1
|
Holzner M, Sonicki T, Hunn H, Uliana F, Jiang W, Gade VR, Weis K, Wutz A, Di Minin G. The scramblases VMP1 and TMEM41B are required for primitive endoderm specification by targeting WNT signaling. Cell Death Differ 2024:10.1038/s41418-024-01435-x. [PMID: 39695329 DOI: 10.1038/s41418-024-01435-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024] Open
Abstract
The ER-resident proteins VMP1 and TMEM41B share a conserved DedA domain, which confers lipid scramblase activity. Loss of either gene results in embryonic lethality in mice and defects in autophagy and lipid droplet metabolism. To investigate their role in pluripotency and lineage specification, we generated Vmp1 and Tmem41b mutations in mouse embryonic stem cells (ESCs). We observed that ESCs carrying mutations in Vmp1 and Tmem41b show robust self-renewal and an unperturbed pluripotent expression profile but accumulate LC3-positive autophagosomes and lipid droplets consistent with defects in autophagy and lipid metabolism. ESCs carrying combined mutations in Vmp1 and Tmem41b can differentiate into a wide range of embryonic cell types. However, differentiation into primitive endoderm-like cells in culture is impaired, and the establishment of extra-embryonic endoderm stem (XEN) cells is delayed. Mechanistically, we show the deregulation of genes that are associated with WNT signaling. This is further confirmed by cell surface proteome profiling, which identified a significant reduction of the WNT-receptor FZD2 at the plasma membrane in Vmp1 and Tmem41b double mutant ESCs. Importantly, we show that transgenic expression of Fzd2 rescues XEN differentiation. Our findings identify the role of the lipid scramblases VMP1 and TMEM41B in WNT signaling during extra-embryonic endoderm development and characterize their distinct and overlapping functions.
Collapse
Affiliation(s)
- Markus Holzner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Tea Sonicki
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Hugo Hunn
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
- Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Weijun Jiang
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Vamshidhar R Gade
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | - Giulio Di Minin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Wu Y, Chen Y, Tian X, Shao G, Lin Q, Sun A. Ubiquitination regulates autophagy in cancer: simple modifications, promising targets. J Transl Med 2024; 22:985. [PMID: 39482684 PMCID: PMC11526641 DOI: 10.1186/s12967-024-05565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/02/2024] [Indexed: 11/03/2024] Open
Abstract
Autophagy is an important lysosomal degradation process that digests and recycles bio-molecules, protein or lipid aggregates, organelles, and invaded pathogens. Autophagy plays crucial roles in regulation of metabolic and oxidative stress and multiple pathological processes. In cancer, the role of autophagy is dual and paradoxical. Ubiquitination has been identified as a key regulator of autophagy that can influence various steps in the autophagic process, with autophagy-related proteins being targeted for ubiquitination, thus impacting cancer progression and the effectiveness of therapeutic interventions. This review will concentrate on mechanisms underlying autophagy, ubiquitination, and their interactions in cancer, as well as explore the use of drugs that target the ubiquitin-proteasome system (UPS) and ubiquitination process in autophagy as part of cancer therapy.
Collapse
Affiliation(s)
- Yihui Wu
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yifei Chen
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Xianyan Tian
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Genbao Shao
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Aiqin Sun
- Institute of Urinary System Diseases, The Affiliated People's Hospital, Jiangsu University, 8 Dianli Road, Zhenjiang, 212002, China.
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
3
|
Ebrahimi S, Khaleghi Ghadiri M, Stummer W, Gorji A. Enhancing 5-ALA-PDT efficacy against resistant tumor cells: Strategies and advances. Life Sci 2024; 351:122808. [PMID: 38852796 DOI: 10.1016/j.lfs.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
As a precursor of protoporphyrin IX (PpIX), an endogenous pro-apoptotic and fluorescent molecule, 5-Aminolevulinic acid (5-ALA) has gained substantial attention for its potential in fluorescence-guided surgery as well as photodynamic therapy (PDT). Moreover, 5-ALA-PDT has been suggested as a promising chemo-radio sensitization therapy for various cancers. However, insufficient 5-ALA-induced PpIX fluorescence and the induction of multiple resistance mechanisms may hinder the 5-ALA-PDT clinical outcome. Reduced efficacy and resistance to 5-ALA-PDT can result from genomic alterations, tumor heterogeneity, hypoxia, activation of pathways related to cell surveillance, production of nitric oxide, and most importantly, deregulated 5-ALA transporter proteins and heme biosynthesis enzymes. Understanding the resistance regulatory mechanisms of 5-ALA-PDT may allow the development of effective personalized cancer therapy. Here, we described the mechanisms underlying resistance to 5-ALA-PTD across various tumor types and explored potential strategies to overcome this resistance. Furthermore, we discussed future approaches that may enhance the efficacy of treatments using 5-ALA-PDT.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Münster University, 48149 Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Münster University, 48149 Münster, Germany; Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; Neuroscience Research Center, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran.
| |
Collapse
|
4
|
Aebisher D, Woźnicki P, Czarnecka-Czapczyńska M, Dynarowicz K, Szliszka E, Kawczyk-Krupka A, Bartusik-Aebisher D. Molecular Determinants for Photodynamic Therapy Resistance and Improved Photosensitizer Delivery in Glioma. Int J Mol Sci 2024; 25:8708. [PMID: 39201395 PMCID: PMC11354549 DOI: 10.3390/ijms25168708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland
| | - Paweł Woźnicki
- English Division Science Club, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| | - Magdalena Czarnecka-Czapczyńska
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of The University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Ewelina Szliszka
- Department of Microbiology and Immunology, Medical University of Silesia, Poniatowskiego 15, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of The Rzeszów University, 35-310 Rzeszów, Poland;
| |
Collapse
|
5
|
Renna FJ, Gonzalez CD, Vaccaro MI. Decoding the Versatile Landscape of Autophagic Protein VMP1 in Cancer: A Comprehensive Review across Tissue Types and Regulatory Mechanisms. Int J Mol Sci 2024; 25:3758. [PMID: 38612567 PMCID: PMC11011780 DOI: 10.3390/ijms25073758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Autophagy, a catabolic process orchestrating the degradation of proteins and organelles within lysosomes, is pivotal for maintaining cellular homeostasis. However, its dual role in cancer involves preventing malignant transformation while fostering progression and therapy resistance. Vacuole Membrane Protein 1 (VMP1) is an essential autophagic protein whose expression, per se, triggers autophagy, being present in the whole autophagic flux. In pancreatic cancer, VMP1-whose expression is linked to the Kirsten Rat Sarcoma Virus (KRAS) oncogene-significantly contributes to disease promotion, progression, and chemotherapy resistance. This investigation extends to breast cancer, colon cancer, hepatocellular carcinoma, and more, highlighting VMP1's nuanced nature, contingent on specific tissue contexts. The examination of VMP1's interactions with micro-ribonucleic acids (miRNAs), including miR-21, miR-210, and miR-124, enhances our understanding of its regulatory network in cancer. Additionally, this article discusses VMP1 gene fusions, especially with ribosomal protein S6 kinase B1 (RPS6KB1), shedding light on potential implications for tumor malignancy. By deciphering the molecular mechanisms linking VMP1 to cancer progression, this exploration paves the way for innovative therapeutic strategies to disrupt these pathways and potentially improve treatment outcomes.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
| | - Claudio D. Gonzalez
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina;
- Instituto de Investigaciones, IUC, Medicina Traslacional, Hospital Universitario CEMIC, Buenos Aires C1431FWN, Argentina;
| |
Collapse
|
6
|
Yang ZY, Li LG, Xiong YL, Chen NN, Yu TT, Li HT, Ren T, You H, Wang X, Li TF, Wang MF, Hu J. Cepharanthine synergizes with photodynamic therapy for boosting ROS-driven DNA damage and suppressing MTH1 as a potential anti-cancer strategy. Photodiagnosis Photodyn Ther 2024; 45:103917. [PMID: 38042236 DOI: 10.1016/j.pdpdt.2023.103917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVE Photodynamic therapy (PDT) primarily treats skin diseases or cancer by generating reactive oxygen species (ROS) to damage cellular DNA, yet drug resistance limits its application. To tackle this problem, the present study was carried out to improve the efficacy of chlorin e6 (Ce6)-PDT using Cepharanthine (CEP) as well as to reveal the potential molecular mechanism. MATERIALS AND METHODS Lewis lung cancer cell line (LLC) was utilized as the cancer cell model. chlorin e6 (Ce6) acted as the photosensitizer to induce PDT. The in vitro anti-cancer efficacy was measured by CCK-8, Annexin-V/PI staining, and migration assay. The Ce6 uptake was observed using flow cytometry and confocal microscopy. The ROS generation was detected by the DCFH-DA probe. The analysis of MutT Homolog 1 (MTH1) expression, correlation, and prognosis in databases was conducted by bioinformatic. The MTH1 expression was detected through western blots (WB). DNA damage was assayed by WB, immunofluorescent staining, and comet assay. RESULTS Ce6-PDT showed robust resistance in lung cancer cells under certain conditions, as evidenced by the unchanged cell viability and apoptosis. The subsequent findings confirmed that the uptake of Ce6 and MTH1 expression was enhanced, but ROS generation with laser irradiation was not increased in LLC, which indicated that the ROS scavenge may be the critical reason for resistance. Surprisingly, bioinformatic and in vitro experiments identified that MTH1, which could prevent the DNA from damage of ROS, was highly expressed in lung cancer and thereby led to the poor prognosis and could be further up-regulated by Ce6 PDT. CEP exhibited a dose-dependent suppressive effect on the lung cancer cells. Further investigations presented that CEP treatment boosted ROS production, thereby resulting in DNA double-strand breakage (DDSB) with activation of MTH1, indicating that CEP facilitated Ce6-PDT-mediated DNA damage. Finally, the combination of CEP and Ce6-PDT exhibited prominent ROS accumulation, MTH1 inhibition, and anti-lung cancer efficacy, which had synergistic pro-DNA damage properties. CONCLUSION Collectively, highly expressed MTH1 and the failure of ROS generation lead to PDT resistance in lung cancer cells. CEP facilitates ROS generation of PDT, thereby promoting vigorous DNA damage, inactivating MTH1, alleviating PDT resistance, and ameliorating the anti-cancer efficacy of Ce6-PDT, provides a novel approach for augmented PDT.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Liu-Gen Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China
| | - Yi-Lian Xiong
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Nan-Nan Chen
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Ting-Ting Yu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Department of Pathology, Renmin Hospital of Shiyan, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hai-Tao Li
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Tao Ren
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Hui You
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Xiao Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China
| | - Tong-Fei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| | - Mei-Fang Wang
- Department of Respiratory, Taihe Hospital of Shiyan, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China.
