1
|
Romanescu M, Oprean C, Lombrea A, Badescu B, Teodor A, Constantin GD, Andor M, Folescu R, Muntean D, Danciu C, Dalleur O, Batrina SL, Cretu O, Buda VO. Current State of Knowledge Regarding WHO High Priority Pathogens-Resistance Mechanisms and Proposed Solutions through Candidates Such as Essential Oils: A Systematic Review. Int J Mol Sci 2023; 24:9727. [PMID: 37298678 PMCID: PMC10253476 DOI: 10.3390/ijms24119727] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Combating antimicrobial resistance (AMR) is among the 10 global health issues identified by the World Health Organization (WHO) in 2021. While AMR is a naturally occurring process, the inappropriate use of antibiotics in different settings and legislative gaps has led to its rapid progression. As a result, AMR has grown into a serious global menace that impacts not only humans but also animals and, ultimately, the entire environment. Thus, effective prophylactic measures, as well as more potent and non-toxic antimicrobial agents, are pressingly needed. The antimicrobial activity of essential oils (EOs) is supported by consistent research in the field. Although EOs have been used for centuries, they are newcomers when it comes to managing infections in clinical settings; it is mainly because methodological settings are largely non-overlapping and there are insufficient data regarding EOs' in vivo activity and toxicity. This review considers the concept of AMR and its main determinants, the modality by which the issue has been globally addressed and the potential of EOs as alternative or auxiliary therapy. The focus is shifted towards the pathogenesis, mechanism of resistance and activity of several EOs against the six high priority pathogens listed by WHO in 2017, for which new therapeutic solutions are pressingly required.
Collapse
Affiliation(s)
- Mirabela Romanescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300723 Timisoara, Romania
| | - Adelina Lombrea
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Bianca Badescu
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Ana Teodor
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - George D. Constantin
- Doctoral School, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.R.); (A.L.); (B.B.); (A.T.); (G.D.C.)
| | - Minodora Andor
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Roxana Folescu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Delia Muntean
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Olivia Dalleur
- Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Stefan Laurentiu Batrina
- Faculty of Agriculture, University of Life Sciences “King Mihai I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania
| | - Octavian Cretu
- Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania; (M.A.); (R.F.); (D.M.)
| | - Valentina Oana Buda
- Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2 Eftimie Murgu Street, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania
- Ineu City Hospital, 2 Republicii Street, 315300 Ineu, Romania
| |
Collapse
|
2
|
Han B, He XH, Liu YQ, He G, Peng C, Li JL. Asymmetric organocatalysis: an enabling technology for medicinal chemistry. Chem Soc Rev 2021; 50:1522-1586. [PMID: 33496291 DOI: 10.1039/d0cs00196a] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The efficacy and synthetic versatility of asymmetric organocatalysis have contributed enormously to the field of organic synthesis since the early 2000s. As asymmetric organocatalytic methods mature, they have extended beyond the academia and undergone scale-up for the production of chiral drugs, natural products, and enantiomerically enriched bioactive molecules. This review provides a comprehensive overview of the applications of asymmetric organocatalysis in medicinal chemistry. A general picture of asymmetric organocatalytic strategies in medicinal chemistry is firstly presented, and the specific applications of these strategies in pharmaceutical synthesis are systematically described, with a focus on the preparation of antiviral, anticancer, neuroprotective, cardiovascular, antibacterial, and antiparasitic agents, as well as several miscellaneous bioactive agents. The review concludes with a discussion of the challenges, limitations and future prospects for organocatalytic asymmetric synthesis of medicinally valuable compounds.
Collapse
Affiliation(s)
- Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yan-Qing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Gu He
- State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. and Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
3
|
Yamashita M, Hsieh YH, Iwasaki H, Iwai Y, Adachi M, Kitai K, Kuribayashi E, Hirata Y, Sakaguchi S, Sakaguchi N, Kojima N. [2+2]Photocycloaddition of 5,6-Substituted 2-Oxo-2H-pyran-3-carboxylates with Alkenes. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Opoku-Temeng C, Naclerio GA, Mohammad H, Dayal N, Abutaleb NS, Seleem MN, Sintim HO. N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria. Eur J Med Chem 2018; 155:797-805. [PMID: 29957525 DOI: 10.1016/j.ejmech.2018.06.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/17/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Various reports of multidrug-resistant bacteria that are immune to all available FDA-approved drugs demand the development of novel chemical scaffolds as antibiotics. From screening a chemical library, we identified compounds with antibacterial activity. The most potent compounds, F6-5 and F6, inhibited growth of various drug-resistant Gram-positive bacterial pathogens at concentrations ranging from 1 μg/mL to 2 μg/mL. Both compounds were active against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate and vancomycin-resistant S. aureus (VISA and VRSA respectively) and vancomycin-resistant Enterococcus faecalis (VRE). Resistance generation experiments revealed that MRSA could develop resistance to the antibiotic ciprofloxacin but not to F6. Excitingly, F6 was found to be non-toxic against mammalian cells. In a mouse skin wound infection model, F6 was equipotent to the antibiotic fusidic acid in reducing MRSA burden.
Collapse
Affiliation(s)
- Clement Opoku-Temeng
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA; Graduate Program in Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - George A Naclerio
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Haroon Mohammad
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Neetu Dayal
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA
| | - Nader S Abutaleb
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, N47907, USA
| | - Herman O Sintim
- Chemistry Department, Institute for Drug Discovery, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Bhutia ZT, Das A, Biswas M, Chatterjee A, Banerjee M. 7-Oxa-4-thia-1-aza-bicyclo[3.2.1]octane 4,4-Dioxides: Mechanochemical Synthesis by Tandem Michael Addition-1,3-Dipolar Cycloaddition of Aldoximes and Evaluation of Antibacterial Activities. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701511] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | - Avijit Das
- Department of Biological Sciences; BITS; Goa Campus 403726 Pilani India
| | - Malabika Biswas
- Department of Biological Sciences; BITS; Goa Campus 403726 Pilani India
| | | | - Mainak Banerjee
- Department of Chemistry; BITS; Goa Campus 403726 Pilani India
| |
Collapse
|