1
|
Sension RJ, McClain TP, Michocki LB, Miller NA, Alonso-Mori R, Lima FA, Ardana-Lamas F, Biednov M, Chung T, Deb A, Jiang Y, Kaneshiro AK, Khakhulin D, Kubarych KJ, Lamb RM, Meadows JH, Otte F, Sofferman DL, Song S, Uemura Y, van Driel TB, Penner-Hahn JE. Structural Evolution of Photoexcited Methylcobalamin toward a CarH-like Metastable State: Evidence from Time-Resolved X-ray Absorption and X-ray Emission. J Phys Chem B 2024; 128:8131-8144. [PMID: 39150518 DOI: 10.1021/acs.jpcb.4c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
CarH is a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light via formation of a metastable excited state. Aside from AdoCbl bound to CarH, methylcobalamin (MeCbl) is the only other example─to date─of photoexcited cobalamins forming metastable excited states with lifetimes of nanoseconds or longer. The UV-visible spectra of the excited states of MeCbl and AdoCbl bound to CarH are similar. We have used transient Co K-edge X-ray absorption and X-ray emission spectroscopies in conjunction with transient absorption spectroscopy in the UV-visible region to characterize the excited states of MeCbl. These data show that the metastable excited state of MeCbl has a slightly expanded corrin ring and increased electron density on the cobalt, but only small changes in the axial bond lengths.
Collapse
Affiliation(s)
- Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Taylor P McClain
- Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fernando Ardana-Lamas
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Yifeng Jiang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - April K Kaneshiro
- Department of Biological Chemistry, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0600, United States
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Joseph H Meadows
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Danielle L Sofferman
- Program in Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Yohei Uemura
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
- Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Goodwin MJ, Dickenson JC, Ripak A, Deetz AM, McCarthy JS, Meyer GJ, Troian-Gautier L. Factors that Impact Photochemical Cage Escape Yields. Chem Rev 2024; 124:7379-7464. [PMID: 38743869 DOI: 10.1021/acs.chemrev.3c00930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The utilization of visible light to mediate chemical reactions in fluid solutions has applications that range from solar fuel production to medicine and organic synthesis. These reactions are typically initiated by electron transfer between a photoexcited dye molecule (a photosensitizer) and a redox-active quencher to yield radical pairs that are intimately associated within a solvent cage. Many of these radicals undergo rapid thermodynamically favored "geminate" recombination and do not diffuse out of the solvent cage that surrounds them. Those that do escape the cage are useful reagents that may undergo subsequent reactions important to the above-mentioned applications. The cage escape process and the factors that determine the yields remain poorly understood despite decades of research motivated by their practical and fundamental importance. Herein, state-of-the-art research on light-induced electron transfer and cage escape that has appeared since the seminal 1972 review by J. P. Lorand entitled "The Cage Effect" is reviewed. This review also provides some background for those new to the field and discusses the cage escape process of both homolytic bond photodissociation and bimolecular light induced electron transfer reactions. The review concludes with some key goals and directions for future research that promise to elevate this very vibrant field to even greater heights.
Collapse
Affiliation(s)
- Matthew J Goodwin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John C Dickenson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Alexander M Deetz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jackson S McCarthy
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gerald J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Wel Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium
| |
Collapse
|
3
|
Chung T, McClain TP, Alonso-Mori R, Chollet M, Deb A, Garcia-Esparza AT, Huang Ze En J, Lamb RM, Michocki LB, Reinhard M, van Driel TB, Penner-Hahn JE, Sension RJ. Ultrafast X-ray Absorption Spectroscopy Reveals Excited-State Dynamics of B 12 Coenzymes Controlled by the Axial Base. J Phys Chem B 2024; 128:1428-1437. [PMID: 38301132 DOI: 10.1021/acs.jpcb.3c07779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Polarized time-resolved X-ray absorption spectroscopy at the Co K-edge is used to probe the excited-state dynamics and photolysis of base-off methylcobalamin and the excited-state structure of base-off adenosylcobalamin. For both molecules, the final excited-state minimum shows evidence for an expansion of the cavity around the Co ion by ca. 0.04 to 0.05 Å. The 5-coordinate base-off cob(II)alamin that is formed following photodissociation has a structure similar to that of the 5-coordinate base-on cob(II)alamin, with a ring expansion of 0.03 to 0.04 Å and a contraction of the lower axial bond length relative to that in the 6-coordinate ground state. These data provide insights into the role of the lower axial ligand in modulating the reactivity of B12 coenzymes.
Collapse
Affiliation(s)
- Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Taylor P McClain
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Angel T Garcia-Esparza
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025-7015, United States
| | - Joel Huang Ze En
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
| | - Marco Reinhard
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025-7015, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
- Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 481091055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
4
|
Camacho IS, Wall E, Sazanovich IV, Gozzard E, Towrie M, Hunt NT, Hay S, Jones AR. Tuning of B 12 photochemistry in the CarH photoreceptor to avoid radical photoproducts. Chem Commun (Camb) 2023; 59:13014-13017. [PMID: 37831010 DOI: 10.1039/d3cc03900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Time-resolved infrared spectroscopy reveals the flow of electron density through coenzyme B12 in the light-activated, bacterial transcriptional regulator, CarH. The protein stabilises a series of charge transfer states that result in a photoresponse that avoids reactive, and potentially damaging, radical photoproducts.
Collapse
Affiliation(s)
- Ines S Camacho
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| | - Emma Wall
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Igor V Sazanovich
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Emma Gozzard
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Mike Towrie
- Central Laser Facility, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, UK
| | - Neil T Hunt
- Department of Chemistry and York Biomedical Research Institute, University of York, UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, UK
| | - Alex R Jones
- Biometrology, Chemical and Biological Sciences Department, National Physical Laboratory, Teddington, Middlesex, UK.
| |
Collapse
|
5
|
Genchi G, Lauria G, Catalano A, Carocci A, Sinicropi MS. Prevalence of Cobalt in the Environment and Its Role in Biological Processes. BIOLOGY 2023; 12:1335. [PMID: 37887045 PMCID: PMC10604320 DOI: 10.3390/biology12101335] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/08/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023]
Abstract
Cobalt (Co) is an essential trace element for humans and other animals, but high doses can be harmful to human health. It is present in some foods such as green vegetables, various spices, meat, milk products, seafood, and eggs, and in drinking water. Co is necessary for the metabolism of human beings and animals due to its key role in the formation of vitamin B12, also known as cobalamin, the biological reservoir of Co. In high concentrations, Co may cause some health issues such as vomiting, nausea, diarrhea, bleeding, low blood pressure, heart diseases, thyroid damage, hair loss, bone defects, and the inhibition of some enzyme activities. Conversely, Co deficiency can lead to anorexia, chronic swelling, and detrimental anemia. Co nanoparticles have different and various biomedical applications thanks to their antioxidant, antimicrobial, anticancer, and antidiabetic properties. In addition, Co and cobalt oxide nanoparticles can be used in lithium-ion batteries, as a catalyst, a carrier for targeted drug delivery, a gas sensor, an electronic thin film, and in energy storage. Accumulation of Co in agriculture and humans, due to natural and anthropogenic factors, represents a global problem affecting water quality and human and animal health. Besides the common chelating agents used for Co intoxication, phytoremediation is an interesting environmental technology for cleaning up soil contaminated with Co. The occurrence of Co in the environment is discussed and its involvement in biological processes is underlined. Toxicological aspects related to Co are also examined in this review.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (G.G.); (G.L.); (M.S.S.)
| |
Collapse
|
6
|
Abstract
Radical S-adenosylmethionine (SAM) enzymes use a site-differentiated [4Fe-4S] cluster and SAM to initiate radical reactions through liberation of the 5'-deoxyadenosyl (5'-dAdo•) radical. They form the largest enzyme superfamily, with more than 700,000 unique sequences currently, and their numbers continue to grow as a result of ongoing bioinformatics efforts. The range of extremely diverse, highly regio- and stereo-specific reactions known to be catalyzed by radical SAM superfamily members is remarkable. The common mechanism of radical initiation in the radical SAM superfamily is the focus of this review. Most surprising is the presence of an organometallic intermediate, Ω, exhibiting an Fe-C5'-adenosyl bond. Regioselective reductive cleavage of the SAM S-C5' bond produces 5'-dAdo• to form Ω, with the regioselectivity originating in the Jahn-Teller effect. Ω liberates the free 5'-dAdo• as the catalytically active intermediate through homolysis of the Fe-C5' bond, in analogy to Co-C5' bond homolysis in B12, which was once viewed as biology's choice of radical generator.
