biofilm eradicating efficacy in the strain PA14 wild type (wt) by ~4-fold compared to Tob alone. In contrast, such effect was not observed for the combination of IA with Cipro. Subsequent studies on the influence of IA on bacterial growth, pyocyanin production, and Tob biofilm penetration indicated that complexation with IA enhanced the transport of Tob through the biofilm. We recommend the simple and effective combination of Tob:IA for further testing in advanced preclinical models of PA biofilm infections.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Chiara De Rossi
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Brigitta Loretz
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Xabier Murgia
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
| | - Claus-Michael Lehr
- HIPS–Helmholtz Institute for Pharmaceutical Research Saarland, HZI—Helmholtz Center for Infection Research, D-66123 Saarbrücken, Germany; (C.D.R.); (B.L.)
- Department of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
14
|
Ho D, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins AG, Koch M, Andreas A, Herrmann J, Müller R, Empting M, Hartmann RW, Desmaele D, Loretz B, Couvreur P, Lehr C. Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of
P. aeruginosa
Biofilm Infections. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Duy‐Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
- Current address: Department of Bioengineering School of Medicine University of Washington Seattle WA 98195 USA
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
- Current address: Kusudama Therapeutics Parque Científico y Tecnológico de Gipuzkoa 20014 Donostia-San Sebastián Spain
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | | | - Marcus Koch
- INM—Leibniz Institute for New Materials 66123 Saarbrücken Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Rolf W. Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| | - Didier Desmaele
- Faculté de Pharmacie Institut Galien Paris Sud Université Paris-Saclay, UMR CNRS 8612 92296 Châtenay-Malabry France
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
| | - Patrick Couvreur
- Faculté de Pharmacie Institut Galien Paris Sud Université Paris-Saclay, UMR CNRS 8612 92296 Châtenay-Malabry France
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland Helmholtz Center for Infection Research 66123 Saarbrücken Germany
- Department of Pharmacy Saarland University 66123 Saarbrücken Germany
| |
Collapse
|
15
|
Ho DK, Murgia X, De Rossi C, Christmann R, Hüfner de Mello Martins AG, Koch M, Andreas A, Herrmann J, Müller R, Empting M, Hartmann RW, Desmaele D, Loretz B, Couvreur P, Lehr CM. Squalenyl Hydrogen Sulfate Nanoparticles for Simultaneous Delivery of Tobramycin and an Alkylquinolone Quorum Sensing Inhibitor Enable the Eradication of P. aeruginosa Biofilm Infections. Angew Chem Int Ed Engl 2020; 59:10292-10296. [PMID: 32243047 PMCID: PMC7317969 DOI: 10.1002/anie.202001407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Indexed: 12/02/2022]
Abstract
Elimination of pulmonary Pseudomonas aeruginosa (PA) infections is challenging to accomplish with antibiotic therapies, mainly due to resistance mechanisms. Quorum sensing inhibitors (QSIs) interfering with biofilm formation can thus complement antibiotics. For simultaneous and improved delivery of both active agents to the infection sites, self‐assembling nanoparticles of a newly synthesized squalenyl hydrogen sulfate (SqNPs) were prepared. These nanocarriers allowed for remarkably high loading capacities of hydrophilic antibiotic tobramycin (Tob) and a novel lipophilic QSI at 30 % and circa 10 %, respectively. The drug‐loaded SqNPs showed improved biofilm penetration and enhanced efficacy in relevant biological barriers (mucin/human tracheal mucus, biofilm), leading to complete eradication of PA biofilms at circa 16‐fold lower Tob concentration than Tob alone. This study offers a viable therapy optimization and invigorates the research and development of QSIs for clinical use.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.,Current address: Department of Bioengineering, School of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Xabier Murgia
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany.,Current address: Kusudama Therapeutics, Parque Científico y Tecnológico de Gipuzkoa, 20014, Donostia-San Sebastián, Spain
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Rebekka Christmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | | | - Marcus Koch
- INM-Leibniz Institute for New Materials, 66123, Saarbrücken, Germany
| | - Anastasia Andreas
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Martin Empting
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Rolf W Hartmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| | - Didier Desmaele
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, UMR CNRS 8612, 92296, Châtenay-Malabry, France
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany
| | - Patrick Couvreur
- Faculté de Pharmacie, Institut Galien Paris Sud, Université Paris-Saclay, UMR CNRS 8612, 92296, Châtenay-Malabry, France
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
16
|
Kingsbury A, Brough S, McCarthy AP, Lewis W, Woodward S. Conjugate Addition Routes to 2‐Alkyl‐2,3‐dihydroquinolin‐4(1
H
)‐ones and 2‐Alkyl‐4‐hydroxy‐1,2‐dihydroquinoline‐3‐carboxylates. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alex Kingsbury