| | - Jun Hu
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei University of Medicine, Renmin road No. 30, Shiyan, Hubei, 442000, China.
| |
Collapse
|
7
|
Hu Q, Zuo H, Hsu JC, Zeng C, Zhou T, Sun Z, Cai W, Tang Z, Chen W. The Emerging Landscape for Combating Resistance Associated with Energy-Based Therapies via Nanomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308286. [PMID: 37971203 PMCID: PMC10872442 DOI: 10.1002/adma.202308286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Cancer represents a serious disease with significant implications for public health, imposing substantial economic burden and negative societal consequences. Compared to conventional cancer treatments, such as surgery and chemotherapy, energy-based therapies (ET) based on athermal and thermal ablation provide distinct advantages, including minimally invasive procedures and rapid postoperative recovery. Nevertheless, due to the complex pathophysiology of many solid tumors, the therapeutic effectiveness of ET is often limited. Nanotechnology offers unique opportunities by enabling facile material designs, tunable physicochemical properties, and excellent biocompatibility, thereby further augmenting the outcomes of ET. Numerous nanomaterials have demonstrated the ability to overcome intrinsic therapeutic resistance associated with ET, leading to improved antitumor responses. This comprehensive review systematically summarizes the underlying mechanisms of ET-associated resistance (ETR) and highlights representative applications of nanoplatforms used to mitigate ETR. Overall, this review emphasizes the recent advances in the field and presents a detailed account of novel nanomaterial designs in combating ETR, along with efforts aimed at facilitating their clinical translation.
Collapse
Affiliation(s)
- Qitao Hu
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Huali Zuo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jessica C. Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Cheng Zeng
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tian Zhou
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhouyi Sun
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Wisconsin 53705, United States
| | - Zhe Tang
- Department of Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyu Chen
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
8
|
Song Y, Li X, Wu H, Xu Y, Jin D, Ping S, Jia J, Han C. RNF183 Promotes Colon Cancer Cell Stemness through Fatty Acid Oxidation. Nutr Cancer 2024; 76:215-225. [PMID: 38044546 DOI: 10.1080/01635581.2023.2286700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Colon cancer (COAD) is a prevalent gastrointestinal tumor, composed of a few cancer stem cells (CSCs). High expression of RNF183 drives colorectal cancer metastasis, but its role in COAD cell stemness is still unclear. Bioinformatics analyzed expression and enriched pathway of RNF183 in COAD tissue. IHC analyzed RNF183 protein expression in tumor tissue. CD133 + CD44+ CSCs were sorted by flow cytometry, and RNF183 expression in COAD cells or CSCs was detected by qPCR, western blot and immunofluorescence. CCK-8 assay assessed cell viability, and sphere formation assay tested cell sphere-forming ability. Western blot measured protein expression of stem cell markers. qPCR assayed expression of fatty acid oxidation genes. The ability of fatty acid oxidation was analyzed by detecting fatty acid metabolism. RNF183 was highly expressed in COAD and CD133 + CD44+ CSCs, and was enriched in fatty acid metabolism pathway. RNF183 expression was positively correlated with enzymes involved in fatty acid oxidation. RNF183 could promote COAD stemness and fatty acid oxidation. Rescue experiments showed that Orlistat (a fatty acid oxidation inhibitor) reversed stimulative impact of RNF183 overexpression on COAD stemness. RNF183 promoted COAD stemness by affecting fatty acid oxidation, which may be a new therapeutic target for inhibiting COAD development.
Collapse
Affiliation(s)
- Yingming Song
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xiaolin Li
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, China
| | - Huiping Wu
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Yanjun Xu
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Dayi Jin
- The First Clinical College, Changzhi Medical College, Changzhi, Shanxi, China
| | - Shimin Ping
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Junling Jia
- Department of Medical Oncology, Elderly Nursing Home YingKang, Changzhi, Shanxi, China
| | - Chao Han
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
9
|
Xiong D, Wei X, Huang W, Zheng J, Feng R. Prediction significance of autophagy-related genes in survival probability and drug resistance in diffuse large B-cell lymphoma. Aging (Albany NY) 2024; 16:1049-1076. [PMID: 38240686 PMCID: PMC10866451 DOI: 10.18632/aging.205282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND/AIMS Diffuse large B-cell lymphoma (DLBCL), the most common subtype of non-Hodgkin lymphoma, has significant prognostic heterogeneity. This study aimed to generate a prognostic prediction model based on autophagy-related genes for DLBCL patients. METHODS Utilizing bioinformatics techniques, we analyzed the clinical information and transcriptome data of DLBCL patients from the Gene Expression Omnibus (GEO) database. Through unsupervised clustering, we identified new autophagy-related molecular subtypes and pinpointed differentially expressed genes (DEGs) between these subtypes. Based on these DEGs, a prognostic model was constructed using Cox and Lasso regression. The effectiveness, accuracy, and clinical utility of this prognostic model were assessed using numerous independent validation cohorts, survival analyses, receiver operating characteristic (ROC) curves, multivariate Cox regression analysis, nomograms, and calibration curves. Moreover, functional analysis, immune cell infiltration, and drug sensitivity analysis were performed. RESULTS DLBCL patients with different clinical characterizations (age, molecular subtypes, ECOG scores, and stages) showed different expression features of autophagy-related genes. The prediction model was constructed based on the eight autophagy-related genes (ADD3, IGFBP3, TPM1, LYZ, AFDN, DNAJC10, GLIS3, and CCDC102A). The prognostic nomogram for overall survival of DLBCL patients incorporated risk level, stage, ECOG scores, and molecular subtypes, showing excellent agreement between observed and predicted outcomes. Differences were noted in the proportions of immune cells (native B cells, Treg cells, CD8+ T cell, CD4+ memory activated T cells, gamma delta T cells, macrophages M1, and resting mast cells) between high-risk and low-risk groups. LYZ and ADD3 exhibited correlations with drug resistance to most chemotherapeutic drugs. CONCLUSIONS This study established a novel prognostic assessment model based on the expression profile of autophagy-related genes and clinical characteristics of DLBCL patients, explored immune infiltration and predicted drug resistance, which may guide precise and individualized immunochemotherapy regimens.
Collapse
Affiliation(s)
- Dan Xiong
- Department of Hematology, Nanfang Hospital, Southern Medical University or the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Hematology, Shunde Hospital, Southern Medical University (The First People’s Hospital of Shunde), Foshan 528308, Guangdong, China
| | - Xiaolei Wei
- Department of Hematology, Nanfang Hospital, Southern Medical University or the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Weiming Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University or the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingxia Zheng
- Department of Hematology, Nanfang Hospital, Southern Medical University or the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ru Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University or the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
10
|
Merlin JPJ, Crous A, Abrahamse H. Nano-phototherapy: Favorable prospects for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1930. [PMID: 37752098 DOI: 10.1002/wnan.1930] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Nanotechnology-based phototherapies have drawn interest in the fight against cancer because of its noninvasiveness, high flexibility, and precision in terms of cancer targeting and drug delivery based on its surface properties and size. Phototherapy has made remarkable development in recent decades. Approaches to phototherapy, which utilize nanomaterials or nanotechnology have emerged to contribute to advances around nanotechnologies in medicine, particularly for cancers. A brief overviews of the development of photodynamic therapy as well as its mechanism in cancer treatment is provided. We emphasize the design of novel nanoparticles utilized in photodynamic therapy while summarizing the representative progress during the recent years. Finally, to forecast important future research in this area, we examine the viability and promise of photodynamic therapy systems based on nanoparticles in clinical anticancer treatment applications and briefly make mention of the elimination of all reactive metabolites pertaining to nano formulations inside living organisms providing insight into clinical mechanistic processes. Future developments and therapeutic prospects for photodynamic treatments are anticipated. Our viewpoints might encourage scientists to create more potent phototherapy-based cancer therapeutic modalities. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- J P Jose Merlin
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
11
|
Aebisher D, Woźnicki P, Dynarowicz K, Kawczyk-Krupka A, Cieślar G, Bartusik-Aebisher D. Photodynamic Therapy and Immunological View in Gastrointestinal Tumors. Cancers (Basel) 2023; 16:66. [PMID: 38201494 PMCID: PMC10777986 DOI: 10.3390/cancers16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
12
|
Renna FJ, Enriqué Steinberg JH, Gonzalez CD, Manifava M, Tadic MS, Orquera T, Vecino CV, Ropolo A, Guardavaccaro D, Rossi M, Ktistakis NT, Vaccaro MI. Ubiquitination Is a Novel Post-Translational Modification of VMP1 in Autophagy of Human Tumor Cells. Int J Mol Sci 2023; 24:12981. [PMID: 37629161 PMCID: PMC10455450 DOI: 10.3390/ijms241612981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Autophagy is a tightly regulated catabolic process involved in the degradation and recycling of proteins and organelles. Ubiquitination plays an important role in the regulation of autophagy. Vacuole Membrane Protein 1 (VMP1) is an essential autophagy protein. The expression of VMP1 in pancreatic cancer stem cells carrying the activated Kirsten rat sarcoma viral oncogene homolog (KRAS) triggers autophagy and enables therapy resistance. Using biochemical and cellular approaches, we identified ubiquitination as a post-translational modification of VMP1 from the initial steps in autophagosome biogenesis. VMP1 remains ubiquitinated as part of the autophagosome membrane throughout autophagic flux until autolysosome formation. However, VMP1 is not degraded by autophagy, nor by the ubiquitin-proteasomal system. Mass spectrometry and immunoprecipitation showed that the cell division cycle protein cdt2 (Cdt2), the substrate recognition subunit of the E3 ligase complex associated with cancer, cullin-RING ubiquitin ligase complex 4 (CRL4), is a novel interactor of VMP1 and is involved in VMP1 ubiquitination. VMP1 ubiquitination decreases under the CRL inhibitor MLN4924 and increases with Cdt2 overexpression. Moreover, VMP1 recruitment and autophagosome formation is significantly affected by CRL inhibition. Our results indicate that ubiquitination is a novel post-translational modification of VMP1 during autophagy in human tumor cells. VMP1 ubiquitination may be of clinical relevance in tumor-cell-therapy resistance.