Collapse
Affiliation(s)
- Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois, USA
| | - William E Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA;
| | - Joan B Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA;
| |
Collapse
|
7
|
Sension RJ, McClain TP, Lamb RM, Alonso-Mori R, Lima FA, Ardana-Lamas F, Biednov M, Chollet M, Chung T, Deb A, Dewan PA, Gee LB, Huang Ze En J, Jiang Y, Khakhulin D, Li J, Michocki LB, Miller NA, Otte F, Uemura Y, van Driel TB, Penner-Hahn JE. Watching Excited State Dynamics with Optical and X-ray Probes: The Excited State Dynamics of Aquocobalamin and Hydroxocobalamin. J Am Chem Soc 2023. [PMID: 37327324 DOI: 10.1021/jacs.3c04099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kβ and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.
Collapse
Affiliation(s)
- Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Taylor P McClain
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ryan M Lamb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fernando Ardana-Lamas
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Taewon Chung
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Paul A Dewan
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Leland B Gee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Joel Huang Ze En
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Yifeng Jiang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Jianhao Li
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Yohei Uemura
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, University of Michigan, 930 N University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
8
|
Marques HM. The inorganic chemistry of the cobalt corrinoids - an update. J Inorg Biochem 2023; 242:112154. [PMID: 36871417 DOI: 10.1016/j.jinorgbio.2023.112154] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The inorganic chemistry of the cobalt corrinoids, derivatives of vitamin B12, is reviewed, with particular emphasis on equilibrium constants for, and kinetics of, their axial ligand substitution reactions. The role the corrin ligand plays in controlling and modifying the properties of the metal ion is emphasised. Other aspects of the chemistry of these compounds, including their structure, corrinoid complexes with metals other than cobalt, the redox chemistry of the cobalt corrinoids and their chemical redox reactions, and their photochemistry are discussed. Their role as catalysts in non-biological reactions and aspects of their organometallic chemistry are briefly mentioned. Particular mention is made of the role that computational methods - and especially DFT calculations - have played in developing our understanding of the inorganic chemistry of these compounds. A brief overview of the biological chemistry of the B12-dependent enzymes is also given for the reader's convenience.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa.
| |
Collapse
|
9
|
Mantareva V, Iliev I, Sulikovska I, Durmuş M, Angelov I. Cobalamin (Vitamin B12) in Anticancer Photodynamic Therapy with Zn(II) Phthalocyanines. Int J Mol Sci 2023; 24:ijms24054400. [PMID: 36901830 PMCID: PMC10002512 DOI: 10.3390/ijms24054400] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Photodynamic therapy (PDT) is a curative method, firstly developed for cancer therapy with fast response after treatment and minimum side effects. Two zinc(II) phthalocyanines (3ZnPc and 4ZnPc) and a hydroxycobalamin (Cbl) were investigated on two breast cancer cell lines (MDA-MB-231 and MCF-7) in comparison to normal cell lines (MCF-10 and BALB 3T3). The novelty of this study is a complex of non-peripherally methylpyridiloxy substituted Zn(II) phthalocyanine (3ZnPc) and the evaluation of the effects on different cell lines due to the addition of second porphyrinoid such as Cbl. The results showed the complete photocytotoxicity of both ZnPc-complexes at lower concentrations (<0.1 μM) for 3ZnPc. The addition of Cbl caused a higher phototoxicity of 3ZnPc at one order lower concentrations (<0.01 μM) with a diminishment of the dark toxicity. Moreover, it was determined that an increase of the selectivity index of 3ZnPc, from 0.66 (MCF-7) and 0.89 (MDA-MB-231) to 1.56 and 2.31, occurred by the addition of Cbl upon exposure with a LED 660 nm (50 J/cm2). The study suggested that the addition of Cbl can minimize the dark toxicity and improve the efficiency of the phthalocyanines for anticancer PDT applications.
Collapse
Affiliation(s)
- Vanya Mantareva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113 Sofia, Bulgaria
- Correspondence: or ; Tel.: +359-9606-181
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bld. 25, 1113 Sofia, Bulgaria
| | - Inna Sulikovska
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Bld. 25, 1113 Sofia, Bulgaria
| | - Mahmut Durmuş
- Department of Chemistry, Gebze Technical University, Gebze 41400, Turkey
| | - Ivan Angelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Bld. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
10
|
Temova Rakuša Ž, Roškar R, Hickey N, Geremia S. Vitamin B 12 in Foods, Food Supplements, and Medicines-A Review of Its Role and Properties with a Focus on Its Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010240. [PMID: 36615431 PMCID: PMC9822362 DOI: 10.3390/molecules28010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Vitamin B12, also known as the anti-pernicious anemia factor, is an essential micronutrient totally dependent on dietary sources that is commonly integrated with food supplements. Four vitamin B12 forms-cyanocobalamin, hydroxocobalamin, 5'-deoxyadenosylcobalamin, and methylcobalamin-are currently used for supplementation and, here, we provide an overview of their biochemical role, bioavailability, and efficacy in different dosage forms. Since the effective quantity of vitamin B12 depends on the stability of the different forms, we further provide a review of their main reactivity and stability under exposure to various environmental factors (e.g., temperature, pH, light) and the presence of some typical interacting compounds (oxidants, reductants, and other water-soluble vitamins). Further, we explore how the manufacturing process and storage affect B12 stability in foods, food supplements, and medicines and provide a summary of the data published to date on the content-related quality of vitamin B12 products on the market. We also provide an overview of the approaches toward their stabilization, including minimization of the destabilizing factors, addition of proper stabilizers, or application of some (innovative) technological processes that could be implemented and contribute to the production of high-quality vitamin B12 products.
Collapse
Affiliation(s)
| | - Robert Roškar
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, Centre of Excellence in Biocrystallography, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
- Correspondence:
| |
Collapse
|
11
|
Jia S, Sletten EM. Spatiotemporal Control of Biology: Synthetic Photochemistry Toolbox with Far-Red and Near-Infrared Light. ACS Chem Biol 2022; 17:3255-3269. [PMID: 34516095 PMCID: PMC8918031 DOI: 10.1021/acschembio.1c00518] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complex network of naturally occurring biological pathways motivates the development of new synthetic molecules to perturb and/or detect these processes for fundamental research and clinical applications. In this context, photochemical tools have emerged as an approach to control the activity of drug or probe molecules at high temporal and spatial resolutions. Traditional photochemical tools, particularly photolabile protecting groups (photocages) and photoswitches, rely on high-energy UV light that is only applicable to cells or transparent model animals. More recently, such designs have evolved into the visible and near-infrared regions with deeper tissue penetration, enabling photocontrol to study biology in tissue and model animal contexts. This Review highlights recent developments in synthetic far-red and near-infrared photocages and photoswitches and their current and potential applications at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
12
|
Liu A, Cai C, Wang Z, Wang B, He J, Xie Y, Deng H, Liu S, Zeng S, Yin Z, Wang M. Inductively coupled plasma mass spectrometry based urine metallome to construct clinical decision models for autism spectrum disorder. METALLOMICS : INTEGRATED BIOMETAL SCIENCE 2022; 14:6849992. [PMID: 36442146 DOI: 10.1093/mtomcs/mfac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The global prevalence of autism spectrum disorder (ASD) is on the rise, and high levels of exposure to toxic heavy metals may be associated with this increase. Urine analysis is a noninvasive method for investigating the accumulation and excretion of heavy metals. The aim of this study was to identify ASD-associated urinary metal markers. METHODS Overall, 70 children with ASD and 71 children with typical development (TD) were enrolled in this retrospective case-control study. In this metallomics investigation, inductively coupled plasma mass spectrometry was performed to obtain the urine profile of 27 metals. RESULTS Children with ASD could be distinguished from children with TD based on the urine metal profile, with ASD children showing an increased urine metal Shannon diversity. A metallome-wide association analysis was used to identify seven ASD-related metals in urine, with cobalt, aluminum, selenium, and lithium significantly higher, and manganese, mercury, and titanium significantly lower in the urine of children with ASD than in children with TD. The least absolute shrinkage and selection operator (LASSO) machine learning method was used to rank the seven urine metals in terms of their effect on ASD. On the basis of these seven urine metals, we constructed a LASSO regression model for ASD classification and found an area under the receiver operating characteristic curve of 0.913. We also constructed a clinical prediction model for ASD based on the seven metals that were different in the urine of children with ASD and found that the model would be useful for the clinical prediction of ASD risk. CONCLUSIONS The study findings suggest that altered urine metal concentrations may be an important risk factor for ASD, and we recommend further exploration of the mechanisms and clinical treatment measures for such alterations.
