1
|
Zhang X, Bi W, Cao Z, Shen J, Chen B. Recent Developments in the Metal-Catalyzed Synthesis of Nitrogenous Heterocyclic Compounds. Molecules 2024; 29:5458. [PMID: 39598847 PMCID: PMC11597738 DOI: 10.3390/molecules29225458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/05/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Metal-catalyzed cyclization reactions have become a powerful and efficient approach for the stereoselective construction of both carbocyclic and heterocyclic ring systems. Transition metal complexes, with their ability to activate and selectively functionalize organic substrates, have revolutionized various areas of synthetic chemistry. This review highlights recent advancements in metal-catalyzed cyclization reactions, especially in the synthesis of nitrogen-containing heterocycles like imidazoles, pyridines, pyrimidines, and indoles. These advancements have significantly impacted fields such as natural product synthesis, pharmaceuticals, functional materials, and organic electronics. Novel catalytic systems, ligand designs, and reaction conditions continue to expand the capabilities of these reactions, driving further the progress made in synthetic organic chemistry. This review provides a comprehensive overview of recent research.
Collapse
Affiliation(s)
- Xueguo Zhang
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Shandong Juxin New Materials Co., Ltd., Zibo 255000, China
| | - Wenxuan Bi
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Zhenyu Cao
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Jian Shen
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Mandal A, Khan AT. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions. Org Biomol Chem 2024; 22:2339-2358. [PMID: 38444342 DOI: 10.1039/d4ob00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The synthesis of quinoline derivatives through multicomponent reactions (MCRs) has emerged as an efficient and versatile strategy in organic synthesis. MCRs offer the advantage of constructing complex molecular architectures in a single step, utilising multiple starting materials in a convergent manner. This review provides an overview of recent advancements in the field of quinoline synthesis via MCRs. Various MCRs, such as the Povarov reaction, the Gewald reaction, and the Ugi reaction have been successfully employed for the synthesis of diverse quinoline scaffolds. These methodologies not only showcase high atom economy but also allow the incorporation of structural diversity into the final products. The versatility of MCRs enables the introduction of functional groups and substitution patterns tailored to specific applications. This review highlights the significance of quinoline derivatives in medicinal chemistry, materials science, and other interdisciplinary areas. The continuous innovation and development of novel MCR-based approaches for quinoline synthesis hold great promise for the rapid and efficient generation of valuable compounds with a wide range of biological and physicochemical properties.
Collapse
Affiliation(s)
- Arnab Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
3
|
Kumar A, Dhameliya TM, Sharma K, Patel KA, Hirani RV. Environmentally Benign Approaches towards the Synthesis of Quinolines. ChemistrySelect 2022. [DOI: 10.1002/slct.202201059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Asim Kumar
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Tejas M. Dhameliya
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Kirti Sharma
- Amity Institute of Pharmacy Amity University Haryana, Panchgaon, Manesar 122 413 Haryana India
| | - Krupa A. Patel
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| | - Rajvi V. Hirani
- Department of Pharmaceutical Chemistry and Quality Assurance L. M. College of Pharmacy, Navrangpura, Ahmedabad 380 009 Gujarat India
| |
Collapse
|
4
|
Foley DJ, Waldmann H. Ketones as strategic building blocks for the synthesis of natural product-inspired compounds. Chem Soc Rev 2022; 51:4094-4120. [PMID: 35506561 DOI: 10.1039/d2cs00101b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Natural product-inspired compound collections serve as excellent sources for the identification of new bioactive compounds to treat disease. However, such compounds must necessarily be more structurally-enriched than traditional screening compounds, therefore inventive synthetic strategies and reliable methods are needed to prepare them. Amongst the various possible starting materials that could be considered for the synthesis of natural product-inspired compounds, ketones can be especially valuable due to the vast variety of complexity-building synthetic transformations that they can take part in, their high prevalence as commercial building blocks, and relative ease of synthesis. With a view towards developing a unified synthetic strategy for the preparation of next generation bioactive compound collections, this review considers whether ketones could serve as general precursors in this regard, and summarises the opulence of synthetic transformations available for the annulation of natural product ring-systems to ketone starting materials.