Collapse
Affiliation(s)
- Felipe J. Renna
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Juliana H. Enriqué Steinberg
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar C1006ACC, Argentina
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Claudio D. Gonzalez
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Maria Manifava
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Mariana S. Tadic
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Tamara Orquera
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Carolina V. Vecino
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | - Alejandro Ropolo
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| | | | - Mario Rossi
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET, Universidad Austral, Pilar C1006ACC, Argentina
| | | | - Maria I. Vaccaro
- Instituto de Bioquimica y Medicina Molecular Prof Alberto Boveris (IBIMOL), CONICET, Universidad de Buenos Aires, Buenos Aires C1113AAC, Argentina; (F.J.R.)
| |
Collapse
|
13
|
Hu H, Xu D, Xu Q, Tang Y, Hong J, Hu Y, Wang J, Ni X. Reduction-responsive worm-like nanoparticles for synergistic cancer chemo-photodynamic therapy. Mater Today Bio 2023; 18:100542. [PMID: 36647538 PMCID: PMC9840183 DOI: 10.1016/j.mtbio.2023.100542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
Chemo-photodynamic therapy shows great potential for cancer treatment. However, the rational integration of chemotherapeutic agents and photosensitizers to construct an intelligent nanoplatform with synergistic therapeutic effect is still a great challenge. In this work, curcumin-loaded reduction-responsive prodrug nanoparticles of new indocyanine green (Cur@IR820-ss-PEG) were developed for synergistic cancer chemo-photodynamic therapy. Cur@IR820-ss-PEG exhibit high drug loading content and special worm-like morphology, contributing to their efficient cellular uptake. Due to the presence of the disulfide bond between IR820 and PEG, Cur@IR820-ss-PEG display reduction responsive drug release behaviors. The efficient cellular uptake and reduction triggered drug release of Cur@IR820-ss-PEG lead to their enhanced in vitro cytotoxicity against 4T1cells as compared to the mixture of IR820 and curcumin (IR820/Cur) under laser irradiation. Besides, Cur@IR820-ss-PEG exhibit prolonged blood half-life time, better tumor accumulation and retention, enhanced tumor hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial cell growth factor (VEGF) suppression effect as compared to IR820/Cur. In vivo antitumor activity study, Cur@IR820-ss-PEG effectively inhibit the tumor angiogenesis, which potentiates the PDT efficacy and leads to the best in vivo antitumor effect of Cur@IR820-ss-PEG. This work provides a novel and relatively simple strategy for synergistic cancer chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Hang Hu
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Qingbo Xu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Interventional Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yuxiang Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China
| | - Jun Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, China,Corresponding author. Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China,Corresponding author.
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China,Corresponding author.
| |
Collapse
|
14
|
Yao W, Li S, Liu R, Jiang M, Gao L, Lu Y, Liang X, Zhang H. Long non-coding RNA PVT1: A promising chemotherapy and radiotherapy sensitizer. Front Oncol 2022; 12:959208. [PMID: 35965522 PMCID: PMC9373174 DOI: 10.3389/fonc.2022.959208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022] Open
Abstract
The long non-coding RNA (lncRNA) PVT1 was first found to activate variant translocations in the plasmacytoma of mice. Human lncPVT1 is located on chromosome 8q24.21, at the same locus as the well-known MYC oncogene. LncPVT1 has been found to promote the progression of various malignancies. Chemoresistance and radioresistance seriously affect tumor treatment efficacy and are associated with the dysregulation of physiological processes in cancer cells, including apoptosis, autophagy, stemness (for cancer stem cells, CSC), hypoxia, epithelial–mesenchymal transition (EMT), and DNA damage repair. Previous studies have also implicated lncPVT1 in the regulation of these physiological mechanisms. In recent years, lncPVT1 was found to modulate chemoresistance and radioresistance in some cancers. In this review, we discuss the mechanisms of lncPVT1-mediated regulation of cellular chemoresistance and radioresistance. Due to its high expression in malignant tumors and sensitization effect in chemotherapy and radiotherapy, lncPVT1 is expected to become an effective antitumor target and chemotherapy and radiotherapy sensitizer, which requires further study.
Collapse
Affiliation(s)
- Weiping Yao
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- Graduate Department, Jinzhou Medical University, Jinzhou, China
| | - Ruiqi Liu
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Mingyun Jiang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liang Gao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaodong Liang
- Graduate Department, Bengbu Medical College, Bengbu, China
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
- *Correspondence: Haibo Zhang, zhbdoctor @163.com; Xiaodong Liang,
| |
Collapse
|
15
|
Bogias KJ, Pederson SM, Leemaqz S, Smith MD, McAninch D, Jankovic-Karasoulos T, McCullough D, Wan Q, Bianco-Miotto T, Breen J, Roberts CT. Placental Transcription Profiling in 6-23 Weeks' Gestation Reveals Differential Transcript Usage in Early Development. Int J Mol Sci 2022; 23:ijms23094506. [PMID: 35562897 PMCID: PMC9105363 DOI: 10.3390/ijms23094506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/13/2022] Open
Abstract
The human placenta is a rapidly developing transient organ that is key to pregnancy success. Early development of the conceptus occurs in a low oxygen environment before oxygenated maternal blood begins to flow into the placenta at ~10-12 weeks' gestation. This process is likely to substantially affect overall placental gene expression. Transcript variability underlying gene expression has yet to be profiled. In this study, accurate transcript expression profiles were identified for 84 human placental chorionic villus tissue samples collected across 6-23 weeks' gestation. Differential gene expression (DGE), differential transcript expression (DTE) and differential transcript usage (DTU) between 6-10 weeks' and 11-23 weeks' gestation groups were assessed. In total, 229 genes had significant DTE yet no significant DGE. Integration of DGE and DTE analyses found that differential expression patterns of individual transcripts were commonly masked upon aggregation to the gene-level. Of the 611 genes that exhibited DTU, 534 had no significant DGE or DTE. The four most significant DTU genes ADAM10, VMP1, GPR126, and ASAH1, were associated with hypoxia-responsive pathways. Transcript usage is a likely regulatory mechanism in early placentation. Identification of functional roles will facilitate new insight in understanding the origins of pregnancy complications.
Collapse
Affiliation(s)
- Konstantinos J. Bogias
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Stephen M. Pederson
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
| | - Shalem Leemaqz
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Melanie D. Smith
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Dale McAninch
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
| | - Tanja Jankovic-Karasoulos
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Dylan McCullough
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Qianhui Wan
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
| | - Tina Bianco-Miotto
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA 5005, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute (Adelaide Office), Adelaide, SA 5000, Australia;
- College of Health & Medicine, Australian National University, Canberra, ACT 2600, Australia
| | - Claire T. Roberts
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (K.J.B.); (S.L.); (D.M.); (T.J.-K.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5005, Australia;
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia; (M.D.S.); (D.M.); (Q.W.)
- Correspondence:
| |
Collapse
|
16
|
Zhang X, He C, Xiang G. Engineering nanomedicines to inhibit hypoxia-inducible Factor-1 for cancer therapy. Cancer Lett 2022; 530:110-127. [PMID: 35041892 DOI: 10.1016/j.canlet.2022.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/18/2021] [Accepted: 01/10/2022] [Indexed: 11/02/2022]
Abstract
Hypoxia-inducible factor-1 (HIF-1), an essential promoter of tumor progression, has attracted increasing attention as a therapeutic target. In addition to hypoxic cellular conditions, HIF-1 activation can be triggered by cancer treatment, which causes drug tolerance and therapeutic failure. To date, a series of effective strategies have been explored to suppress HIF-1 function, including silencing the HIF-1α gene, inhibiting HIF-1α protein translation, degrading HIF-1α protein, and inhibiting HIF-1 transcription. Furthermore, nanoparticle-based drug delivery systems have been widely developed to improve the stability and pharmacokinetics of HIF-1 inhibitors or achieve HIF-1-targeted combination therapies as a nanoplatform. In this review, we summarize the current literature on nanomedicines targeting HIF-1 to combat cancer and discuss their potential for future development.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
17
|
Inhibition of autophagy enhances apoptosis induced by Ce6-photodynamic therapy in human colon cancer cells. Photodiagnosis Photodyn Ther 2021; 36:102605. [PMID: 34715368 DOI: 10.1016/j.pdpdt.2021.102605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To evaluate the therapeutic effect of Chlorin e6 photodynamic therapy (Ce6-PDT) in human colorectal cancer cells and investigate the role of autophagy in Ce6-PDT. METHODS SW480 cells underwent Ce6-PDT with and without pretreatment with the autophagy inhibitor 3-methyladenine (3MA). Cell viability was assessed using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was evaluated using an Annexin V assay, using a rhodamine 123 (RH123) assay to evaluate mitochondrial membrane potential (MMP), and by measuring Caspase-3 and Bcl-2 protein expression using western blotting. Autophagy was evaluated by directly visualizing acridine orange-stained acidic vesicular organelles (AVOs) using fluorescent microscopy and by measuring LC3Ⅰ/Ⅱand Atg5 expression using western blotting. RESULTS Ce6-PDT decreased SW480 viability in a dose-dependent manner. Ce6-PDT induced apoptosis in SW480 cells via the mitochondrial apoptosis pathway as indicated by decreased mitochondrial membrane potential, increased Annexin V staining, and increased Caspase-3 expression. Ce6-PDT was also shown to induce autophagy as demonstrated by increased acridine-orange stained AVOs as well as increased expression of the autophagy-associated proteins Atg5. Inhibition of autophagy with 3MA potentiated SW480 cell response to Ce6-PDT and increased the rate of apoptosis in the treated cells. CONCLUSIONS Ce6-PDT induces autophagy and apoptosis of SW480 cells in a dose-dependent manner. Inhibition of autophagy increases the apoptosis induced by Ce6-PDT. Modulation of autophagy may be a potential therapeutic target for colon cancer cells treated with Ce6-PDT.
