1
|
Llamosí A, Szymański MP, Szumna A. Molecular vessels from preorganised natural building blocks. Chem Soc Rev 2024; 53:4434-4462. [PMID: 38497833 DOI: 10.1039/d3cs00801k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Supramolecular vessels emerged as tools to mimic and better understand compartmentalisation, a central aspect of living matter. However, many more applications that go beyond those initial goals have been documented in recent years, including new sensory systems, artificial transmembrane transporters, catalysis, and targeted drug or gene delivery. Peptides, carbohydrates, nucleobases, and steroids bear great potential as building blocks for the construction of supramolecular vessels, possessing complexity that is still difficult to attain with synthetic methods - they are rich in functional groups and well-defined stereogenic centers, ready for noncovalent interactions and further functions. One of the options to tame the functional and dynamic complexity of natural building blocks is to place them at spatially designed positions using synthetic scaffolds. In this review, we summarise the historical and recent advances in the construction of molecular-sized vessels by the strategy that couples synthetic predictability and durability of various scaffolds (cyclodextrins, porphyrins, crown ethers, calix[n]arenes, resorcin[n]arenes, pillar[n]arenes, cyclotriveratrylenes, coordination frameworks and multivalent high-symmetry molecules) with functionality originating from natural building blocks to obtain nanocontainers, cages, capsules, cavitands, carcerands or coordination cages by covalent chemistry, self-assembly, or dynamic covalent chemistry with the ultimate goal to apply them in sensing, transport, or catalysis.
Collapse
Affiliation(s)
- Arturo Llamosí
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Marek P Szymański
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|
2
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
3
|
Montà-González G, Sancenón F, Martínez-Máñez R, Martí-Centelles V. Purely Covalent Molecular Cages and Containers for Guest Encapsulation. Chem Rev 2022; 122:13636-13708. [PMID: 35867555 PMCID: PMC9413269 DOI: 10.1021/acs.chemrev.2c00198] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cage compounds offer unique binding pockets similar to enzyme-binding sites, which can be customized in terms of size, shape, and functional groups to point toward the cavity and many other parameters. Different synthetic strategies have been developed to create a toolkit of methods that allow preparing tailor-made organic cages for a number of distinct applications, such as gas separation, molecular recognition, molecular encapsulation, hosts for catalysis, etc. These examples show the versatility and high selectivity that can be achieved using cages, which is impossible by employing other molecular systems. This review explores the progress made in the field of fully organic molecular cages and containers by focusing on the properties of the cavity and their application to encapsulate guests.
Collapse
Affiliation(s)
- Giovanni Montà-González
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,CIBER
de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28029 Madrid, Spain,Centro
de Investigación Príncipe Felipe, Unidad Mixta UPV-CIPF
de Investigación de Mecanismos de Enfermedades y Nanomedicina,
Valencia, Universitat Politècnica
de València, 46012 Valencia, Spain,Instituto
de Investigación Sanitaria la Fe, Unidad Mixta de Investigación
en Nanomedicina y Sensores, Universitat
Politènica de València, 46026 València, Spain,Departamento
de Química, Universitat Politècnica
de València, 46022 Valencia, Spain,R.M.-M.: email,
| | - Vicente Martí-Centelles
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM) Universitat
Politècnica de València, Universitat de València. Camino de Vera, s/n 46022, Valencia, Spain,V.M.-C.:
email,
| |
Collapse
|
4
|
Szymański MP, Grajda M, Szumna A. Amplification of Electronic Circular Dichroism-A Tool to Follow Self-Assembly of Chiral Molecular Capsules. Molecules 2021; 26:7100. [PMID: 34885682 PMCID: PMC8658961 DOI: 10.3390/molecules26237100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
Electronic circular dichroism (ECD) can be used to study various aspects of self-assembly (definition of stoichiometric ratios, chirality amplification during self-assembly, host-guest complexation). In this work, we show that ECD is a valuable tool for monitoring the self-assembly of chiral peptide-based capsules. By analyzing the signs, intensities, and temperature dependences of ECD bands, the effects of the non-specific processes can be separated from the restriction of intramolecular motion (RIM) caused by discrete self-assembly. Analysis of experimental and theoretical ECD spectra show that the differences between assembled and non-assembled species originate from induction of inherently chiral conformation and restriction of conformational freedom that leads to amplification of ECD signals during self-assembly of discrete species.
Collapse
Affiliation(s)
| | | | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.P.S.); (M.G.)
| |
Collapse
|
5
|
Gilski M, Bernatowicz P, Sakowicz A, Szymański MP, Zalewska A, Szumna A, Jaskólski M. C 60 in a peptidic cage: a case of symmetry mismatch studied by crystallography and solid-state NMR. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2020; 76:815-824. [PMID: 33017315 PMCID: PMC7586347 DOI: 10.1107/s2052520620009944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
A supramolecular complex, formed by encapsulation of C60 fullerene in a molecular container built from two resorcin[4]arene rims zipped together by peptidic arms hydrogen bonded into a cylindrical β-sheet, was studied by X-ray crystallography, solid-state and solution NMR, EPR spectroscopy and differential scanning calorimetry (DSC). The crystal structure, determined at 100 K, reveals that the complex occupies 422 site symmetry, which is compatible with the molecular symmetry of the container but not of the fullerene molecule, which has only 222 symmetry. The additional crystallographic symmetry leads to a complicated but discrete disorder, which could be resolved and modelled using advanced features of the existing refinement software. Solid-state NMR measurements at 184-333 K indicate that the thermal motion of C60 in this temperature range is fast but has different activation energies at different temperatures, which was attributed to a phase transition, which was confirmed by DSC. Intriguingly, the activation energy for reorientations of C60 in the solid state is very similar for the free and encaged molecules. Also, the rotational diffusion coefficients seem to be very similar or even slightly higher for the encaged fullerene compared to the free molecule. We also found that chemical shift anisotropy (CSA) is not the main relaxation mechanism for the 13C spins of C60 in the studied complex.
Collapse
Affiliation(s)
- Miroslaw Gilski
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, 61-614, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| | - Piotr Bernatowicz
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Arkadiusz Sakowicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Marek P. Szymański
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Aldona Zalewska
- Department of Chemistry, Warsaw University of Technology, Warsaw, 00-664, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Mariusz Jaskólski
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Poznan, 61-614, Poland
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, 61-704, Poland
| |
Collapse
|
6
|
Nemat SJ, Jędrzejewska H, Prescimone A, Szumna A, Tiefenbacher K. Catechol[4]arene: The Missing Chiral Member of the Calix[4]arene Family. Org Lett 2020; 22:5506-5510. [PMID: 32627560 DOI: 10.1021/acs.orglett.0c01864] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A missing, inherently chiral member of the calix[4]arene family denoted "catechol[4]arene" was synthesized. Its properties were studied and compared to the ones of its close relatives resorcin[4]arene and pyrogallol[4]arene. This novel supramolecular host exhibits binding capabilities that are superior to its sister molecules in polar media. The enantiomerically pure forms of the macrocycle display modest recognition of chiral ammonium salts.
Collapse
Affiliation(s)
- Suren J Nemat
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Hanna Jędrzejewska
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Agnieszka Szumna
- Institute of Organic Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Konrad Tiefenbacher
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland.,Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 24, 4058 Basel, Switzerland
| |
Collapse
|
7
|
Szymański MP, Czajka JS, Cmoch P, Iwanek W, Szumna A. Interlaced capsules by self-assembly of cavitands substituted with tripeptides and tetrapeptides. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1406603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Marek P. Szymański
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jakub S. Czajka
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Waldemar Iwanek
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|