Collapse
Affiliation(s)
- Aiping Liu
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Zhangxing Wang
- Division of Neonatology, Shenzhen Longhua People's Hospital, Guangdong 518109, China
| | - Bin Wang
- The department of Dermatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Juntao He
- Shenzhen Prevention and Treatment Center for Occupational Diseases (Physical Testing & Chemical Analysis Department), Shenzhen 518020, China
| | - Yanhong Xie
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Honglian Deng
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Shaozhi Liu
- T he department of Laboratory, Baoan Public Health Service Center of Shenzhen, Baoan District, Shenzhen, 518108, China
| | - Shujuan Zeng
- Division of Neonatology, Longgang District Central Hospital of Shenzhen, Guangdong 518116, China
| | - Zhaoqing Yin
- Division of Pediatrics, The People's Hospital of Dehong Autonomous Prefecture, Dehong Hospital of Kunming Medical University, Mangshi, Yunnan 678400, China
| | - Mingbang Wang
- Microbiome Therapy Center, South China Hospital, Health Science Center, Shenzhen University, Shenzhen 518116, China.,Shanghai Key Laboratory of Birth Defects, Division of Neonatology, Children's Hospital of Fudan University, National Center for Children's Health, Shanghai 201102, China
| |
Collapse
|
13
|
Juliá F. Ligand‐to‐Metal Charge Transfer (LMCT) Photochemistry at 3d‐Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabio Juliá
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry Av Paisos Catalans, 16 43007 Tarragona SPAIN
| |
Collapse
|
14
|
Toda MJ, Ghosh AP, Parmar S, Kozlowski PM. Computational investigations of B 12-dependent enzymatic reactions. Methods Enzymol 2022; 669:119-150. [PMID: 35644169 DOI: 10.1016/bs.mie.2022.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nature employs two biologically active forms of vitamin B12, adenosylcobalamin (or coenzyme B12) and methylcobalamin, as cofactors in molecular transformations both in bacteria and mammals. Computational chemistry, guided by experimental data, has been used to explore fundamental characteristics of these enzymatic reactions. In particular, the quantum mechanics/molecular mechanics (QM/MM) method has proven to be a powerful tool in elucidating important characteristics of B12-dependent enzymatic reactions. Herein, we will present a brief tutorial in conducting QM/MM calculations for B12 enzymatic reactions. We will summarize recent contributions that target the use of QM/MM calculations in both photochemical and enzymatic reactions including AdoCbl-dependent ethanolamine ammonia lyase, glutamate mutase, and photoreceptor CarH.
Collapse
Affiliation(s)
- Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Arghya P Ghosh
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Saurav Parmar
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
15
|
Investigating radical pair reaction dynamics of B 12 coenzymes 2: Time-resolved electron paramagnetic resonance spectroscopy. Methods Enzymol 2022; 669:283-301. [PMID: 35644175 DOI: 10.1016/bs.mie.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemistry of B12 coenzymes is highly sensitive to the nature of their upper axial ligand and can be further tuned by their environment. Methylcobalamin, for example, generates RPs photochemically but undergoes non-radical biochemistry when bound to its dependent enzymes. Owing to the transient nature of the reaction intermediates, it remains a challenge to investigate how their environment controls reactivity. Here, we describe how to use time-resolved electron paramagnetic spectroscopy to directly monitor the generation and evolution of transient radicals that result from the photolysis of a B12 coenzyme. This method produces evolving, spin-polarized spectra that are rich in mechanistic detail.
Collapse
|
16
|
Hughes JA, Hardman SJO, Lukinović V, Woodward JR, Jones AR. Investigating radical pair reaction dynamics of B 12 coenzymes 1: Transient absorption spectroscopy and magnetic field effects. Methods Enzymol 2022; 669:261-281. [PMID: 35644174 DOI: 10.1016/bs.mie.2021.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B12 coenzymes are vital to healthy biological function across nature. They undergo radical chemistry in a variety of contexts, where spin-correlated radical pairs can be generated both thermally and photochemically. Owing to the unusual magnetic properties of B12 radical pairs, however, most of the reaction and spin dynamics occur on a timescale (picoseconds-nanoseconds) that cannot be resolved by most measurement techniques. Here, we describe a method that combines femtosecond transient absorption spectroscopy with magnetic field exposure, which enables the direct scrutiny of such rapid processes. This approach should provide a means by which to investigate the apparently profound effect protein environments have on the generation and reactivity of B12 radical pairs.
Collapse
Affiliation(s)
- Joanna A Hughes
- Laboratory of Ultrafast Spectroscopy, ISIC, and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | | | | | - Alex R Jones
- Biometrology, Department of Chemical and Biological Sciences, National Physical Laboratory, Middlesex, United Kingdom.
| |
Collapse
|
17
|
Padmanabhan S, Pérez-Castaño R, Osete-Alcaraz L, Polanco MC, Elías-Arnanz M. Vitamin B 12 photoreceptors. VITAMINS AND HORMONES 2022; 119:149-184. [PMID: 35337618 DOI: 10.1016/bs.vh.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Photoreceptor proteins enable living organisms to sense light and transduce this signal into biochemical outputs to elicit appropriate cellular responses. Their light sensing is typically mediated by covalently or noncovalently bound molecules called chromophores, which absorb light of specific wavelengths and modulate protein structure and biological activity. Known photoreceptors have been classified into about ten families based on the chromophore and its associated photosensory domain in the protein. One widespread photoreceptor family uses coenzyme B12 or 5'-deoxyadenosylcobalamin, a biological form of vitamin B12, to sense ultraviolet, blue, or green light, and its discovery revealed both a new type of photoreceptor and a novel functional facet of this vitamin, best known as an enzyme cofactor. Large strides have been made in our understanding of how these B12-based photoreceptors function, high-resolution structural descriptions of their functional states are available, as are details of their unusual photochemistry. Additionally, they have inspired notable applications in optogenetics/optobiochemistry and synthetic biology. Here, we provide an overview of what is currently known about these B12-based photoreceptors, their discovery, distribution, molecular mechanism of action, and the structural and photochemical basis of how they orchestrate signal transduction and gene regulation, and how they have been used to engineer optogenetic control of protein activities in living cells.