Collapse
|
18
|
Xu X, Cai W, Cai P, Zhang L, Yao H, Zhang T, Shen H, Chen S. Prognostic Nomogram for Acute Myeloid Leukemia Patients With Biallelic CEBPA Mutations. Front Oncol 2021; 11:628248. [PMID: 34513657 PMCID: PMC8427751 DOI: 10.3389/fonc.2021.628248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Adult acute myeloid leukemia (AML) patients with biallelic mutations of CEBPA (biCEBPA) displays a favorable clinical outcome, and is defined as a unique entity in the 2016 World Health Organization classification. However, due to the intrinsic characteristics of the mutation, existence of co-occurring mutations and diversified gene expression signature, the prognosis of these patients needs to be analyzed in a more systematic way. In this study we evaluated the genetic characteristics and clinical outcome in a cohort of 137 biCEBPA AML cases, and proposed a prognostic nomogram to predict the overall survival (OS) of based on the clinical variables selected by multivariate Cox regression model in training cohort, including age, white blood cell count, co-existence of DNMT3A and CSF3R mutation and whether patients could achieve complete remission after induction therapy. The area under the receiver operating characteristic (ROC) curves for 3 and 5-year OS were 0.833 and 0.863, respectively. RNA sequencing of 4 relapsed patients showed that over-expression of VMP1 was an indicator of poor prognosis of biCEBPA AML patients. In conclusion, this prognostic nomogram might provide a more accurate prediction of the clinical outcomes of biCEBPA AML patients.
Collapse
Affiliation(s)
- Xiaoyu Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Wenzhi Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Ping Cai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ling Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hong Yao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tongtong Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
20
|
Bao X, Zhang J, Huang G, Yan J, Xu C, Dou Z, Sun C, Zhang H. The crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Cell Death Dis 2021; 12:215. [PMID: 33637686 PMCID: PMC7910460 DOI: 10.1038/s41419-021-03505-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are essential cellular organelles that are involved in regulating cellular energy, metabolism, survival, and proliferation. To some extent, cancer is a genetic and metabolic disease that is closely associated with mitochondrial dysfunction. Hypoxia-inducible factors (HIFs), which are major molecules that respond to hypoxia, play important roles in cancer development by participating in multiple processes, such as metabolism, proliferation, and angiogenesis. The Warburg phenomenon reflects a pseudo-hypoxic state that activates HIF-1α. In addition, a product of the Warburg effect, lactate, also induces HIF-1α. However, Warburg proposed that aerobic glycolysis occurs due to a defect in mitochondria. Moreover, both HIFs and mitochondrial dysfunction can lead to complex reprogramming of energy metabolism, including reduced mitochondrial oxidative metabolism, increased glucose uptake, and enhanced anaerobic glycolysis. Thus, there may be a connection between HIFs and mitochondrial dysfunction. In this review, we systematically discuss the crosstalk between HIFs and mitochondrial dysfunctions in cancer development. Above all, the stability and activity of HIFs are closely influenced by mitochondrial dysfunction related to tricarboxylic acid cycle, electron transport chain components, mitochondrial respiration, and mitochondrial-related proteins. Furthermore, activation of HIFs can lead to mitochondrial dysfunction by affecting multiple mitochondrial functions, including mitochondrial oxidative capacity, biogenesis, apoptosis, fission, and autophagy. In general, the regulation of tumorigenesis and development by HIFs and mitochondrial dysfunction are part of an extensive and cooperative network.
Collapse
Affiliation(s)
- Xingting Bao
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Guomin Huang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Junfang Yan
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Caipeng Xu
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Zhihui Dou
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Chao Sun
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| | - Hong Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Guangdong, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
| |
Collapse
|
21
|
Li Z, Teng M, Wang Y, Wang Q, Feng Y, Xiao Z, Li C, Zeng K. The mechanism of 5-aminolevulinic acid photodynamic therapy in promoting endoplasmic reticulum stress in the treatment of HR-HPV-infected HeLa cells. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:348-359. [PMID: 33513285 DOI: 10.1111/phpp.12663] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/04/2021] [Accepted: 01/24/2021] [Indexed: 01/16/2023]
Abstract
BACKGROUND 5-aminoketovaleric acid, as a precursor of the strong photosensitizer protoporphyrin IX (PpIX), mainly enters the mitochondria after entering the cell, and the formed PpIX is also mainly localized in the mitochondria. So at present the research on the mechanism of 5-aminoketovalerate photodynamic therapy (ALA-PDT) mainly focuses on its impact on mitochondria. There are few reports on whether ALA-PAT can affect the endoplasmic reticulum and trigger endoplasmic reticulum stress (ERS). AIMS/OBJECTIVES Here we investigated the effects of ALA-PDT on endoplasmic reticulum and its underlying mechanisms in high-risk human papillomavirus (HR-HPV) infection. MATERIALS AND METHODS The human cervical cancer cell line HeLa (containing whole genome of HR-HPV18) was treated with ALAPDT, and cell viability, ROS production, the level of Ca2+ in the cytoplasm and apoptosis were evaluated by CCK8, immunofluorescence and flow cytometry, respectively. The protein expression of the markers of ERS and autophagy and CamKKβ-AMPK pathway was examined by western blot. RESULTS The results showed that ALA-PDT inhibited cell viability of HeLa cells in vitro; ALA-PDT induced autophagy in HeLa cells ; ALA-PDT induced autophagy via the Ca2+-CamKKβ-AMPK pathway, which could be suppressed by the inhibition of ERS;ALA-PDT induced ERS-specific apoptosis via the activation of caspase 12. CONCLUSIONS Our study demonstrated that ALA-PDT could exert a killing effect by inducing HeLa cell apoptosis, including endoplasmic reticulum-specific apoptosis. Meanwhile, ERS via the Ca2+ -CamKKβ-AMPK pathway promoted the occurrence of autophagy in HeLa cells. Inhibition of autophagy could increase the apoptosis rate of HeLa cells after ALA-PDT, suggesting that autophagy may be one of the mechanisms of PDT resistance; The Ca2+-CamKKβ-AMPK pathway and autophagy may be targets to improve the killing effect of ALA-PDT in treating HR-HPV infection.
Collapse
Affiliation(s)
- Zhijia Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Muzhou Teng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajie Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qi Wang
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yingjun Feng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zixuan Xiao
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changxing Li
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kang Zeng
- Department of Dermatology and Venereology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Liu YF, Luo D, Li X, Li ZQ, Yu X, Zhu HW. PVT1 Knockdown Inhibits Autophagy and Improves Gemcitabine Sensitivity by Regulating the MiR-143/HIF-1α/VMP1 Axis in Pancreatic Cancer. Pancreas 2021; 50:227-234. [PMID: 33565800 DOI: 10.1097/mpa.0000000000001747] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Elucidation of the regulatory mechanisms of gemcitabine sensitivity is needed to improve the therapeutic effects of this drug in pancreatic cancer. METHODS PANC-1 cells were transfected with small hairpin RNA against PVT1 or microRNA (miR)-143 mimics or inhibitor. The gemcitabine sensitivity of pancreatic cancer was evaluated. Autophagosomes were analyzed with an immunofluorescence assay. Cell viability and proliferation were examined with MTT assays. Quantitative reverse transcription-polymerase chain reaction and Western blotting were used to analyze the expression of PVT1, miR-143, HIF-1α, VMP1, LC3I/II, p62, and Beclin-1. The interactions of PVT1/miR-143 and miR-143/HIF-1α were assessed by dual-luciferase reporter assays. RESULTS PVT1 was upregulated while miR-143 was downregulated in pancreatic cancer. Both PVT1 knockdown and miR-143 overexpression suppressed autophagy and improved gemcitabine sensitivity in pancreatic cancer. PVT1 directly sponged miR-143 to regulate HIF-1α expression. MiR-143 inhibitor reversed the effect of PVT1 knockdown on autophagy and gemcitabine sensitivity. CONCLUSIONS PVT1 knockdown inhibited autophagy and improved gemcitabine sensitivity via the miR-143/HIF-1α/VMP1 axis in pancreatic cancer. Our investigation elucidated a novel regulatory mechanism of gemcitabine sensitivity and may contribute to improve the therapeutic effects of chemotherapy drugs on pancreatic cancer.