Collapse
Affiliation(s)
- Daniel J Foley
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand. .,Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
5
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
|
7
|
Matada BS, Yernale NG. The contemporary synthetic recipes to access versatile quinoline heterocycles. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1876240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Nagesh Gunavanthrao Yernale
- Department of Chemistry, Guru Nanak First Grade Science, Commerce and Post Graduate College, Bidar, Karnataka, India
| |
Collapse
|
8
|
Weyesa A, Mulugeta E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: a review. RSC Adv 2020; 10:20784-20793. [PMID: 35517753 PMCID: PMC9054321 DOI: 10.1039/d0ra03763j] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023] Open
Abstract
Recently, quinoline has become an essential heterocyclic compound due to its versatile applications in the fields of industrial and synthetic organic chemistry. It is a vital scaffold for leads in drug discovery and plays a major role in the field of medicinal chemistry. Nowadays there are plenty of articles reporting syntheses of the main scaffold and its functionalization for biological and pharmaceutical activities. So far, a wide range of synthesis protocols have been reported in the literature for the construction of this scaffold. For example, Gould-Jacob, Friedländer, Pfitzinger, Skraup, Doebner-von Miller and Conrad-Limpach are well-known classical synthesis protocols used up to now for the construction of the principal quinoline scaffold. Transition metal catalysed reactions, metal-free ionic liquid mediated reactions, ultrasound irradiation reactions and green reaction protocols are also useful for the construction and functionalization of this compound. The main part of this review focuses on and highlights the above-mentioned synthesis procedures and findings to tackle the drawbacks of the syntheses and side effects on the environment. Furthermore, various selected quinolines and derivatives with potential biological and pharmaceutical activities will be presented.
Collapse
Affiliation(s)
- Abdanne Weyesa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P. O. Box: 1888 Adama Ethiopia
| | - Endale Mulugeta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University P. O. Box: 1888 Adama Ethiopia
| |
Collapse
|
9
|
Orozco D, Kouznetsov VV, Bermúdez A, Vargas Méndez LY, Mendoza Salgado AR, Meléndez Gómez CM. Recent synthetic efforts in the preparation of 2-(3,4)-alkenyl (aryl) quinoline molecules towards anti-kinetoplastid agents. RSC Adv 2020; 10:4876-4898. [PMID: 35498276 PMCID: PMC9049580 DOI: 10.1039/c9ra09905k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/19/2019] [Indexed: 01/23/2023] Open
Abstract
Leishmaniasis, Chagas disease and African sleeping sickness have been considered some of the most important tropical protozoan afflictions. As the number of drugs currently available to treat these human illnesses is severely limited and the majority has poor safety profiles and complicated administration schedules, actually there is an urgent need to develop new effective, safe and cost-effective drugs. Because quinoline alkaloids with antiprotozoal activity (quinine, chimanine, cryptolepine or huperzine groups) were historically and are still essential models for drug research to combat these parasitic infections, synthetic or semi-synthetic quinoline-based molecules are important for anti-kinetoplastid drug design approaches and synthetic methods of their preparation become a key task that is the central subject of this review. Its goal is to highlight the advances in the conventional and current syntheses of new 2-(3,4)-alkenyl (aryl) quinoline derivatives, which kill the most important kinetoplastid protozoa, - Leishmania and Trypanosoma and could be useful models for antileishmanial and antitrypanosomal research. An attempt has been made to present and discuss the more recent contributions in this field over the period 2015-2019, paying special attention to molecular design, synthetic efforts to new green reaction conditions for classical methods such as Skraup synthesis, Friedländer synthesis, Conrad-Limpach, Doebner-Miller, as well as contemporary methods like Gould-Jacobs, Meth-Cohn and Povarov reactions. This review includes brief general information on these neglected tropical diseases, their current chemotherapies, and primary natural models (quinoline alkaloids), suitable for development of anti-kinetoplastid quinoline-based agents. The main part of the review comprises critical discussion on the synthesis and chemistry of new quinolines diversely substituted by alkyl (alkenyl, aryl) fragments on the pyridine part of the quinoline skeleton, which could be considered interesting analogues of chimanine alkaloids. The methods described in this review were developed with the aim of overcoming the drawbacks of the traditional protocols using revolutionary precursors and strategies.