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| | - Steve Brough
- Key Organics Ltd Highfield Road Industrial Estate PL32 9RA Camelford Cornwall United Kingdom
| | - Antonio Pedrina McCarthy
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| | - William Lewis
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| | - Simon Woodward
- GSK Carbon Neutral Laboratories for Sustainable Chemistry University of Nottingham Jubilee Campus NG7 2TU Nottingham United Kingdom
| |
Collapse
|
17
|
Zender M, Witzgall F, Kiefer A, Kirsch B, Maurer CK, Kany AM, Xu N, Schmelz S, Börger C, Blankenfeldt W, Empting M. Flexible Fragment Growing Boosts Potency of Quorum-Sensing Inhibitors against Pseudomonas aeruginosa Virulence. ChemMedChem 2019; 15:188-194. [PMID: 31709767 PMCID: PMC7004148 DOI: 10.1002/cmdc.201900621] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 12/24/2022]
Abstract
Hit-to-lead optimization is a critical phase in drug discovery. Herein, we report on the fragment-based discovery and optimization of 2-aminopyridine derivatives as a novel lead-like structure for the treatment of the dangerous opportunistic pathogen Pseudomonas aeruginosa. We pursue an innovative treatment strategy by interfering with the Pseudomonas quinolone signal (PQS) quorum sensing (QS) system leading to an abolishment of bacterial pathogenicity. Our compounds act on the PQS receptor (PqsR), a key transcription factor controlling the expression of various pathogenicity determinants. In this target-driven approach, we made use of biophysical screening via surface plasmon resonance (SPR) followed by isothermal titration calorimetry (ITC)-enabled enthalpic efficiency (EE) evaluation. Hit optimization then involved growth vector identification and exploitation. Astonishingly, the latter was successfully achieved by introducing flexible linkers rather than rigid motifs leading to a boost in activity on the target receptor and anti-virulence potency.
Collapse
Affiliation(s)
- Michael Zender
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Florian Witzgall
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Alexander Kiefer
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Benjamin Kirsch
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine K Maurer
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Andreas M Kany
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Ningna Xu
- Lehrstuhl für Biochemie, Universität Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Stefan Schmelz
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Carsten Börger
- PharmBioTec GmbH, Science Park 1, 66123, Saarbrücken, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins (SFPR), Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124, Braunschweig, Germany.,Biotechnology and Bioinformatics, Institute for Biochemistry, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Martin Empting
- Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS)-Helmholtz Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
18
|
Đorović J, Milenković D, Joksović L, Joksović M, Marković Z. Study of Influence of Free Radical Species on Antioxidant Activity of Selected 1,2,4‐Triazole‐3‐thiones. ChemistrySelect 2019. [DOI: 10.1002/slct.201900895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Jelena Đorović
- Bioengineering Research and Development CenterPrvoslava Stojanovića 6 Kragujevac Republic of Serbia
| | - Dejan Milenković
- Bioengineering Research and Development CenterPrvoslava Stojanovića 6 Kragujevac Republic of Serbia
| | - Ljubinka Joksović
- University of KragujevacFaculty of ScienceDepartment of Chemistry Radoja Domanovića 12 34000 Kragujevac Republic of Serbia
| | - Milan Joksović
- University of KragujevacFaculty of ScienceDepartment of Chemistry Radoja Domanovića 12 34000 Kragujevac Republic of Serbia
| | - Zoran Marković
- Bioengineering Research and Development CenterPrvoslava Stojanovića 6 Kragujevac Republic of Serbia
- Department of Chemical-Technological SciencesState University of Novi Pazar, Vuka Karadžića bb 36300 Novi Pazar Republic of Serbia
| |
Collapse
|
19
|
Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Eur J Med Chem 2019; 172:26-35. [PMID: 30939351 DOI: 10.1016/j.ejmech.2019.03.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 01/31/2023]
Abstract
Nowadays, due to spreading antibiotic resistance among clinically relevant pathogens, the requirement of novel therapeutic approaches is felt more than ever. One of the alternative strategies is anti-virulence therapy without affecting bacterial growth or viability. In Pseudomonas aeruginosa, an opportunistic human pathogen that exhibits intrinsic multi-drug resistance, both virulence factors' production and biofilm formation depends on its quorum sensing (QS) network. Therefore, targeting the key proteins involved in QS system is an attractive method to overcome P. aeruginosa pathogenicity and resistance. The transcriptional regulator PqsR, also called MvfR, is one of these major proteins which employs 3,4-dihydroxy-2-heptylquinoline (PQS) and 4-hydroxy-2-heptylquinoline (HHQ) as signaling molecules. Reviewing the advances in development of small molecules inhibit this protein, assist to open a new window to smart molecule design that may revolutionize treatment of P. aeruginosa infections.