Collapse
Affiliation(s)
- Yun-Fei Liu
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Dong Luo
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Xia Li
- Endocrinology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Li
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Xiao Yu
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| | - Hong-Wei Zhu
- From the Departments of Hepatobiliary and Pancreatic Surgery II
| |
Collapse
|
23
|
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS, Itri R, Baptista MS, Tsubone TM. Autophagy Regulation and Photodynamic Therapy: Insights to Improve Outcomes of Cancer Treatment. Front Oncol 2021; 10:610472. [PMID: 33552982 PMCID: PMC7855851 DOI: 10.3389/fonc.2020.610472] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is considered an age-related disease that, over the next 10 years, will become the most prevalent health problem worldwide. Although cancer therapy has remarkably improved in the last few decades, novel treatment concepts are needed to defeat this disease. Photodynamic Therapy (PDT) signalize a pathway to treat and manage several types of cancer. Over the past three decades, new light sources and photosensitizers (PS) have been developed to be applied in PDT. Nevertheless, there is a lack of knowledge to explain the main biochemical routes needed to trigger regulated cell death mechanisms, affecting, considerably, the scope of the PDT. Although autophagy modulation is being raised as an interesting strategy to be used in cancer therapy, the main aspects referring to the autophagy role over cell succumbing PDT-photoinduced damage remain elusive. Several reports emphasize cytoprotective autophagy, as an ultimate attempt of cells to cope with the photo-induced stress and to survive. Moreover, other underlying molecular mechanisms that evoke PDT-resistance of tumor cells were considered. We reviewed the paradigm about the PDT-regulated cell death mechanisms that involve autophagic impairment or boosted activation. To comprise the autophagy-targeted PDT-protocols to treat cancer, it was underlined those that alleviate or intensify PDT-resistance of tumor cells. Thereby, this review provides insights into the mechanisms by which PDT can be used to modulate autophagy and emphasizes how this field represents a promising therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Waleska K Martins
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Renata Belotto
- Perola Byington Hospital Gynecology - Lasertherapy Clinical Research Department, São Paulo, Brazil
| | - Maryana N Silva
- Laboratory of Cell and Membrane, Anhanguera University of São Paulo, São Paulo, Brazil
| | - Daniel Grasso
- CONICET, Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maynne D Suriani
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Tayná S Lavor
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | | | - Tayana M Tsubone
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
24
|
Wang L, Guo J, Zhou J, Wang D, Kang X, Zhou L. NF-κB maintains the stemness of colon cancer cells by downregulating miR-195-5p/497-5p and upregulating MCM2. J Exp Clin Cancer Res 2020; 39:225. [PMID: 33109220 PMCID: PMC7592593 DOI: 10.1186/s13046-020-01704-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Colon cancer represents one of the leading causes of gastrointestinal tumors in industrialized countries, and its incidence appears to be increasing at an alarming rate. Accumulating evidence has unveiled the contributory roles of cancer stem cells (CSCs) in tumorigenicity, recurrence, and metastases. The functions of NF-kappa B (NF-κB) activation on cancer cell survival, including colon cancer cells have encouraged us to study the role of NF-κB in the maintenance of CSCs in colon cancer. METHODS Tumor samples and matched normal samples were obtained from 35 colon cancer cases. CSCs were isolated from human colon cancer cell lines, where the stemness of the cells was evaluated by cell viability, colony-forming, spheroid-forming, invasion, migration, and apoptosis assays. NF-κB activation was then performed in subcutaneous tumor models of CSCs by injecting lipopolysaccharides (LPS) i.p. RESULTS We found that NF-κB activation could reduce the expression of miR-195-5p and miR-497-5p, where these two miRNAs were determined to be downregulated in colon cancer tissues, cultured colon CSCs, and LPS-injected subcutaneous tumor models. Elevation of miR-195-5p and miR-497-5p levels by their specific mimic could ablate the effects of NF-κB on the stemness of colon cancer cells in vivo and in vitro, suggesting that NF-κB could maintain the stemness of colon cancer cells by downregulating miR-195-5p/497-5p. MCM2 was validated as the target gene of miR-195-5p and miR-497-5p in cultured colon CSCs. Overexpression of MCM2 was shown to restore the stemness of colon cancer cells in the presence of miR-195-5p and miR-497-5p, suggesting that miR-195-5p and miR-497-5p could impair the stemness of colon cancer cells by targeting MCM2 in vivo and in vitro. CONCLUSIONS Our work demonstrates that the restoration of miR-195-5p and miR-497-5p may be a therapeutic strategy for colon cancer treatment in relation to NF-κB activation.
Collapse
Affiliation(s)
- Longgang Wang
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jinxiang Guo
- Department of Respiratory Medicine, Taian Municipal Hospital, Taian, 271000, China
| | - Jin Zhou
- Department of Endocrinology, Affiliated Yantai Yuhuangding Hospital of QingdaoUniversity Medical, Yantai, 264000, China
| | - Dongyang Wang
- Department of Endoscopy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiuwen Kang
- Department of Intensive Care Unit, The First People's Hospital of Lianyungang, Lianyungang, 222000, China
| | - Lei Zhou
- Department of Oncological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Huaiyin District, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
25
|
Ashrafizadeh M, Zarrabi A, Orouei S, Kiavash Hushmandi, Hakimi A, Amirhossein Zabolian, Daneshi S, Samarghandian S, Baradaran B, Najafi M. MicroRNA-mediated autophagy regulation in cancer therapy: The role in chemoresistance/chemosensitivity. Eur J Pharmacol 2020; 892:173660. [PMID: 33310181 DOI: 10.1016/j.ejphar.2020.173660] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Chemoresistance has doubled the effort needed to reach an effective treatment for cancer. Now, scientists should consider molecular pathways and mechanisms involved in chemoresistance to overcome cancer. Autophagy is a "self-digestion" mechanism in which potentially toxic and aged organelles and macromolecules are degraded. Increasing evidence has shown that autophagy possesses dual role in cancer cells (onco-suppressor or oncogene). So, it is vital to identify its role in cancer progression and malignancy. MicroRNAs (miRs) are epigenetic factors capable of modulation of autophagy in cancer cells. In the current review, we emphasize on the relationship between miRs and autophagy in cancer chemotherapy. Besides, we discuss upstream mediators of miR/autophagy axis in cancer chemotherapy including long non-coding RNAs, circular RNAs, Nrf2 c-Myc, and HIF-1α. At the final section, we provide a discussion about how anti-tumor compounds affect miR/autophagy axis in ensuring chemosensitivity. These topics are described in this review to show how autophagy inhibition/induction can lead to chemosensitivity/chemoresistance, and miRs are considered as key players in these discussions.
Collapse
Affiliation(s)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Sima Orouei
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Azadeh Hakimi
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Gan J, Li S, Meng Y, Liao Y, Jiang M, Qi L, Li Y, Bai Y. The influence of photodynamic therapy on the Warburg effect in esophageal cancer cells. Lasers Med Sci 2020; 35:1741-1750. [PMID: 32034563 DOI: 10.1007/s10103-020-02966-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
To investigate whether the Warburg effect is a key modulator on the resistance mechanism of photodynamic therapy (PDT). Glycolysis was examined by the test of lactate product and glucose uptake at different post-PDT time points. Cell viability was detected by the CCK-8 assay and cell proliferation was detected by colony formation assay. The expression of glycolysis and related proteins were examined by western blotting. Target gene was silenced by RNAi. In the present study, we assessed the effect of PDT on cancer cell glycolysis. Our team has demonstrated that pyruvate kinase M2 (PKM2), a key speed-limiting enzyme of glycolysis, was significantly overexpressed in patients with esophageal cancer. Our results in the present study showed that PKM2 was downregulated, and lactate product and glucose uptake were inhibited in cells exposed to 5-aminolevulinic acid (5-ALA)-mediated PDT at 4 h after treatment. However, at 24 h after PDT, we observed a substantial increase in PKM2 expression, lactate product, and glucose uptake. Moreover, silencing of PKM2 gene abrogated the upregulatory effect of PDT on glycolysis at late post-PDT period. 2-Deoxy-D-glucose (2-DG) is a recognized chemical inhibitor of glycolysis. The combined treatment of 2-DG and PDT significantly inhibited tumor growth in vitro at 24 h. These results demonstrate that PDT drives the Warburg effect in a time-dependent manner, and PKM2 plays an important role in this progress, which indicated that PKM2 may be a potential molecular target to increase the sensitivity of esophageal cancer cells to PDT.
Collapse
Affiliation(s)
- Junqing Gan
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Shumin Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yu Meng
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yuanyu Liao
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Mingxia Jiang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Ling Qi
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China
| | - Yanjing Li
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| | - Yuxian Bai
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
27
|
Zinc(II), copper(II) and nickel(II) ions improve the selectivity of tetra-cationic platinum(II) porphyrins in photodynamic therapy and stimulate antioxidant defenses in the metastatic melanoma lineage (A375). Photodiagnosis Photodyn Ther 2020; 31:101942. [DOI: 10.1016/j.pdpdt.2020.101942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
|
28
|
Pucelik B, Sułek A, Barzowska A, Dąbrowski JM. Recent advances in strategies for overcoming hypoxia in photodynamic therapy of cancer. Cancer Lett 2020; 492:116-135. [PMID: 32693200 DOI: 10.1016/j.canlet.2020.07.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022]
Abstract
The selectivity of photodynamic therapy (PDT) derived from the tailored accumulation of photosensitizing drug (photosensitizer; PS) in the tumor microenvironment (TME), and from local irradiation, turns it into a "magic bullet" for the treatment of resistant tumors without sparing the healthy tissue and possible adverse effects. However, locally-induced hypoxia is one of the undesirable consequences of PDT, which may contribute to the emergence of resistance and significantly reduce therapeutic outcomes. Therefore, the development of strategies using new approaches in nanotechnology and molecular biology can offer an increased opportunity to eliminate the disadvantages of hypoxia. Emerging evidence indicates that wisely designed phototherapeutic procedures, including: (i) ROS-tunable photosensitizers, (ii) organelle targeting, (iii) nano-based photoactive drugs and/or PS delivery nanosystems, as well as (iv) combining them with other strategies (i.e. PTT, chemotherapy, theranostics or the design of dual anticancer drug and photosensitizers) can significantly improve the PDT efficacy and overcome the resistance. This mini-review addresses the role of hypoxia and hypoxia-related molecular mechanisms of the HIF-1α pathway in the regulation of PDT efficacy. It also discusses the most recent achievements as well as future perspectives and potential challenges of PDT application against hypoxic tumors.
