1
|
Liu J, Li M, Dang Y, Lou H, Xu Z, Zhang W. NIR-I fluorescence imaging tumorous methylglyoxal by an activatable nanoprobe based on peptide nanotubes by FRET process. Biosens Bioelectron 2022; 204:114068. [PMID: 35149453 DOI: 10.1016/j.bios.2022.114068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
Methylglyoxal (MGO), a glycolysis metabolite with high reactivity, can nonenzymatically modify proteins, lipids and nucleic acids etc., and it is closely related to the development of tumors. The accurate detection and high-performance optical imaging of MGO from deep tumor issues is of great significance for understanding their roles in tumor initiation and progression. Herein, we have presented a nanoprobe D/I-PNTs with emission in the first near infrared (NIR-I) region by employing a fluorescence resonance energy transfer (FRET) process between a far-red emission MGO probe and IR783 based on peptide nanotubes. The nanoplatform extended the emission range of MGO probe through FRET process and avoided complex molecular design and synthesis. The biocompatible peptide nanotubes improved the water solubility of MGO probe. D/I-PNTs was sensitive to MGO with a detection limit of 272 nM and enabled high-resolution NIR-I fluorescence imaging of MGO induced by glyoxalase I (GLO1) inhibitor in tumor with higher penetration depth (∼4 mm) than that in visible (Vis) region (∼3 mm). Most importantly, the FRET process based on the structure characteristics of peptide nanotubes can be a universal approach to realize the extension of emission wavelength and ratio detection of target analytes, which will be a promising strategy for bioimaging in deep tissue with high contrast.
Collapse
Affiliation(s)
- Jin Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haiming Lou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| | - Wen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai, 200062, China.
| |
Collapse
|
2
|
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem Rev 2020; 120:4707-4765. [PMID: 32101414 DOI: 10.1021/acs.chemrev.9b00664] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental roles that peptides and proteins play in today's biology makes it almost indisputable that peptides were key players in the origin of life. Insofar as it is appropriate to extrapolate back from extant biology to the prebiotic world, one must acknowledge the critical importance that interconnected molecular networks, likely with peptides as key components, would have played in life's origin. In this review, we summarize chemical processes involving peptides that could have contributed to early chemical evolution, with an emphasis on molecular interactions between peptides and other classes of organic molecules. We first summarize mechanisms by which amino acids and similar building blocks could have been produced and elaborated into proto-peptides. Next, non-covalent interactions of peptides with other peptides as well as with nucleic acids, lipids, carbohydrates, metal ions, and aromatic molecules are discussed in relation to the possible roles of such interactions in chemical evolution of structure and function. Finally, we describe research involving structural alternatives to peptides and covalent adducts between amino acids/peptides and other classes of molecules. We propose that ample future breakthroughs in origin-of-life chemistry will stem from investigations of interconnected chemical systems in which synergistic interactions between different classes of molecules emerge.
Collapse
Affiliation(s)
- Moran Frenkel-Pinter
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mousumi Samanta
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gonen Ashkenasy
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Luke J Leman
- NSF/NASA Center for Chemical Evolution, https://centerforchemicalevolution.com/.,Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Lei L, Geng R, Xu Z, Dang Y, Hu X, Li L, Geng P, Tian Y, Zhang W. Glycopeptide Nanofiber Platform for Aβ-Sialic Acid Interaction Analysis and Highly Sensitive Detection of Aβ. Anal Chem 2019; 91:8129-8136. [DOI: 10.1021/acs.analchem.9b00377] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Rui Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yijing Dang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xianli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Lingling Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ping Geng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Lei L, Xu Z, Hu X, Lai Y, Xu J, Hou B, Wang Y, Yu H, Tian Y, Zhang W. Bioinspired Multivalent Peptide Nanotubes for Sialic Acid Targeting and Imaging-Guided Treatment of Metastatic Melanoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900157. [PMID: 31018037 DOI: 10.1002/smll.201900157] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/16/2019] [Indexed: 05/14/2023]
Abstract
Tumor metastasis is considered a major cause of cancer-related human mortalities. However, it still remains a formidable challenge in clinics. Herein, a bioinspired multivalent nanoplatform for the highly effective treatment of the metastatic melanoma is reported. The versatile nanoplatform is designed by integrating indocyanine green and a chemotherapeutic drug (7-ethyl-10-hydroxycamptothecin) into phenylboronic acid (PBA)-functionalized peptide nanotubes (termed as I/S-PPNTs). I/S-PPNTs precisely target tumor cells through multivalent interaction between PBA and overexpressed sialic acid on the tumor surface in order to achieve imaging-guided combination therapy. It is demonstrated that I/S-PPNTs are efficiently internalized by the B16-F10 melanoma cells in vitro in a PBA grafting density-dependent manner. It is further shown that I/S-PPNTs specifically accumulate and deeply penetrate into both the subcutaneous and lung metastatic B16-F10 melanoma tumors. More importantly, I/S-PPNT-mediated combination chemo- and photodynamic therapy efficiently eradicates tumor and suppresses the lung metastasis of B16-F10 melanoma in an immunocompetent C57BL/6 mouse model. The results highlight the promising potential of the multivalent peptide nanotubes for active tumor targeting and imaging-guided cancer therapy.