Collapse
Affiliation(s)
- S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain.
| | - Ricardo Pérez-Castaño
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Lucía Osete-Alcaraz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - María Carmen Polanco
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQFR-CSIC), Facultad de Biología, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
18
|
Ghosh AP, Lodowski P, Kozlowski PM. Aerobic photolysis of methylcobalamin: unraveling the photoreaction mechanism. Phys Chem Chem Phys 2022; 24:6093-6106. [PMID: 35212341 DOI: 10.1039/d1cp02013g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photo-reactivity of cobalamins (Cbls) is influenced by the nature of axial ligands and the cofactor's environment. While the biologically active forms of Cbls with alkyl axial ligands, such as methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are considered to be photolytically active, in contrast, the non-alkyl Cbls are photostable. In addition to these, the photolytic properties of Cbls can also be modulated in the presence of molecular oxygen, i.e., under aerobic conditions. Herein, the photoreaction of the MeCbl in the presence of oxygen has been explored using density functional theory (DFT) and time-dependent DFT (TD-DFT). The first stage of the aerobic photoreaction is the activation of the Co-C bond and the formation of the ligand field (LF) electronic state through the displacement of axial bonds. Once the photoreaction reaches the LF excited state, three processes can occur: namely the formation of OO-CH3 through the reaction of CH3 with molecular oxygen, de-activation of the {Im⋯[CoII(corrin)]⋯CH3}+ sub-system from the LF electronic state by changing the electronic configuration from (dyz)1(dz2)2 to (dyz)2(dz2)1 and the formation of the deactivation complex (DC) complex via the recombination of OO-CH3 species with the de-excited [CoII(corrin)] system. In the proposed mechanism, the deactivation of the [CoII(corrin)] subsystem may coexist with the formation of OO-CH3, followed by immediate relaxation of the subsystems in the ground state. Moreover, the formation of the OO-CH3 species followed by the formation of the {[CoIII(corrin)]-OO-CH3}+ complex stabilizes the system compared to the reactant complex.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
19
|
Ghosh AP, Toda MJ, Kozlowski PM. Photolytic properties of B 12-dependent enzymes: A theoretical perspective. VITAMINS AND HORMONES 2022; 119:185-220. [PMID: 35337619 DOI: 10.1016/bs.vh.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically active vitamin B12 derivates, methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl), are ubiquitous organometallic cofactors. In addition to their key roles in enzymatic catalysis, B12 cofactors have complex photolytic properties which have been the target of experimental and theoretical studies. With the recent discovery of B12-dependent photoreceptors, there is an increased need to elucidate the underlying photochemical mechanisms of these systems. This book chapter summarizes the photolytic properties of MeCbl- and AdoCbl-dependent enzymes with particular emphasis on the effect of the environment of the cofactor on the excited state processes. These systems include isolated MeCbl and AdoCbl as well as the enzymes, ethanolamine ammonia-lyase (EAL), glutamate mutase (GLM), methionine synthase (MetH), and photoreceptor CarH. Central to determining the photodissociation mechanism of each system is the analysis of the lowest singlet excited state (S1) potential energy surface (PES). Time-dependent density functional theory (TD-DFT), employing BP86/TZVPP, is widely used to construct such PESs. Regardless of the environment, the topology of the S1 PES of AdoCbl or MeCbl is marked by characteristic features, namely the metal-to-ligand charge transfer (MLCT) and ligand field (LF) regions. Conversely, the relative energetics of these electronic states are affected by the environment. Applications and outlooks for Cbl photochemistry are also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Megan J Toda
- Department of Chemistry, University of Louisville, Louisville, KY, United States
| | - Pawel M Kozlowski
- Department of Chemistry, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
20
|
Esezobor OZ, Zeng W, Niederegger L, Grübel M, Hess CR. Co-Mabiq Flies Solo: Light-Driven Markovnikov-Selective C- and N-Alkylation of Indoles and Indazoles without a Cocatalyst. J Am Chem Soc 2022; 144:2994-3004. [PMID: 35157421 DOI: 10.1021/jacs.1c10930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indoles and indazoles are common moieties in pharmaceuticals and naturally occurring bioactive compounds. The development of light-driven methods using earth-abundant transition-metal catalysts offers an attractive route for functionalization of such compounds. Herein, we report a visible-light-induced method for the C3- and N-alkylation of indoles and indazoles with styrenes, catalyzed by Co complexes based on the macrocyclic Mabiq ligand (Mabiq = 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N6). The photochemical behavior of two CoIII catalysts was examined: Co(Mabiq)Cl2 and the newly synthesized Co(MabiqBr)Cl2, which contains the Br-modified ligand. Both complexes undergo visible-light-induced homolysis that is significant to their activity but exhibit differences in reactivity. The alkylation reactions are regioselective, furnishing the alkylated indole and indazole products in a Markovnikov fashion with excellent yields of up to 96% across a broad range of substrates. Notably, in contrast to dual-transition-metal and photoredox-catalyzed cross-coupling reactions, our studies reveal that the Co complex plays a dual role─as a photosensitizer and catalytically active metal center with the Mabiq ligand offering regiocontrol.
Collapse
Affiliation(s)
- Oaikhena Zekeri Esezobor
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Wenyi Zeng
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Grübel
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Corinna R Hess
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
21
|
Wang H, Li F, Xue J, Li Y, Li J. Association of blood cobalt concentrations with dyslipidemia, hypertension, and diabetes in a US population: A cross-sectional study. Medicine (Baltimore) 2022; 101:e28568. [PMID: 35029227 PMCID: PMC8757996 DOI: 10.1097/md.0000000000028568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
Various heavy metal elements in the human body have been reported to be associated with dyslipidemia, hypertension, and diabetes. The role of cobalt in these conditions is unclear. The current study aimed to investigate the association of blood cobalt concentrations with dyslipidemia, hypertension, and diabetes.Using the data collected from the National Health and Nutrition Examination Survey (2015-2018), we performed logistic regression to explore the association of blood cobalt concentrations with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides, hypertension, and diabetes.A total of 6866 adults were included in this study. Participants with higher blood cobalt levels appeared to be older and have a lower body mass index and, were more likely to be female (P for trend < .05). After fully adjusting for demographic characteristics (Model 2), compared with the lowest quartile, the highest quartile of blood cobalt concentrations had lower odds ratios (ORs) for elevated TC [OR: 0.62, 95% confidential interval (CI): 0.53 to 0.72, P < .001], elevated LDL-C (OR: 0.65, 95% CI: 0.53-0.80, P < .001) and low HDL-C (OR: 0.81, 95% CI: 0.69-0.96, P = .013). The adjusted ORs for elevated TC, elevated LDL-C and low HDL-C were negatively correlated with increased blood cobalt concentrations (P for trend < .05). The adjusted ORs for hypertension and diabetes were not associated with blood cobalt concentrations (P > .05 and P for trend > .05).In conclusion, higher blood cobalt concentrations were associated with a lower risk of dyslipidemia. However, blood cobalt concentrations were not associated with the risk of hypertension or diabetes.