Collapse
Affiliation(s)
- Barbara Pucelik
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Adam Sułek
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | - Agata Barzowska
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| | | |
Collapse
|
29
|
Valli F, García Vior MC, Roguin LP, Marino J. Crosstalk between oxidative stress-induced apoptotic and autophagic signaling pathways in Zn(II) phthalocyanine photodynamic therapy of melanoma. Free Radic Biol Med 2020; 152:743-754. [PMID: 31962157 DOI: 10.1016/j.freeradbiomed.2020.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is the most aggressive type of skin cancer, highly resistant to conventional therapies. Photodynamic therapy (PDT) is a minimally invasive treatment modality that combines the use of a photosensitizer, visible light and molecular oxygen, leading to oxidative stress in the specific site of irradiation. The cationic zinc(II) phthalocyanine Pc13 has shown to be a potent photosensitizer in different melanoma cell lines. In this study, we explored the intracellular signaling pathways triggered by Pc13 PDT and the role of these cascades in the phototoxic action of Pc13 in human melanoma A375 cells. Activation of MAPKs p38, ERK, JNK and PI3K-I/AKT was observed after treatment and prevented by using the antioxidant trolox. Inhibition of p38 reduced Pc13 phototoxicity, whereas blockage of JNK potentiated cell death. Results obtained indicate that p38 is involved in the cleavage of PARP-1, an important mediator of apoptosis. On the other hand, Pc13 irradiation induced the activation of an autophagic program, as evidenced by enhanced levels of Beclin-1, LC3-II and GFP-LC3 punctate staining. We also demonstrated that this autophagic response is promoted by JNK and negatively regulated by PI3K-I/AKT pathway. The blockage of autophagy increased Pc13 phototoxicity and enhanced PARP-1 cleavage, revealing a protective role of this mechanism, which tends to prevent apoptotic cell death. Furthermore, reduced susceptibility to treatment and increased activation of autophagy were detected in A375 cells submitted to repeated cycles of Pc13 PDT, indicating that autophagy could represent a mechanism of resistance to PDT. The efficacy of Pc13 PDT and an improved phototoxic action in combination with chloroquine were also demonstrated in tumor spheroids. In conclusion, we showed the interplay between apoptotic and autophagic signaling pathways triggered by Pc13 PDT-induced oxidative stress. Thus, autophagy modulation represents a promising therapeutic strategy to potentiate the efficacy of PDT in melanoma.
Collapse
Affiliation(s)
- Federico Valli
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - María C García Vior
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Orgánica, CONICET, Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Leonor P Roguin
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Julieta Marino
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, CONICET-UBA, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Kim JH, Kim IW. p62 manipulation affects chlorin e6-mediated photodynamic therapy efficacy in colorectal cancer cell lines. Oncol Lett 2020; 19:3907-3916. [PMID: 32391099 PMCID: PMC7204488 DOI: 10.3892/ol.2020.11522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/24/2020] [Indexed: 12/19/2022] Open
Abstract
p62 is a multifunctional protein that mediates cell signaling pathways, autophagy and tumorigenesis, and participates in important regulation processes at the intersection between autophagy and cancer. Photodynamic therapy (PDT) is a treatment that involves photosensitizing agents and light to kill cancer cells. However, whether the efficacy of PDT depends on the expression level of p62 in colorectal cancer cell lines is not known. The present study aimed to examine the role of p62 expression levels in chlorin e6-based PDT in colorectal cancer cells. To study the effect of p62 on cancer cell death, we used PDT to treat a stable cell line overexpressing p62. Cells overexpressing p62 showed a higher cell death rate than cells not expressing this protein. Overexpression of p62 may contribute to colorectal cancer cell death. These results provide preliminary evidence for use of p62 as a therapy target to treat colorectal cancer.
Collapse
Affiliation(s)
- Ju Hee Kim
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - In-Wook Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
31
|
Ropolo A, Catrinacio C, Renna FJ, Boggio V, Orquera T, Gonzalez CD, Vaccaro MI. A Novel E2F1-EP300-VMP1 Pathway Mediates Gemcitabine-Induced Autophagy in Pancreatic Cancer Cells Carrying Oncogenic KRAS. Front Endocrinol (Lausanne) 2020; 11:411. [PMID: 32655498 PMCID: PMC7324546 DOI: 10.3389/fendo.2020.00411] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily preserved degradation process of cytoplasmic cellular constituents, which participates in cell response to disease. We previously characterized VMP1 (Vacuole Membrane Protein 1) as an essential autophagy related protein that mediates autophagy in pancreatic diseases. We also demonstrated that VMP1-mediated autophagy is induced by HIF-1A (hypoxia inducible factor 1 subunit alpha) in colon-cancer tumor cell lines, conferring resistance to photodynamic treatment. Here we identify a new molecular pathway, mediated by VMP1, by which gemcitabine is able to trigger autophagy in human pancreatic tumor cell lines. We demonstrated that gemcitabine requires the VMP1 expression to induce autophagy in the highly resistant pancreatic cancer cells PANC-1 and MIAPaCa-2 that carry activated KRAS. E2F1 is a transcription factor that is regulated by the retinoblastoma pathway. We found that E2F1 is an effector of gemcitabine-induced autophagy and regulates the expression and promoter activity of VMP1. Chromatin immunoprecipitation assays demonstrated that E2F1 binds to the VMP1 promoter in PANC-1 cells. We have also identified the histone acetyltransferase EP300 as a modulator of VMP1 promoter activity. Our data showed that the E2F1-EP300 activator/co-activator complex is part of the regulatory pathway controlling the expression and promoter activity of VMP1 triggered by gemcitabine in PANC-1 cells. Finally, we found that neither VMP1 nor E2F1 are induced by gemcitabine treatment in BxPC-3 cells, which do not carry oncogenic KRAS and are sensitive to chemotherapy. In conclusion, we have identified the E2F1-EP300-VMP1 pathway that mediates gemcitabine-induced autophagy in pancreatic cancer cells. These results strongly support that VMP1-mediated autophagy may integrate the complex network of events involved in pancreatic ductal adenocarcinoma chemo-resistance. Our experimental findings point at E2F1 and VMP1 as novel potential therapeutic targets in precise treatment strategies for pancreatic cancer.
Collapse
Affiliation(s)
- Alejandro Ropolo
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Alejandro Ropolo
| | - Cintia Catrinacio
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Felipe Javier Renna
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Veronica Boggio
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Tamara Orquera
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudio D. Gonzalez
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- CEMIC University Institute, Buenos Aires, Argentina
| | - Maria I. Vaccaro
- Department of Pathophysiology, Institute of Biochemistry and Molecular Medicine (UBA-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Uthaman S, Pillarisetti S, Mathew AP, Kim Y, Bae WK, Huh KM, Park IK. Long circulating photoactivable nanomicelles with tumor localized activation and ROS triggered self-accelerating drug release for enhanced locoregional chemo-photodynamic therapy. Biomaterials 2019; 232:119702. [PMID: 31896514 DOI: 10.1016/j.biomaterials.2019.119702] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Although chemo-photodynamic therapy demonstrates promising synergetic therapeutic effect in malignant cancers, the currently available nanocarriers offer the limited capabilities for selective toxicity, drug release and tumor penetration. Herein, we developed photoactivatable nanomicelles, which are constructed by self-assembling of poly (ethylene glycol) (PEG)-stearamine (C18) conjugate (PTS) with a ROS-sensitive thioketal linker (TL) and co-loaded with doxorubicin (DOX) and photosensitizer pheophorbide A (PhA), for enhanced locoregional chemo-photodynamic therapy. Upon accumulation in tumor region, the resulting PTS nanomicelles loaded with Dox and PhA (PTS-DP) demonstrated reactive oxygen species (ROS) cascade responsive release of the DOX and PhA loaded inside. Initial intracellular release of DOX and PhA from the PTS-DP was triggered by the intrinsic presence of endogenous ROS within cancer cells. Furthermore, upon laser irradiation on the tumor region, enhanced singlet oxygen (1O2) was generated by PhA released initially in cancer cells, which in turns accelerated the cytoplasmic release of DOX through rapid dissociation of nanomicelles. The gradual elevation of local ROS level generated by light-activated PhA subsequent ROS-triggered release of DOX synergistically inhibited tumor growth and enhances the anti-tumor immunity. Findings of our study suggested that ROS-sensitive PTS nanomicelles could be a promising and innovative nanocarrier for locoregional chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Shameer Pillarisetti
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 58128, Republic of Korea
| | - Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 58128, Republic of Korea
| | - Yugyeong Kim
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Gwangju, 58128, Republic of Korea.
| |
Collapse
|
33
|
Duan X, Chen B, Cui Y, Zhou L, Wu C, Yang Z, Wen Y, Miao X, Li Q, Xiong L, He J. Ready player one? Autophagy shapes resistance to photodynamic therapy in cancers. Apoptosis 2019; 23:587-606. [PMID: 30288638 DOI: 10.1007/s10495-018-1489-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photodynamic therapy (PDT) is a procedure used in cancer therapy that has been shown to be useful for certain indications. Considerable evidence suggests that PDT might be superior to conventional modalities for some indications. In this report, we examine the relationship between PDT responsiveness and autophagy, which can exert a cytoprotective effect. Autophagy is an essential physiological process that maintains cellular homeostasis by degrading dysfunctional or impaired cellular components and organelles via a lysosome-based pathway. Autophagy, which includes macroautophagy and microautophagy, can be a factor that decreases or abolishes responses to various therapeutic protocols. We systematically discuss the mechanisms underlying cell-fate decisions elicited by PDT; analyse the principles of PDT-induced autophagy, macroautophagy and microautophagy; and present evidence to support the notion that autophagy is a critical mechanism in resistance to PDT. A combined strategy involving autophagy inhibitors may be able to further enhance PDT efficacy. Finally, we provide suggestions for future studies, note where our understanding of the relevant molecular regulators is deficient, and discuss the correlations among PDT-induced resistance and autophagy, especially microautophagy.