Collapse
Affiliation(s)
- Dayana Orozco
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Armando Bermúdez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| | - Leonor Y Vargas Méndez
- Grupo de Investigaciones Ambientales para el Desarrollo Sostenible, Facultad de Química Ambiental, Universidad Santo Tomás A. A. 1076 Bucaramanga Colombia
| | - Arturo René Mendoza Salgado
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
- Laboratorio de Química Orgánica y Biomolecular, CMN, Parque Tecnológico Guatiguara, Universidad Industrial de Santander Km 2 Vía Refugio, A.A. 681011 Bucaramanga Colombia
| | - Carlos Mario Meléndez Gómez
- Grupo de Investigación en Química Orgánica y Biomédica, Programa de Química, Facultad de Ciencias Básicas, Universidad del Atlántico A.A.1890 Barranquilla Colombia
| |
Collapse
|
10
|
Xiao F, Hu Y, Huang H, Xu F, Deng GJ. Base-controlled divergent synthesis of vinyl sulfones from (benzylsulfonyl)benzenes and paraformaldehyde. Org Biomol Chem 2020; 18:3527-3535. [DOI: 10.1039/d0ob00362j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tuneable metal-free protocol for the selective preparation of α-substituted vinyl sulfone and (E)-vinyl sulfone derivatives has been described. The base played an important role in the selectivity control of transformation.
Collapse
Affiliation(s)
- Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan. Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Yangling Hu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan. Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan. Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Fen Xu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan. Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education
- Key Laboratory for Green Organic Synthesis and Application of Hunan. Province
- College of Chemistry
- Xiangtan University
- Xiangtan 411105
| |
Collapse
|
11
|
Santhoshkumar R, Cheng CH. Reaching Green: Heterocycle Synthesis by Transition Metal-Catalyzed C-H Functionalization in Sustainable Medium. Chemistry 2019; 25:9366-9384. [PMID: 31116458 DOI: 10.1002/chem.201901026] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/26/2019] [Indexed: 01/18/2023]
Abstract
Catalytic C-H functionalization has emerged as an efficient alternative to traditional coupling reactions. However, some of these reactions depend on environmentally harmful solvents, weakening the overall green nature of these methods. As organic processes consume large amount of solvents, the use of less harmful solvents enhance the sustainability of these reactions. Herein, we present an overview of transition metal-catalyzed C-H functionalization reactions for the synthesis of heterocycles in sustainable solvents based on CHEM21 solvent selection guide.
Collapse
Affiliation(s)
| | - Chien-Hong Cheng
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
12
|
Chandra D, Dhiman AK, Kumar R, Sharma U. Microwave-Assisted Metal-Free Rapid Synthesis of C4-Arylated Quinolines via Povarov Type Multicomponent Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Devesh Chandra
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| | - Ankit Kumar Dhiman
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| | - Rakesh Kumar
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| | - Upendra Sharma
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| |
Collapse
|
13
|
Li Y, Zhang Q, Xu X, Zhang X, Yang Y, Yi W. One-pot synthesis of 2,4-disubstituted quinolines via silver-catalyzed three-component cascade annulation of amines, alkyne esters and terminal alkynes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Ghorai J, Anbarasan P. Developments in Cp*Co
III
‐Catalyzed C−H Bond Functionalizations. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800452] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jayanta Ghorai
- Department of ChemistryIndian Institute of Technology Madras Chennai – 600036
| | | |
Collapse
|
15
|
Wang Z, Li T, Xing S, Zhu B. Facile and practical synthesis of β-carbolinium salts and γ-carbolinium salts via rhodium-catalyzed three-component reactions. Org Biomol Chem 2019; 16:5021-5026. [PMID: 29946617 DOI: 10.1039/c8ob01182f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A facile and practical [Cp*RhCl2]2-catalyzed three-component reaction between indolyl aldehydes, amines and alkynes involving C-H activation and cyclization has been developed. A series of β-carbolinium salts and γ-carbolinium salts are successfully afforded in good to quantitative yields under mild conditions. This efficient and convergent strategy provides a good choice for constructing the libraries of β-carbolinium salts and γ-carbolinium salts.
Collapse
Affiliation(s)
- Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China.