Collapse
Affiliation(s)
- Hongxin Wang
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Feng Li
- Department of ENT (Ear-Nose-Throat), Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jianghua Xue
- Medical Imaging Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanshuang Li
- Department of Neurology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neurology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jiyu Li
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
22
|
Cooper CL, Panitz N, Edwards TA, Goyal P. Role of the CarH photoreceptor protein environment in the modulation of cobalamin photochemistry. Biophys J 2021; 120:3688-3696. [PMID: 34310939 DOI: 10.1016/j.bpj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/17/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
The photochemistry of cobalamins has recently been found to have biological importance, with the discovery of bacterial photoreceptor proteins, such as CarH and AerR. CarH and AerR, are involved in the light regulation of carotenoid biosynthesis and bacteriochlorophyll biosynthesis, respectively, in bacteria. Experimental transient absorption spectroscopic studies have indicated unusual photochemical behavior of 5'-deoxy-5'-adenosylcobalamin (AdoCbl) in CarH, with excited-state charge separation between cobalt and adenosyl and possible heterolytic cleavage of the Co-adenosyl bond, as opposed to the homolytic cleavage observed in aqueous solution and in many AdoCbl-based enzymes. We employ molecular dynamics and hybrid quantum mechanical/molecular mechanical calculations to obtain a microscopic understanding of the modulation of the excited electronic states of AdoCbl by the CarH protein environment, in contrast to aqueous solution and AdoCbl-based enzymes. Our results indicate a progressive stabilization of the electronic states involving charge transfer (CT) from cobalt/corrin to adenine on changing the environment from gas phase to water to solvated CarH. The solvent exposure of the adenosyl ligand in CarH, the π-stacking interaction between a tryptophan and the adenine moiety, and the hydrogen-bonding interaction between a glutamate and the lower axial ligand of cobalt are found to contribute to the stabilization of the states involving CT to adenine. The combination of these three factors, the latter two of which can be experimentally tested via mutagenesis studies, is absent in an aqueous solvent environment and in AdoCbl-based enzymes. The favored CT from metal and/or corrin to adenine in CarH may promote heterolytic cleavage of the cobalt-adenosyl bond proposed by experimental studies. Overall, this work provides novel, to our knowledge, physical insights into the mechanism of CarH function and directions for future experimental investigations. The fundamental understanding of the mechanism of CarH functioning will serve the development of optogenetic tools based on the new class of B12-dependent photoreceptors.
Collapse
Affiliation(s)
- Courtney L Cooper
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Naftali Panitz
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York
| | - Travyse A Edwards
- Department of Physics, State University of New York at Binghamton, Binghamton, New York
| | - Puja Goyal
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York.
| |
Collapse
|
23
|
Camacho IS, Black R, Heyes DJ, Johannissen LO, Ramakers LAI, Bellina B, Barran PE, Hay S, Jones AR. Interplay between chromophore binding and domain assembly by the B 12-dependent photoreceptor protein, CarH. Chem Sci 2021; 12:8333-8341. [PMID: 34221314 PMCID: PMC8221060 DOI: 10.1039/d1sc00522g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Organisms across the natural world respond to their environment through the action of photoreceptor proteins. The vitamin B12-dependent photoreceptor, CarH, is a bacterial transcriptional regulator that controls the biosynthesis of carotenoids to protect against photo-oxidative stress. The binding of B12 to CarH monomers in the dark results in the formation of a homo-tetramer that complexes with DNA; B12 photochemistry results in tetramer dissociation, releasing DNA for transcription. Although the details of the response of CarH to light are beginning to emerge, the biophysical mechanism of B12-binding in the dark and how this drives domain assembly is poorly understood. Here – using a combination of molecular dynamics simulations, native ion mobility mass spectrometry and time-resolved spectroscopy – we reveal a complex picture that varies depending on the availability of B12. When B12 is in excess, its binding drives structural changes in CarH monomers that result in the formation of head-to-tail dimers. The structural changes that accompany these steps mean that they are rate-limiting. The dimers then rapidly combine to form tetramers. Strikingly, when B12 is scarcer, as is likely in nature, tetramers with native-like structures can form without a B12 complement to each monomer, with only one apparently required per head-to-tail dimer. We thus show how a bulky chromophore such as B12 shapes protein/protein interactions and in turn function, and how a protein can adapt to a sub-optimal availability of resources. This nuanced picture should help guide the engineering of B12-dependent photoreceptors as light-activated tools for biomedical applications. The function of the bacterial photoreceptor protein, CarH, is regulated by changes to its oligomeric state. Camacho et al. detail how binding of vitamin B12 in the dark drives assembly of the protein tetramer that in turn blocks transcription.![]()
Collapse
Affiliation(s)
- Inês S Camacho
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Rachelle Black
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Derren J Heyes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Linus O Johannissen
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Lennart A I Ramakers
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Bruno Bellina
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Perdita E Barran
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Sam Hay
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alex R Jones
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester 131 Princess Street Manchester M1 7DN UK .,Photon Science Institute, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
24
|
Qadeer K, Arsalan A, Ahmad I, Fatima K, Anwar Z, Ahmed S, Khattak SUR, Mahmud S. Photochemical interaction of cyanocobalamin and hydroxocobalamin with cysteine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Narayan OP, Mu X, Hasturk O, Kaplan DL. Dynamically tunable light responsive silk-elastin-like proteins. Acta Biomater 2021; 121:214-223. [PMID: 33326881 PMCID: PMC7856074 DOI: 10.1016/j.actbio.2020.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Dynamically tunable biomaterials are of particular interest in the field of biomedical engineering because of the potential utility for shape-change materials, drug and cell delivery and tissue regeneration. Stimuli-responsive proteins formed into hydrogels are potential candidates for such systems, due to the genetic tailorability and control over structure-function relationships. Here we report the synthesis of genetically engineered Silk-Elastin-Like Protein (SELP) photoresponsive hydrogels. Polymerization of the SELPs and monomeric adenosylcobalamin (AdoB12)-dependent photoreceptor C-terminal adenosylcobalamin binding domain (CarHC) was achieved using genetically encoded SpyTag-SpyCatcher peptide-protein pairs under mild physiological conditions. The hydrogels exhibited a partial collapse of the crosslinked molecular network with both decreased loss and storage moduli upon exposure to visible light. The materials were also evaluated for cytotoxicity and the encapsulation and release of L929 murine fibroblasts from 3D cultures. The design of these photo-responsible proteins provides new stimuli-responsive SELP-CarHC hydrogels for dynamically tunable protein-based materials.
Collapse
Affiliation(s)
- Om Prakash Narayan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Onur Hasturk
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
26
|
Schneider N, Chatelle CV, Ochoa-Fernandez R, Zurbriggen MD, Weber W. Green Light-Controlled Gene Switch for Mammalian and Plant Cells. Methods Mol Biol 2021; 2312:89-107. [PMID: 34228286 DOI: 10.1007/978-1-0716-1441-9_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quest to engineer increasingly complex synthetic gene networks in mammalian and plant cells requires an ever-growing portfolio of orthogonal gene expression systems. To control gene expression, light is of particular interest due to high spatial and temporal resolution, ease of dosage and simplicity of administration, enabling increasingly sophisticated man-machine interfaces. However, the majority of applied optogenetic switches are crowded in the UVB, blue and red/far-red light parts of the optical spectrum, limiting the number of simultaneously applicable stimuli. This problem is even more pertinent in plant cells, in which UV-A/B, blue, and red light-responsive photoreceptors are already expressed endogenously. To alleviate these challenges, we developed a green light responsive gene switch, based on the light-sensitive bacterial transcription factor CarH from Thermus thermophilus and its cognate DNA operator sequence CarO. The switch is characterized by high reversibility, high transgene expression levels, and low leakiness, leading to up to 350-fold induction ratios in mammalian cells. In this chapter, we describe the essential steps to build functional components of the green light-regulated gene switch, followed by detailed protocols to quantify transgene expression over time in mammalian cells. In addition, we expand this protocol with a description of how the optogenetic switch can be implemented in protoplasts of A. thaliana.
Collapse
Affiliation(s)
- Nils Schneider
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Celonic AG, Basel, Switzerland
| | - Claire V Chatelle
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.,DSM Nutritional Products, Kaiseraugst, Switzerland
| | - Rocio Ochoa-Fernandez
- Institute of Synthetic Biology and iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.,CEPLAS-Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS and Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
27
|
Abstract
More than four decades have passed since the first example of a light-activated (caged) compound was described. In the intervening years, a large number of light-responsive derivatives have been reported, several of which have found utility under a variety of in vitro conditions using cells and tissues. Light-triggered bioactivity furnishes spatial and temporal control, and offers the possibility of precision dosing and orthogonal communication with different biomolecules. These inherent attributes of light have been advocated as advantageous for the delivery and/or activation of drugs at diseased sites for a variety of indications. However, the tissue penetrance of light is profoundly wavelength-dependent. Only recently have phototherapeutics that are photoresponsive in the optical window of tissue (600-900 nm) been described. This Review highlights these recent discoveries, along with their limitations and clinical opportunities. In addition, we describe preliminary in vivo studies of prospective phototherapeutics, with an emphasis on the path that remains to be navigated in order to translate light-activated drugs into clinically useful therapeutics. Finally, the unique attributes of phototherapeutics is highlighted by discussing several potential disease applications.