Collapse
Affiliation(s)
- Xian Duan
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Chen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanan Cui
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhou
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Chenkai Wu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhulin Yang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglong Li
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Jun He
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Jiang Y, Xu C, Leung W, Lin M, Cai X, Guo H, Zhang J, Yang F. Role of Exosomes in Photodynamic Anticancer Therapy. Curr Med Chem 2019; 27:6815-6824. [PMID: 31533597 DOI: 10.2174/0929867326666190918122221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/05/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022]
Abstract
Photodynamic Therapy (PDT) is a promising alternative treatment for malignancies based on photochemical reaction induced by Photosensitizers (PS) under light irradiation. Recent studies show that PDT caused the abundant release of exosomes from tumor tissues. It is well-known that exosomes as carriers play an important role in cell-cell communication through transporting many kinds of bioactive molecules (e.g. lipids, proteins, mRNA, miRNA and lncRNA). Therefore, to explore the role of exosomes in photodynamic anticancer therapy has been attracting significant attention. In the present paper, we will briefly introduce the basic principle of PDT and exosomes, and focus on discussing the role of exosomes in photodynamic anticancer therapy, to further enrich and boost the development of PDT.
Collapse
Affiliation(s)
- Yuan Jiang
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China,Department of Rehabilitation Medicine, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Chuanshan Xu
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Wingnang Leung
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, Hong Kong
| | - Mei Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Xiaowen Cai
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Huanhuan Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease,
School of Pharmaceutical Science & Fifth Affiliated Hospital, Guangzhou Medical University,
Guangzhou, Guangdong 511436, China
| | - Jiyong Zhang
- Shenzhen Maternity and Child Health Care Hospital, Shenzhen 518017, China
| | - Fanwen Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
35
|
Amirfallah A, Arason A, Einarsson H, Gudmundsdottir ET, Freysteinsdottir ES, Olafsdottir KA, Johannsson OT, Agnarsson BA, Barkardottir RB, Reynisdottir I. High expression of the vacuole membrane protein 1 (VMP1) is a potential marker of poor prognosis in HER2 positive breast cancer. PLoS One 2019; 14:e0221413. [PMID: 31442252 PMCID: PMC6707546 DOI: 10.1371/journal.pone.0221413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Background Fusion genes result from genomic structural changes, which can lead to alterations in gene expression that supports tumor development. The aim of the study was to use fusion genes as a tool to identify new breast cancer (BC) genes with a role in BC progression. Methods Fusion genes from breast tumors and BC cell lines were collected from publications. RNA-Seq data from tumors and cell lines were retrieved from databanks and analyzed for fusions with SOAPfuse or the analysis was purchased. Fusion genes identified in both tumors (n = 1724) and cell lines (n = 45) were confirmed by qRT-PCR and sequencing. Their individual genes were ranked by selection criteria that included correlation of their mRNA level with copy number. The expression of the top ranked gene was measured by qRT-PCR in normal tissue and in breast tumors from an exploratory cohort (n = 141) and a validation cohort (n = 277). Expression levels were correlated with clinical and pathological factors as well as the patients’ survival. The results were followed up in BC cohorts from TCGA (n = 818) and METABRIC (n = 2509). Results Vacuole membrane protein 1 (VMP1) was the most promising candidate based on specific selection criteria. Its expression was higher in breast tumor tissue than normal tissue (p = 1x10-4), and its expression was significantly higher in HER2 positive than HER2 negative breast tumors in all four cohorts analyzed. High expression of VMP1 associated with breast cancer specific survival (BCSS) in cohort 1 (hazard ratio (HR) = 2.31, CI 1.27–4.18) and METABRIC (HR = 1.26, CI 1.02–1.57), and also after adjusting for HER2 expression in cohort 1 (HR = 2.03, CI 1.10–3.72). BCSS was not significant in cohort 2 or TCGA cohort, which may be due to differences in treatment regimens. Conclusions The results suggest that high VMP1 expression is a potential marker of poor prognosis in HER2 positive BC. Further studies are needed to elucidate how VMP1 could affect pathways supportive of tumorigenesis.
Collapse
Affiliation(s)
- Arsalan Amirfallah
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Adalgeir Arason
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Hjorleifur Einarsson
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Eydis Thorunn Gudmundsdottir
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Edda Sigridur Freysteinsdottir
- Molecular Pathology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | | | - Oskar Thor Johannsson
- Department of Oncology, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Bjarni Agnar Agnarsson
- Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Rosa Bjork Barkardottir
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
- Molecular Pathology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
| | - Inga Reynisdottir
- Cell Biology Unit at the Pathology Department, Landspitali–The National University Hospital of Iceland, Reykjavik, Iceland
- The Biomedical Center, University of Iceland, Reykjavik, Iceland
- * E-mail:
| |
Collapse
|
36
|
Folkerts H, Wierenga AT, van den Heuvel FA, Woldhuis RR, Kluit DS, Jaques J, Schuringa JJ, Vellenga E. Elevated VMP1 expression in acute myeloid leukemia amplifies autophagy and is protective against venetoclax-induced apoptosis. Cell Death Dis 2019; 10:421. [PMID: 31142733 PMCID: PMC6541608 DOI: 10.1038/s41419-019-1648-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022]
Abstract
Vacuole membrane protein (VMP1) is a putative autophagy protein, which together with Beclin-1 acts as a molecular switch in activating autophagy. In the present study the role of VMP1 was analysed in CD34+ cells of cord blood (CB) and primary acute myeloid leukemia (AML) cells and cell lines. An increased expression of VMP1 was observed in a subset of AML patients. Functional studies in normal CB CD34+ cells indicated that inhibiting VMP1 expression reduced autophagic-flux, coinciding with reduced expansion of hematopoietic stem and progenitor cells (HSPC), delayed differentiation, increased apoptosis and impaired in vivo engraftment. Comparable results were observed in leukemic cell lines and primary AML CD34+ cells. Ultrastructural analysis indicated that leukemic cells overexpressing VMP1 displayed a reduced number of mitochondrial structures, while the number of lysosomal degradation structures was increased. The overexpression of VMP1 did not affect cell proliferation and differentiation, but increased autophagic-flux and improved mitochondrial quality, which coincided with an increased threshold for venetoclax-induced loss of mitochondrial outer membrane permeabilization (MOMP) and apoptosis. In conclusion, our data indicate that in leukemic cells high VMP1 is involved with mitochondrial quality control.
Collapse
Affiliation(s)
- Hendrik Folkerts
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Albertus T Wierenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Fiona A van den Heuvel
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Laboratory Medicine, University Medical Center Groningen, Groningen, The Netherlands
| | - Roy R Woldhuis
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Darlyne S Kluit
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jennifer Jaques
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Edo Vellenga
- Department of Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
37
|
Yim G, Kang S, Kim YJ, Kim YK, Min DH, Jang H. Hydrothermal Galvanic-Replacement-Tethered Synthesis of Ir-Ag-IrO 2 Nanoplates for Computed Tomography-Guided Multiwavelength Potent Thermodynamic Cancer Therapy. ACS NANO 2019; 13:3434-3447. [PMID: 30860814 DOI: 10.1021/acsnano.8b09516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Beyond the synthesis of typical nanocrystals, various breakthrough approaches have been developed to provide more useful structural features and functionalities. Among them, galvanic replacement, a structural transformation reaction accompanied by constituent element substitution, has been applied to various areas. However, the innovative improvement for galvanic replacement needs to be considered because of the limitation of applicable element pairs to maintain structural stability. To expand the boundary of galvanic-replacement-mediated synthesis, we have become interested in the Group 9 metallic element Ir, which is considered a fascinating element in the field of catalysis, but whose size and shape regulation has been conventionally regarded as difficult. To overcome the current limitations, we developed a hydrothermal galvanic-replacement-tethered synthetic route to prepare Ir-Ag-IrO2 nanoplates (IrNPs) with a transverse length of tens of nanometers and a rough surface morphology. A very interesting photoreactivity was observed from the prepared IrNPs, with Ag and IrO2 coexisting partially, which showed photothermal conversion and photocatalytic activity at different ratios against extinction wavelengths of 473, 660, and 808 nm. The present IrNP platform showed excellent photothermal conversion efficiency under near-infrared laser irradiation at 808 nm and also represented an effective cancer treatment in vitro and in vivo through a synergistic effect with reactive oxygen species (ROS) generation. In addition, computed tomography (CT) imaging contrast effects from Ir and IrO2 composition were also clearly observed.
Collapse
Affiliation(s)
- Gyeonghye Yim
- Department of Chemistry , Kwangwoon University , 20, Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| | - Seounghun Kang
- Center for RNA Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Young-Jin Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , San 101 , Eunha-ri, Bongdong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Young-Kwan Kim
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials , Korea Institute of Science and Technology , San 101 , Eunha-ri, Bongdong-eup, Wanju-gun , Jeollabuk-do 565-905 , Republic of Korea
| | - Dal-Hee Min
- Center for RNA Research , Institute for Basic Science (IBS) , Seoul 08826 , Republic of Korea
- Institute of Biotherapeutics Convergence Technology , Lemonex Inc. , Seoul 08826 , Republic of Korea
- Department of Chemistry , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hongje Jang
- Department of Chemistry , Kwangwoon University , 20, Gwangwoon-ro , Nowon-gu, Seoul 01897 , Republic of Korea
| |
Collapse
|
38
|
EtNBSe-PDT inhibited proliferation and induced autophagy of HNE-1 cells via downregulating the Wnt/β-catenin signaling pathway. Photodiagnosis Photodyn Ther 2019; 26:65-72. [PMID: 30831261 DOI: 10.1016/j.pdpdt.2019.02.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/19/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Increasing evidence has suggested that autophagy may play a resistant role during photodynamic therapy (PDT). The Wnt/β-catenin pathway is tightly involved in cell proliferation and autophagy. In this study, we aimed to determine the influence of 5-Ethylamino-9-diethylaminobenzo[a]phenoselenazinium (EtNBSe) mediated PDT (EtNBSe-PDT) on autophagy, proliferation and Wnt/β-catenin pathway in human NPC cell line (HNE-1 cells), and further explore the underlying crosstalk between them. METHODS Cell viability and proliferation was evaluated by MTT assay. Autophagy and Wnt/β-catenin signaling pathway was analyzed by western blotting and immunofluorescence. RESULTS It was revealed that EtNBSe-PDT significantly impeded the viability and proliferation of HNE-1 cells. Meanwhile EtNBSe-PDT could notably induce autophagy in HNE-1 cells accompanied with the inhibition of Wnt/β-catenin pathway. The Wnt/β-catenin pathway activator Wnt agonist was found to partially counteract the inhibitory proliferation of HNE-1 cells and suppress the autophagy induced by EtNBSe-PDT. In addition, pretreatment with the autophagy inhibitor 3-methyladenine (3-MA) or Wnt agonist showed the potential in enhancing the cytotoxic effect of EtNBSe-PDT (cell survival from 50.71 ± 4.16% to 24.53 ± 4.27% and from 52.64 ± 3.54% to 35.74 ± 4.27% respectively). CONCLUSION Taken together, this study demonstrated that EtNBSe-PDT suppressed viability and proliferation, and induced autophagy of HNE-1 cells via downregulating the Wnt/β-catenin pathway. The autophagy further constituted the cytoprotective mechanisms involved in HNE-1 cells, which suggested that the combination of EtNBSe-PDT and autophagy inhibitors may be a promising strategy for the treatment of human NPC.