Collapse
|
20
|
Synthesis and Characterization of 3-(1-((3,4-Dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione as a Potential Antitumor Agent. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2069250. [PMID: 30906500 PMCID: PMC6393868 DOI: 10.1155/2019/2069250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/05/2018] [Indexed: 11/17/2022]
Abstract
The newly synthesized coumarin derivative with dopamine, 3-(1-((3,4-dihydroxyphenethyl)amino)ethylidene)-chroman-2,4-dione, was completely structurally characterized by X-ray crystallography. It was shown that several types of hydrogen bonds are present, which additionally stabilize the structure. The compound was tested in vitro against different cell lines, healthy human keratinocyte HaCaT, cervical squamous cell carcinoma SiHa, breast carcinoma MCF7, and hepatocellular carcinoma HepG2. Compared to control, the new derivate showed a stronger effect on both healthy and carcinoma cell lines, with the most prominent effect on the breast carcinoma MCF7 cell line. The molecular docking study, obtained for ten different conformations of the new compound, showed its inhibitory nature against CDKS protein. Lower inhibition constant, relative to one of 4-OH-coumarine, proved stronger and more numerous interactions with CDKS protein. These interactions were carefully examined for both parent molecule and derivative and explained from a structural point of view.
Collapse
|
21
|
Avdović EH, Dimić DS, Dimitrić Marković JM, Vuković N, Radulović MĐ, Živanović MN, Filipović ND, Đorović JR, Trifunović SR, Marković ZS. Spectroscopic and theoretical investigation of the potential anti-tumor and anti-microbial agent, 3-(1-((2-hydroxyphenyl)amino)ethylidene)chroman-2,4-dione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:421-429. [PMID: 30172238 DOI: 10.1016/j.saa.2018.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/12/2018] [Accepted: 08/19/2018] [Indexed: 06/08/2023]
Abstract
The coumarin-orthoaminophenol derivative was prepared under mild conditions. Based on crystallographic structure, IR and Raman, 1H and 13C NMR spectra the most applicable theoretical method was determined to be B3LYP-D3BJ. The stability and reactivity parameters were calculated, in the framework of NBO, QTAIM and Fukui functions, form the optimized structure. This reactivity was then probed in biological systems. The antimicrobial activity towards four bacteria and three fungi species was examined and activity was proven. In vitro cytotoxic effects, against human epithelial colorectal carcinoma HCT-116 and human healthy lung MRC-5 cell lines, of the investigated substance are also tested. Compound showed significant cytotoxic effects on HCT-116 cells, while on MRC-5 cells showed no cytotoxic effects. The effect of hydroxy group in ortho-position on the overall reactivity of molecule was examined through molecular docking with Glutathione-S-transferases.
Collapse
Affiliation(s)
- Edina H Avdović
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Dušan S Dimić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11000 Belgrade, Serbia
| | | | - Nenad Vuković
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Milanka Đ Radulović
- Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
| | - Marko N Živanović
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia; BioIRC, Bioengineering R&D Center, Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia
| | - Nenad D Filipović
- BioIRC, Bioengineering R&D Center, Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia; University of Kragujevac, Faculty of Engineering, Sestre Janjic 6, 34000 Kragujevac, Serbia
| | - Jelena R Đorović
- BioIRC, Bioengineering R&D Center, Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia
| | - Srećko R Trifunović
- University of Kragujevac, Faculty of Science, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Zoran S Marković
- BioIRC, Bioengineering R&D Center, Prvoslava Stojanovića 6, 34000 Kragujevac, Serbia; Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia.
| |
Collapse
|
22
|
Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2018; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
|
23
|
Schütz C, Empting M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein J Org Chem 2018; 14:2627-2645. [PMID: 30410625 PMCID: PMC6204780 DOI: 10.3762/bjoc.14.241] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa causes severe nosocomial infections. It uses quorum sensing (QS) to regulate and coordinate population-wide group behaviours in the infection process like concerted secretion of virulence factors. One very important signalling network is the Pseudomonas quinolone signal (PQS) QS. With the aim to devise novel and innovative anti-infectives, inhibitors have been designed to address the various potential drug targets present within pqs QS. These range from enzymes within the biosynthesis cascade of the signal molecules PqsABCDE to the receptor of these autoinducers PqsR (MvfR). This review shortly introduces P. aeruginosa and its pathogenicity traits regulated by the pqs system and highlights the published drug discovery efforts providing insights into the compound binding modes if available. Furthermore, suitability of the individual targets for pathoblocker design is discussed.