Collapse
|
28
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
29
|
Miller NA, Kaneshiro AK, Konar A, Alonso-Mori R, Britz A, Deb A, Glownia JM, Koralek JD, Mallik L, Meadows JH, Michocki LB, van Driel TB, Koutmos M, Padmanabhan S, Elías-Arnanz M, Kubarych KJ, Marsh ENG, Penner-Hahn JE, Sension RJ. The Photoactive Excited State of the B 12-Based Photoreceptor CarH. J Phys Chem B 2020; 124:10732-10738. [PMID: 33174757 DOI: 10.1021/acs.jpcb.0c09428] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have used transient absorption spectroscopy in the UV-visible and X-ray regions to characterize the excited state of CarH, a protein photoreceptor that uses a form of B12, adenosylcobalamin (AdoCbl), to sense light. With visible excitation, a nanosecond-lifetime photoactive excited state is formed with unit quantum yield. The time-resolved X-ray absorption near edge structure difference spectrum of this state demonstrates that the excited state of AdoCbl in CarH undergoes only modest structural expansion around the central cobalt, a behavior similar to that observed for methylcobalamin rather than for AdoCbl free in solution. We propose a new mechanism for CarH photoreactivity involving formation of a triplet excited state. This allows the sensor to operate with high quantum efficiency and without formation of potentially dangerous side products. By stabilizing the excited electronic state, CarH controls reactivity of AdoCbl and enables slow reactions that yield nonreactive products and bypass bond homolysis and reactive radical species formation.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - April K Kaneshiro
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, Michigan 48109-0600, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Alexander Britz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States.,Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aniruddha Deb
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Jake D Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Leena Mallik
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Joseph H Meadows
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Lindsay B Michocki
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - S Padmanabhan
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid 28006, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Kevin J Kubarych
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Department of Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
30
|
Salerno EV, Miller NA, Konar A, Li Y, Kieninger C, Kräutler B, Sension RJ. Ultrafast Excited State Dynamics and Fluorescence from Vitamin B 12 and Organometallic [Co]-C≡C-R Cobalamins. J Phys Chem B 2020; 124:6651-6656. [PMID: 32692181 PMCID: PMC7397374 DOI: 10.1021/acs.jpcb.0c04886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Cobalamins are cobalt-centered
cyclic tetrapyrrole ring-based molecules
that provide cofactors for exceptional biological processes and possess
unique and synthetically tunable photochemistry. Typical cobalamins
are characterized by a visible absorption spectrum consisting of peaks
labeled α, β, and sh. The physical basis of these peaks
as having electronic origin or as a vibronic progression is ambiguous
despite much investigation. Here, for the first time, cobalamin fluorescence
is identified in several derivatives. The fluorescence lifetime is
ca. 100–200 fs with quantum yields on the order of 10–6–10–5 because of rapid population of “dark”
excited states. The results are compared with the fluorescent analogue
with zinc replacing the cobalt in the corrin ring. Analysis of the
breadth of the emission spectrum provides evidence that a vibrational
progression in a single excited electronic state makes the dominant
contribution to the visible absorption band.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Yan Li
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Christoph Kieninger
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Bernhard Kräutler
- Institute of Organic Chemistry & Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| |
Collapse
|
31
|
Salerno EV, Miller NA, Konar A, Salchner R, Kieninger C, Wurst K, Spears KG, Kräutler B, Sension RJ. Exceptional Photochemical Stability of the Co-C Bond of Alkynyl Cobalamins, Potential Antivitamins B 12 and Core Elements of B 12-Based Biological Vectors. Inorg Chem 2020; 59:6422-6431. [PMID: 32311266 PMCID: PMC7201400 DOI: 10.1021/acs.inorgchem.0c00453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Alkynylcorrinoids
are a class of organometallic B12 derivatives,
recently rediscovered for use as antivitamins B12 and as
core components of B12-based biological vectors. They feature
exceptional photochemical and thermal stability of their characteristic
extra-short Co–C bond. We describe here the synthesis and structure
of 3-hydroxypropynylcobalamin (HOPryCbl) and photochemical experiments
with HOPryCbl, as well as of the related alkynylcobalamins: phenylethynylcobalamin
and difluoro-phenylethynylcobalamin. Ultrafast spectroscopic studies
of the excited state dynamics and mechanism for ground state recovery
demonstrate that the Co–C bond of alkynylcobalamins is stable,
with the Co–N bond and ring deformations mediating internal
conversion and ground state recovery within 100 ps. These studies
provide insights required for the rational design of photostable or
photolabile B12-based cellular vectors. Most alkylcobalamins are photolabile; in contrast, alkynylcobalamins
are photostable. Through time-resolved measurements, we demonstrate
for three alkynylcobalamins that the Co−C bond is stable (i.e.
“locked”), while expansion of the Co−N axial
bond (which is “unlocked”) and ring deformations mediate
internal conversion and ground state recovery within 100 ps. The barrier
for ground state recovery is independent of the R group on the alkynyl
ligand.
Collapse
Affiliation(s)
- Elvin V Salerno
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A Miller
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Arkaprabha Konar
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Robert Salchner
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Christoph Kieninger
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Kenneth G Spears
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| | - Bernhard Kräutler
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Roseanne J Sension
- Department of Chemistry, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States.,Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States.,Biophysics, University of Michigan, 930 N University Ave. Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
32
|
Ghosh AP, Lodowski P, Bazarganpour A, Leks M, Kozlowski PM. Aerobic photolysis of methylcobalamin: structural and electronic properties of the Cbl-O-O-CH 3 intermediate. Dalton Trans 2020; 49:4114-4124. [PMID: 32142090 DOI: 10.1039/c9dt03740c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Photolysis of methylcobalamin (MeCbl) in the presence of molecular oxygen (O2) has been investigated using density functional theory (DFT) and time-dependent DFT (TD-DFT). The key step involves the formation of the Cbl-O-O-CH3 intermediate as a result of triplet O2 insertion in the Co-C bond in the presence of light. Analysis of low-lying excited states shows that the presence of light is only needed to activate the Co-C bond via the formation of the ligand field (LF) state. The insertion of O2, as well as the change in the spin state, takes place in the ground state. The analysis of the structural and electronic properties of the Cbl-O-O-CH3 intermediate is presented and possible decomposition also discussed.
Collapse
Affiliation(s)
- Arghya Pratim Ghosh
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | |
Collapse
|
33
|
Hughes JA, Hardman SJO, Scrutton NS, Graham DM, Woodward JR, Jones AR. Observation of the Δg mechanism resulting from the ultrafast spin dynamics that follow the photolysis of coenzyme B 12. J Chem Phys 2019; 151:201102. [PMID: 31779325 DOI: 10.1063/1.5127258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Throughout nature, both free radicals and transient radical reaction intermediates are vital to many biological functions. Coenzyme B12 is a case in point. This organometallic cofactor generates a radical pair upon activation in its dependent enzymes by substrate binding and following photolysis. The resulting cob(ii)alamin/5'-deoxyadenosyl radical pair has unusual magnetic properties that present a challenge to detailed investigation at ambient temperatures. Here, we use femtosecond transient absorption spectroscopy adapted for magnetic field exposure to reveal that the spin dynamics of the B12 radical pair are sufficiently fast for magnetic field effects to be observed on the ultrafast reaction kinetics. Moreover, the large difference in g-values between the radicals of the pair means that effects of the Δg mechanism are observed for the first time for a radical pair system exposed to magnetic fields below 1 T. Spin dynamic simulations allow a value of the cob(ii)alamin radical g-value (2.105) at ambient temperature to be extracted and, because the spin dynamic time scale is faster than the diffusional rotation of the cob(ii)alamin radical, the observed value corresponds to the anisotropic g|| value for this radical.