Collapse
Affiliation(s)
- Li Lei
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhiai Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xianli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Yi Lai
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Jie Xu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Bo Hou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ya Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yang Tian
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wen Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
5
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
6
|
Mason TO, Shimanovich U. Fibrous Protein Self-Assembly in Biomimetic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706462. [PMID: 29883013 DOI: 10.1002/adma.201706462] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/28/2018] [Indexed: 05/22/2023]
Abstract
Protein self-assembly processes, by which polypeptides interact and independently form multimeric structures, lead to a wide array of different endpoints. Structures formed range from highly ordered molecular crystals to amorphous aggregates. Order arises in the system from a balance between many low-energy processes occurring due to a set of interactions between residues in a chain, between residues in different chains, and between solute and solvent. In Nature, self-assembling protein systems have evolved over millions of years to organize into supramolecular structures, optimized for specific functions, with this propensity determined by the sequence of their constituent amino acids, of which only 20 are encoded in DNA. The structural materials that arise from biological self-assembly can display remarkable mechanical properties, often as a result of hierarchical structure on the nano- and microscales, and much research has been devoted to mimicking and exploiting these properties for a variety of end uses. This work presents a review of a range of studies in which biological functions are effectively reproduced through the design of self-assembling fibrous protein systems.
Collapse
Affiliation(s)
- Thomas O Mason
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
7
|
Son G, Lee SH, Wang D, Park CB. Thioflavin T-Amyloid Hybrid Nanostructure for Biocatalytic Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801396. [PMID: 30198161 DOI: 10.1002/smll.201801396] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Amyloidogenic peptides can self-assemble into highly ordered nanostructures consisting of cross β-sheet-rich networks that exhibit unique physicochemical properties and high stability. Light-harvesting amyloid nanofibrils are constructed by employing insulin as a building block and thioflavin T (ThT) as a amyloid-specific photosensitizer. The ability of the self-assembled amyloid scaffold to accommodate and align ThT in high density on its surface allows for efficient energy transfer from the chromophores to the catalytic units in a similar way to natural photosystems. Insulin nanofibrils significantly enhance the photoactivity of ThT by inhibiting nonradiative conformational relaxation around the central CC bonds and narrowing the distance between ThT molecules that are bound to the β-sheet-rich amyloid structure. It is demonstrated that the ThT-amyloid hybrid nanostructure is suitable for biocatalytic solar-to-chemical conversion by integrating the light-harvesting amyloid module (for nicotinamide cofactor regeneration) with a redox biocatalytic module (for enzymatic reduction).
Collapse
Affiliation(s)
- Giyeong Son
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Sahng Ha Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Ding Wang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
8
|
Bai Y, Chotera A, Taran O, Liang C, Ashkenasy G, Lynn DG. Achieving biopolymer synergy in systems chemistry. Chem Soc Rev 2018; 47:5444-5456. [PMID: 29850753 DOI: 10.1039/c8cs00174j] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic and materials chemistry initiatives have enabled the translation of the macromolecular functions of biology into synthetic frameworks. These explorations into alternative chemistries of life attempt to capture the versatile functionality and adaptability of biopolymers in new orthogonal scaffolds. Information storage and transfer, however, so beautifully represented in the central dogma of biology, require multiple components functioning synergistically. Over a single decade, the emerging field of systems chemistry has begun to catalyze the construction of mutualistic biopolymer networks, and this review begins with the foundational small-molecule-based dynamic chemical networks and peptide amyloid-based dynamic physical networks on which this effort builds. The approach both contextualizes the versatile approaches that have been developed to enrich chemical information in synthetic networks and highlights the properties of amyloids as potential alternative genetic elements. The successful integration of both chemical and physical networks through β-sheet assisted replication processes further informs the synergistic potential of these networks. Inspired by the cooperative synergies of nucleic acids and proteins in biology, synthetic nucleic-acid-peptide chimeras are now being explored to extend their informational content. With our growing range of synthetic capabilities, structural analyses, and simulation technologies, this foundation is radically extending the structural space that might cross the Darwinian threshold for the origins of life as well as creating an array of alternative systems capable of achieving the progressive growth of novel informational materials.
Collapse
Affiliation(s)
- Yushi Bai
- Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Hsieh MC, Liang C, Mehta AK, Lynn DG, Grover MA. Multistep Conformation Selection in Amyloid Assembly. J Am Chem Soc 2017; 139:17007-17010. [PMID: 29111722 PMCID: PMC5709775 DOI: 10.1021/jacs.7b09362] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Defining pathways
for amyloid assembly could impact therapeutic
strategies for as many as 50 disease states. Here we show that amyloid
assembly is subject to different forces regulating nucleation and
propagation steps and provide evidence that the more global β-sheet/β-sheet
facial complementarity is a critical determinant for amyloid nucleation
and structural selection.
Collapse
Affiliation(s)
- Ming-Chien Hsieh
- Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Anil K Mehta
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David G Lynn
- Emory University , 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Martha A Grover
- Georgia Institute of Technology , 311 Ferst Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|