Collapse
Affiliation(s)
- Christian Schütz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
| | - Martin Empting
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Department of Drug Design and Optimization (DDOP), Campus E8.1, 66123 Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Saarbrücken, Germany
| |
Collapse
|
24
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
25
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
26
|
Hassan YI, Lahaye L, Gong MM, Peng J, Gong J, Liu S, Gay CG, Yang C. Innovative drugs, chemicals, and enzymes within the animal production chain. Vet Res 2018; 49:71. [PMID: 30060767 PMCID: PMC6066918 DOI: 10.1186/s13567-018-0559-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
The alarming number of recently reported human illnesses with bacterial infections resistant to multiple antibacterial agents has become a serious concern in recent years. This phenomenon is a core challenge for both the medical and animal health communities, since the use of antibiotics has formed the cornerstone of modern medicine for treating bacterial infections. The empirical benefits of using antibiotics to address animal health issues in animal agriculture (using therapeutic doses) and increasing the overall productivity of animals (using sub-therapeutic doses) are well established. The use of antibiotics to enhance profitability margins in the animal production industry is still practiced worldwide. Although many technical and economic reasons gave rise to these practices, the continued emergence of antimicrobial resistant bacteria is furthering the need to reduce the use of medically important antibiotics. This will require improving on-farm management and biosecurity practices, and the development of effective antibiotic alternatives that will reduce the dependence on antibiotics within the animal industry in the foreseeable future. A number of approaches are being closely scrutinized and optimized to achieve this goal, including the development of promising antibiotic alternatives to control bacterial virulence through quorum-sensing disruption, the use of synthetic polymers and nanoparticles, the exploitation of recombinant enzymes/proteins (such as glucose oxidases, alkaline phosphatases and proteases), and the use of phytochemicals. This review explores the most recent approaches within this context and provides a summary of practical mitigation strategies for the extensive use of antibiotics within the animal production chain in addition to several future challenges that need to be addressed.
Collapse
Affiliation(s)
- Yousef I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | | | - Max M. Gong
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705 USA
| | - Jian Peng
- College of Animal Science, Huazhong Agricultural University, Wuhan, China
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON Canada
| | - Song Liu
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB Canada
| | - Cyril G. Gay
- Office of National Programs, Animal Production and Protection, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 USA
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB Canada
| |
Collapse
|
27
|
Ó Muimhneacháin E, Reen FJ, O'Gara F, McGlacken GP. Analogues ofPseudomonas aeruginosasignalling molecules to tackle infections. Org Biomol Chem 2018; 16:169-179. [DOI: 10.1039/c7ob02395b] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of antibiotic resistance coupled with the lack of investment by pharmaceutical companies necessitates a new look at how we tackle bacterial infections.
Collapse
Affiliation(s)
- Eoin Ó Muimhneacháin
- School of Chemistry and Analytical and Biological Chemistry Research Facility
- University College Cork
- College Road
- Cork
- Ireland
| | - F. Jerry Reen
- School of Microbiology
- University College Cork
- Ireland
- BIOMERIT Research Centre
- School of Microbiology
| | - Fergal O'Gara
- BIOMERIT Research Centre
- School of Microbiology
- University College Cork
- Ireland
- School of Biomedical Sciences
| | - Gerard P. McGlacken
- School of Chemistry and Analytical and Biological Chemistry Research Facility
- University College Cork
- College Road
- Cork
- Ireland
| |
Collapse
|
28
|
Jeremić S, Amić A, Stanojević-Pirković M, Marković Z. Selected anthraquinones as potential free radical scavengers and P-glycoprotein inhibitors. Org Biomol Chem 2018; 16:1890-1902. [DOI: 10.1039/c8ob00060c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we estimated the scavenger capacity of six selected anthraquinones toward free radicals and their efficacy as inhibitors of P-glycoproteins.
Collapse
Affiliation(s)
- S. Jeremić
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| | - A. Amić
- Department of Chemistry
- Josip Juraj Strossmayer University of Osijek
- 31000 Osijek
- Croatia
| | | | - Z. Marković
- Department of Chemical-Technological Sciences
- State University of Novi Pazar
- 36300 Novi Pazar
- Serbia
| |
Collapse
|
29
|
Kamal AAM, Maurer CK, Allegretta G, Haupenthal J, Empting M, Hartmann RW. Quorum Sensing Inhibitors as Pathoblockers for Pseudomonas aeruginosa Infections: A New Concept in Anti-Infective Drug Discovery. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|