Collapse
Affiliation(s)
- Joanna A Hughes
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Darren M Graham
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Jonathan R Woodward
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Japan
| | - Alex R Jones
- Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
34
|
Hu W, Li Q, Li B, Ma K, Zhang C, Fu X. Optogenetics sheds new light on tissue engineering and regenerative medicine. Biomaterials 2019; 227:119546. [PMID: 31655444 DOI: 10.1016/j.biomaterials.2019.119546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Optogenetics has demonstrated great potential in the fields of tissue engineering and regenerative medicine, from basic research to clinical applications. Spatiotemporal encoding during individual development has been widely identified and is considered a novel strategy for regeneration. A as a noninvasive method with high spatiotemporal resolution, optogenetics are suitable for this strategy. In this review, we discuss roles of dynamic signal coding in cell physiology and embryonic development. Several optogenetic systems are introduced as ideal optogenetic tools, and their features are compared. In addition, potential applications of optogenetics for tissue engineering are discussed, including light-controlled genetic engineering and regulation of signaling pathways. Furthermore, we present how emerging biomaterials and photoelectric technologies have greatly promoted the clinical application of optogenetics and inspired new concepts for optically controlled therapies. Our summation of currently available data conclusively demonstrates that optogenetic tools are a promising method for elucidating and simulating developmental processes, thus providing vast prospects for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Wenzhi Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Qiankun Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Bingmin Li
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Kui Ma
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China
| | - Cuiping Zhang
- Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, PR China; Key Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Fourth Medical Center, Chinese PLA General Hospital, 100048, Beijing, PR China.
| |
Collapse
|
35
|
Yang H, Impano S, Shepard EM, James CD, Broderick WE, Broderick JB, Hoffman BM. Photoinduced Electron Transfer in a Radical SAM Enzyme Generates an S-Adenosylmethionine Derived Methyl Radical. J Am Chem Soc 2019; 141:16117-16124. [PMID: 31509404 DOI: 10.1021/jacs.9b08541] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radical SAM (RS) enzymes use S-adenosyl-l-methionine (SAM) and a [4Fe-4S] cluster to initiate a broad spectrum of radical transformations throughout all kingdoms of life. We report here that low-temperature photoinduced electron transfer from the [4Fe-4S]1+ cluster to bound SAM in the active site of the hydrogenase maturase RS enzyme, HydG, results in specific homolytic cleavage of the S-CH3 bond of SAM, rather than the S-C5' bond as in the enzyme-catalyzed (thermal) HydG reaction. This result is in stark contrast to a recent report in which photoinduced ET in the RS enzyme pyruvate formate-lyase activating enzyme cleaved the S-C5' bond to generate a 5'-deoxyadenosyl radical, and provides the first direct evidence for homolytic S-CH3 bond cleavage in a RS enzyme. Photoinduced ET in HydG generates a trapped •CH3 radical, as well as a small population of an organometallic species with an Fe-CH3 bond, denoted ΩM. The •CH3 radical is surprisingly found to exhibit rotational diffusion in the HydG active site at temperatures as low as 40 K, and is rapidly quenched: whereas 5'-dAdo• is stable indefinitely at 77 K, •CH3 quenches with a half-time of ∼2 min at this temperature. The rapid quenching and rotational/translational freedom of •CH3 shows that enzymes would be unable to harness this radical as a regio- and stereospecific H atom abstractor during catalysis, in contrast to the exquisite control achieved with the enzymatically generated 5'-dAdo•.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Stella Impano
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Eric M Shepard
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Christopher D James
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - William E Broderick
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Joan B Broderick
- Department of Chemistry & Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
36
|
Radical SAM enzymes: surprises along the path to understanding mechanism. J Biol Inorg Chem 2019; 24:769-776. [DOI: 10.1007/s00775-019-01706-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
|
37
|
Padmanabhan S, Pérez-Castaño R, Elías-Arnanz M. B12-based photoreceptors: from structure and function to applications in optogenetics and synthetic biology. Curr Opin Struct Biol 2019; 57:47-55. [DOI: 10.1016/j.sbi.2019.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/14/2022]
|
38
|
Yang H, McDaniel EC, Impano S, Byer AS, Jodts RJ, Yokoyama K, Broderick WE, Broderick JB, Hoffman BM. The Elusive 5'-Deoxyadenosyl Radical: Captured and Characterized by Electron Paramagnetic Resonance and Electron Nuclear Double Resonance Spectroscopies. J Am Chem Soc 2019; 141:12139-12146. [PMID: 31274303 DOI: 10.1021/jacs.9b05926] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The 5'-deoxyadenosyl radical (5'-dAdo·) abstracts a substrate H atom as the first step in radical-based transformations catalyzed by adenosylcobalamin-dependent and radical S-adenosyl-l-methionine (RS) enzymes. Notwithstanding its central biological role, 5'-dAdo· has eluded characterization despite efforts spanning more than a half-century. Here, we report generation of 5'-dAdo· in a RS enzyme active site at 12 K using a novel approach involving cryogenic photoinduced electron transfer from the [4Fe-4S]+ cluster to the coordinated S-adenosylmethionine (SAM) to induce homolytic S-C5' bond cleavage. We unequivocally reveal the structure of this long-sought radical species through the use of electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) spectroscopies with isotopic labeling, complemented by density-functional computations: a planar C5' (2pπ) radical (∼70% spin occupancy); the C5'(H)2 plane is rotated by ∼37° (experiment)/39° (DFT) relative to the C5'-C4'-(C4'-H) plane, placing a C5'-H antiperiplanar to the ribose-ring oxygen, which helps stabilize the radical against elimination of the 4'-H. The agreement between φ from experiment and in vacuo DFT indicates that the conformation is intrinsic to 5-dAdo· itself, and not determined by its environment.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Elizabeth C McDaniel
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Stella Impano
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Amanda S Byer
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Richard J Jodts
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| | - Kenichi Yokoyama
- Department of Biochemistry , Duke University , Durham , North Carolina 27710 , United States
| | - William E Broderick
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Joan B Broderick
- Department of Chemistry and Biochemistry , Montana State University , Bozeman , Montana 59717 , United States
| | - Brian M Hoffman
- Department of Chemistry , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
39
|
Lukinović V, Woodward JR, Marrafa TC, Shanmugam M, Heyes DJ, Hardman SJO, Scrutton NS, Hay S, Fielding AJ, Jones AR. Photochemical Spin Dynamics of the Vitamin B 12 Derivative, Methylcobalamin. J Phys Chem B 2019; 123:4663-4672. [PMID: 31081330 DOI: 10.1021/acs.jpcb.9b01969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Derivatives of vitamin B12 are six-coordinate cobalt corrinoids found in humans, other animals, and microorganisms. By acting as enzymatic cofactors and photoreceptor chromophores, they serve vital metabolic and photoprotective functions. Depending on the context, the chemical mechanisms of the biologically active derivatives of B12-methylcobalamin (MeCbl) and 5'-deoxyadenosylcobalamin (AdoCbl)-can be very different from one another. The extent to which this chemistry is tuned by the upper axial ligand, however, is not yet clear. Here, we have used a combination of time-resolved Fourier transform-electron paramagnetic resonance (FT-EPR), magnetic field effect experiments, and spin dynamic simulations to reveal that the upper axial ligand alone only results in relatively minor changes to the photochemical spin dynamics of B12. By studying the photolysis of MeCbl, we find that, similar to AdoCbl, the initial (or "geminate") radical pairs (RPs) are born predominantly in the singlet spin state and thus originate from singlet excited-state precursors. This is in contrast to the triplet RPs and precursors proposed previously. Unlike AdoCbl, the extent of geminate recombination is limited following MeCbl photolysis, resulting in significant distortions to the FT-EPR signal caused by polarization from spin-correlated methyl-methyl radical "f-pairs" formed following rapid diffusion. Despite the photophysical mechanism that precedes photolysis of MeCbl showing wavelength dependence, the subsequent spin dynamics appear to be largely independent of excitation wavelength, again similar to AdoCbl. Our data finally provide clarity to what in the literature to date has been a confused and contradictory picture. We conclude that, although the upper axial position of MeCbl and AdoCbl does impact their reactivity to some extent, the remarkable biochemical diversity of these fascinating molecules is most likely a result of tuning by their protein environment.