| | | | | | | |
Collapse
|
16
|
Wan T, Du S, Pi C, Wang Y, Li R, Wu Y, Cui X. Rh(III)‐Catalyzed Regioselective Acetylation of sp
2
C−H Bond Starting from Paraformaldehyde. ChemCatChem 2019. [DOI: 10.1002/cctc.201801512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ting Wan
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| | - Sidong Du
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| | - Chao Pi
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| | - Yong Wang
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| | - Rongbin Li
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| | - Yangjie Wu
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| | - Xiuling Cui
- College of Chemistry and Molecular EngineeringZhengzhou University 75 Daxue Street Zhengzhou, Henan Province 450052 China
| |
Collapse
|
17
|
Wang Z, Li T, Xing S, Zhu B. Highly Efficient Construction of Pentacyclic Carboline-Containing Salts via a [Cp*RhCl2]2-Catalyzed Tandem Reaction. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201800642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry; Tianjin Normal University; Tianjin 300387 People's Republic of China
| | - Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry; Tianjin Normal University; Tianjin 300387 People's Republic of China
| | - Siyang Xing
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry; Tianjin Normal University; Tianjin 300387 People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, Ministry of Education (Tianjin Normal University), College of Chemistry; Tianjin Normal University; Tianjin 300387 People's Republic of China
| |
Collapse
|
18
|
Nainwal LM, Tasneem S, Akhtar W, Verma G, Khan MF, Parvez S, Shaquiquzzaman M, Akhter M, Alam MM. Green recipes to quinoline: A review. Eur J Med Chem 2018; 164:121-170. [PMID: 30594028 DOI: 10.1016/j.ejmech.2018.11.026] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/25/2018] [Accepted: 11/09/2018] [Indexed: 12/25/2022]
Abstract
The quinoline core possesses a vast number of biological activities such as anticancer, antimalarial, antimicrobial, antifungal, antitubercular and antileishmanial. The conventional classical synthetic methods require the use of expensive and harsh conditions such as high temperature. Currently the scientific communities are searching new methodology to eliminate the use of chemicals, solvents and catalysts, which are hazardous to human health as well as to environment. This review provides a concise overview of new dimensions of green chemistry approaches in designing quinoline scaffold that would encourage the researchers towards green chemistry as well as future application of these greener, non-toxic, environment friendly methods in designing quinoline scaffold.
Collapse
Affiliation(s)
- Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sharba Tasneem
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Garima Verma
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
19
|
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d Transition Metals for C-H Activation. Chem Rev 2018; 119:2192-2452. [PMID: 30480438 DOI: 10.1021/acs.chemrev.8b00507] [Citation(s) in RCA: 1482] [Impact Index Per Article: 211.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
C-H activation has surfaced as an increasingly powerful tool for molecular sciences, with notable applications to material sciences, crop protection, drug discovery, and pharmaceutical industries, among others. Despite major advances, the vast majority of these C-H functionalizations required precious 4d or 5d transition metal catalysts. Given the cost-effective and sustainable nature of earth-abundant first row transition metals, the development of less toxic, inexpensive 3d metal catalysts for C-H activation has gained considerable recent momentum as a significantly more environmentally-benign and economically-attractive alternative. Herein, we provide a comprehensive overview on first row transition metal catalysts for C-H activation until summer 2018.
Collapse
Affiliation(s)
- Parthasarathy Gandeepan
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Thomas Müller
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Daniel Zell
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Gianpiero Cera
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Svenja Warratz
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen , Tammannstraße 2 , 37077 Göttingen , Germany
| |
Collapse
|
20
|
Jiang TS, Wang X, Zhang X. Synthesis of quinolines from anilines, acetophenones and DMSO under air. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Phanindrudu M, Wakade SB, Tiwari DK, Likhar PR, Tiwari DK. Transition-Metal-Free Approach for the Synthesis of 4-Aryl-quinolines from Alkynes and Anilines. J Org Chem 2018; 83:9137-9143. [DOI: 10.1021/acs.joc.8b01204] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mandalaparthi Phanindrudu
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110001, India
| | - Sandip Balasaheb Wakade
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110001, India
| | - Dipak Kumar Tiwari
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110001, India
| | - Pravin R. Likhar
- Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110001, India
| | - Dharmendra Kumar Tiwari
- Division of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110001, India
| |
Collapse
|
22
|
|
23
|
Liu Y, Hu Y, Cao Z, Zhan X, Luo W, Liu Q, Guo C. Copper‐Catalyzed Aerobic Oxidative Cyclization of Anilines, Aryl Methyl Ketones and DMSO: Efficient Assembly of 2‐Arylquinolines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800373] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yufeng Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Yuqun Hu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Zhongzhong Cao
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Xi Zhan
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Weiping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| | - Cancheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of EducationHunan University Changsha 410082 People's Republic of China
| |
Collapse
|
24
|
Xu X, Yang Y, Zhang X, Yi W. Direct Synthesis of Quinolines via Co(III)-Catalyzed and DMSO-Involved C–H Activation/Cyclization of Anilines with Alkynes. Org Lett 2018; 20:566-569. [PMID: 29323496 DOI: 10.1021/acs.orglett.7b03673] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuefeng Xu
- College
of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Yurong Yang
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Xu Zhang
- College
of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wei Yi
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|