Collapse
Affiliation(s)
- Valentina Lukinović
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Jonathan R Woodward
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Teresa C Marrafa
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Muralidharan Shanmugam
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Derren J Heyes
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Samantha J O Hardman
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | - Sam Hay
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| | | | - Alex R Jones
- Manchester Institute of Biotechnology , The University of Manchester , 131 Princess Street , Manchester M1 7DN , U.K
| |
Collapse
|
40
|
Demarteau J, Debuigne A, Detrembleur C. Organocobalt Complexes as Sources of Carbon-Centered Radicals for Organic and Polymer Chemistries. Chem Rev 2019; 119:6906-6955. [DOI: 10.1021/acs.chemrev.8b00715] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jérémy Demarteau
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 Août, Building B6A, Agora Square, 4000 Liège, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 Août, Building B6A, Agora Square, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, University of Liège, Allée du 6 Août, Building B6A, Agora Square, 4000 Liège, Belgium
| |
Collapse
|
41
|
Toda MJ, Lodowski P, Mamun AA, Jaworska M, Kozlowski PM. Photolytic properties of the biologically active forms of vitamin B12. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Mamun AA, Toda MJ, Lodowski P, Kozlowski PM. Photolytic Cleavage of Co–C Bond in Coenzyme B12-Dependent Glutamate Mutase. J Phys Chem B 2019; 123:2585-2598. [DOI: 10.1021/acs.jpcb.8b07547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
43
|
Mamun AA, Toda MJ, Kozlowski PM. Can photolysis of the Co C bond in coenzyme B12-dependent enzymes be used to mimic the native reaction? JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 191:175-184. [DOI: 10.1016/j.jphotobiol.2018.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022]
|
44
|
Saracini C, Fukuzumi S, Lee YM, Nam W. Photoexcited state chemistry of metal-oxygen complexes. Dalton Trans 2018; 47:16019-16026. [PMID: 30324192 DOI: 10.1039/c8dt03604g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances on the excited state chemistry of metal-oxygen synthetic complexes based on earth-abundant metals such as copper, cobalt, and manganese are reviewed to show a much enhanced reactivity of the photoexcited states as compared with their relative ground states. Mononuclear copper(ii)-superoxide and dinuclear copper(ii)-peroxo complexes underwent copper-oxygen bond cleavage, dioxygen release, and copper(i)/dioxygen rebinding upon photoexcitation at low temperature. Photoirradiation of the cobalt-oxygen compound [(TAML)CoIV(O)]2- (6) (TAML = tetraamidomacrocyclic ligand) at 5 °C yielded a cobalt-oxygen excited state with 0.6(1) ns lifetime, showing a high reactivity in the bimolecular electron-transfer oxidations of m-xylene and anisole. An extremely long-lived excited state was generated upon photoexcitation of a manganese(iv)-oxo complex binding two Sc(OTf)3 molecules, which enabled the hydroxylation of benzene.
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | |
Collapse
|
45
|
Wiley TE, Miller NA, Miller WR, Sofferman DL, Lodowski P, Toda MJ, Jaworska M, Kozlowski PM, Sension RJ. Off to the Races: Comparison of Excited State Dynamics in Vitamin B12 Derivatives Hydroxocobalamin and Aquocobalamin. J Phys Chem A 2018; 122:6693-6703. [DOI: 10.1021/acs.jpca.8b06103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Theodore E. Wiley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Nicholas A. Miller
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - William R. Miller
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Danielle L. Sofferman
- Applied Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
| | - Piotr Lodowski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
| | - Maria Jaworska
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, 2320 South Brook Street, Louisville, Kentucky 40292, United States
- Department of Food Sciences, Medical University of Gdansk, Al. Gen J. Hallera, 107, 80-416 Gdansk, Poland
| | - Roseanne J. Sension
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109-1040, United States
- Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
46
|
Vaid FH, Zahid S, Faiyaz A, Qadeer K, Gul W, Anwar Z, Ahmad I. Photolysis of methylcobalamin in aqueous solution: A kinetic study. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Mamun AA, Toda MJ, Lodowski P, Jaworska M, Kozlowski PM. Mechanism of Light Induced Radical Pair Formation in Coenzyme B12-Dependent Ethanolamine Ammonia-Lyase. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Abdullah Al Mamun
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Megan J. Toda
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Piotr Lodowski
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Maria Jaworska
- Department of Theoretical Chemistry, Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, PL-40 006 Katowice, Poland
| | - Pawel M. Kozlowski
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
- Department of Food Sciences, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
48
|
Chatelle C, Ochoa-Fernandez R, Engesser R, Schneider N, Beyer HM, Jones AR, Timmer J, Zurbriggen MD, Weber W. A Green-Light-Responsive System for the Control of Transgene Expression in Mammalian and Plant Cells. ACS Synth Biol 2018; 7:1349-1358. [PMID: 29634242 DOI: 10.1021/acssynbio.7b00450] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The ever-increasing complexity of synthetic gene networks and applications of synthetic biology requires precise and orthogonal gene expression systems. Of particular interest are systems responsive to light as they enable the control of gene expression dynamics with unprecedented resolution in space and time. While broadly used in mammalian backgrounds, however, optogenetic approaches in plant cells are still limited due to interference of the activating light with endogenous photoreceptors. Here, we describe the development of the first synthetic light-responsive system for the targeted control of gene expression in mammalian and plant cells that responds to the green range of the light spectrum in which plant photoreceptors have minimal activity. We first engineered a system based on the light-sensitive bacterial transcription factor CarH and its cognate DNA operator sequence CarO from Thermus thermophilus to control gene expression in mammalian cells. The system was functional in various mammalian cell lines, showing high induction (up to 350-fold) along with low leakiness, as well as high reversibility. We quantitatively described the systems characteristics by the development and experimental validation of a mathematical model. Finally, we transferred the system into A. thaliana protoplasts and demonstrated gene repression in response to green light. We expect that this system will provide new opportunities in applications based on synthetic gene networks and will open up perspectives for optogenetic studies in mammalian and plant cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex R. Jones
- National Physical Laboratory, Teddington, Middlesex TW11 0LW, U.K
| | | | | | | |
Collapse
|
49
|
Subramanian G, Zhang X, Kodis G, Kong Q, Liu C, Chizmeshya A, Weierstall U, Spence J. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy. J Phys Chem Lett 2018; 9:1542-1546. [PMID: 29510052 DOI: 10.1021/acs.jpclett.8b00083] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cobalt-carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co-C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a few microseconds, where the Co-C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co-NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.
Collapse
Affiliation(s)
- Ganesh Subramanian
- Department of Physics , Arizona State University , Tempe , Arizona 85287 , United States
| | - Xiaoyi Zhang
- X-ray Sciences Division , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Gerdenis Kodis
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Qingyu Kong
- X-ray Sciences Division , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Cunming Liu
- X-ray Sciences Division , Argonne National Laboratory , 9700 South Cass Avenue , Argonne , Illinois 60439 , United States
| | - Andrew Chizmeshya
- School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Uwe Weierstall
- Department of Physics , Arizona State University , Tempe , Arizona 85287 , United States
| | - John Spence
- Department of Physics , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|