Collapse
|
39
|
Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance. Cell Oncol (Dordr) 2019; 42:173-196. [PMID: 30756254 DOI: 10.1007/s13402-018-00418-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Previous analyses of the tumor microenvironment (TME) have resulted in a concept that tumor progression may depend on interactions between cancer cells and its surrounding stroma. An important aspect of these interactions is the ability of cancer cells to modulate stroma behavior, and vice versa, through the action of a variety of soluble mediators. Here, we aimed to identify soluble factors present in the TME of colorectal cancer cells that may affect relevant pathways through secretome profiling. METHODS To partially recapitulate the TME and its architecture, we co-cultured colorectal cancer cells (SW480, TC) with stromal fibroblasts (MRC-5, F) as 3D-spheroids. Subsequent characterization of both homotypic (TC) and heterotypic (TC + F) spheroid secretomes was performed using label-free liquid chromatography-mass spectrometry (LC-MS). RESULTS Through bioinformatic analysis using the NCI-Pathway Interaction Database (NCI-PID) we found that the HIF-1 signaling pathway was most highly enriched among the proteins whose secretion was enhanced in the heterotypic spheroids. Previously, we found that HIF-1 may be associated with resistance of colorectal cancer cells to photodynamic therapy (PDT), an antitumor therapy that combines photosensitizing agents, O2 and light to create a harmful photochemical reaction. Here, we found that the presence of fibroblasts considerably diminished the sensitivity of colorectal cancer cells to photodynamic activity. Although the biological significance of the HIF-1 pathway of secretomes was decreased after photosensitization, this decrease was partially reversed in heterotypic 3D-spheroids. HIF-1 pathway modulation by both PDT and stromal fibroblasts was confirmed through expression assessment of the HIF-target VEGF, as well as through HIF transcriptional activity assessment. CONCLUSION Collectively, our results delineate a potential mechanism by which stromal fibroblasts may enhance colorectal cancer cell survival and photodynamic treatment resistance via HIF-1 pathway modulation.
Collapse
|
40
|
Barbosa MC, Grosso RA, Fader CM. Hallmarks of Aging: An Autophagic Perspective. Front Endocrinol (Lausanne) 2019; 9:790. [PMID: 30687233 PMCID: PMC6333684 DOI: 10.3389/fendo.2018.00790] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/17/2018] [Indexed: 12/16/2022] Open
Abstract
Autophagy is a major protein turnover pathway by which cellular components are delivered into the lysosomes for degradation and recycling. This intracellular process is able to maintain cellular homeostasis under stress conditions, and its dysregulation could lead to the development of physiological alterations. The autophagic activity has been found to decrease with age, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Interestingly, failure of the autophagic process has been reported to worsen aging-associated diseases, such as neurodegeneration or cancer, among others. Likewise, it has been proposed in different organisms that maintenance of a proper autophagic activity contributes to extending longevity. In this review, we discuss recent papers showing the impact of autophagy on cell activity and age-associated diseases, highlighting the relevance of this process to the hallmarks of aging. Thus, understanding how autophagy plays an important role in aging opens new avenues for the discovery of biochemical and pharmacological targets and the development of novel anti-aging therapeutic approaches.
Collapse
Affiliation(s)
- María Carolina Barbosa
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Rubén Adrián Grosso
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
- Facultad de Odontología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
41
|
Rodríguez ME, Arévalo DE, Milla Sanabria L, Cuello Carrión FD, Fanelli MA, Rivarola VA. Heat shock protein 27 modulates autophagy and promotes cell survival after photodynamic therapy. Photochem Photobiol Sci 2019; 18:546-554. [DOI: 10.1039/c8pp00536b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) induces HSP27 over-expression which promotes autophagy and inhibits apoptosis.
Collapse
Affiliation(s)
| | - Daniela Elisa Arévalo
- Department of Molecular Biology
- National University of Río Cuarto
- Río Cuarto (5800)
- Argentina
| | - Laura Milla Sanabria
- Department of Molecular Biology
- National University of Río Cuarto
- Río Cuarto (5800)
- Argentina
| | | | - Mariel Andrea Fanelli
- Oncology Laboratory
- Institute of Experimental Medicine and Biology of Cuyo
- IMBECU-CRICYT
- Mendoza (5500)
- Argentina
| | | |
Collapse
|
42
|
Grasso D, Renna FJ, Vaccaro MI. Initial Steps in Mammalian Autophagosome Biogenesis. Front Cell Dev Biol 2018; 6:146. [PMID: 30406104 PMCID: PMC6206277 DOI: 10.3389/fcell.2018.00146] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
During the last decade, autophagy has been pointed out as a central process in cellular homeostasis with the consequent implication in most cellular settings and human diseases pathology. At present, there is significant data available about molecular mechanisms that regulate autophagy. Nevertheless, autophagy pathway itself and its importance in different cellular aspects are still not completely clear. In this article, we are focused in four main aspects: (a) Induction of Autophagy: Autophagy is an evolutionarily conserved mechanism induced by nutrient starvation or lack of growth factors. In higher eukaryotes, autophagy is a cell response to stress which starts as a consequence of organelle damage, such as oxidative species and other stress conditions. (b) Initiation of Autophagy; The two major actors in this signaling process are mTOR and AMPK. These multitasking protein complexes are capable to summarize the whole environmental, nutritional, and energetic status of the cell and promote the autophagy induction by means of the ULK1-Complex, that is the first member in the autophagy initiation. (c) ULK1-Complex: This is a highly regulated complex responsible for the initiation of autophagosome formation. We review the post-transductional modifications of this complex, considering the targets of ULK1. (d)The mechanisms involved in autophagosome formation. In this section we discuss the main events that lead to the initial structures in autophagy. The BECN1-Complex with PI3K activity and the proper recognition of PI3P are one of these. Also, the transmembrane proteins, such as VMP1 and ATG9, are critically involved. The membrane origin and the cellular localization of autophagosome biogenesis will be also considered. Hence, in this article we present an overview of the current knowledge of the molecular mechanisms involved in the initial steps of mammalian cell autophagosome biogenesis.
Collapse
Affiliation(s)
- Daniel Grasso
- Institute of Biochemistry and Molecular Medicine (IBIMOL-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Felipe Javier Renna
- Institute of Biochemistry and Molecular Medicine (IBIMOL-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Maria Ines Vaccaro
- Institute of Biochemistry and Molecular Medicine (IBIMOL-CONICET), School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Tong WW, Tong GH, Liu Y. Cancer stem cells and hypoxia-inducible factors (Review). Int J Oncol 2018; 53:469-476. [PMID: 29845228 DOI: 10.3892/ijo.2018.4417] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a subpopulation of tumor cells that exhibit properties similar to those of normal stem cells. Oxygen is an important regulator of cellular metabolism; hypoxia-inducible factors (HIFs) mediate metabolic switches in cells in hypoxic environments. Hypoxia clearly has the potential to exert a significant effect on the maintenance and evolution of CSCs. Both HIF‑1α and HIF‑2α may contribute to the regulation of cellular adaptation to hypoxia and resistance to cancer therapies. This review provides an overview of the roles of HIFs in CSCs. HIF‑1α and HIF‑2α have significant prognostic and predictive value in the clinic and the concept of personalized medicine should be applied in designing clinical trials for HIF inhibitors.
Collapse
Affiliation(s)
- Wei-Wei Tong
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Guang-Hui Tong
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yong Liu
- Department of Laboratory Medicine, Shengjing Affiliated Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
44
|
Zhang J, Kai L, Zhang W, Yin Y, Wang W. Association between genetic variants in p53 binding sites and risks of osteosarcoma in a Chinese population: a two-stage case-control study. Cancer Biol Ther 2018; 19:994-997. [PMID: 29595404 DOI: 10.1080/15384047.2018.1456607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common bone malignancies in children and adolescents. To date, inaugural mechanism of OS was considered as a complex process and was still not clear. The p53 gene, most important tumor suppressors, was associated with risk of many tumors, including OS. In current study, we evaluated the relationship between genetic variation of the p53 binding site and the OS susceptibility through a two-stage case-control study in Chinese population. We found that rs1295925 (OR = 0.85; 95 CI = 0.76-0.94; P = 0.003) and rs3787547 (OR = 1.27; 95 CI = 1.11-1.45; P = 4.0 × 10-4) was significantly with OS susceptibility. Compared with those with rs1295925-TT genotype, and the risk of OS was significantly lower in individuals with CT genotype (OR = 0.77; 95 CI = 0.65-0.92) and CC genotype (OR = 0.75; 95 CI = 0.60-0.93). Compared with those with rs3787547-GG genotype, and the risk of OS was significantly higher in individuals with AG genotype (OR = 1.32; 95 CI = 1.10-1.58) and AA genotype (OR = 1.46; 95 CI = 1.11-1.92). To sum up, our results prove that SNP rs1295925 and rs3787547 play an important role in the etiology of OS, suggesting them as the potential genetic modifier for OS development.
Collapse
Affiliation(s)
- Jingzhe Zhang
- a Department of Orthopedics , China-Japan Union Hospital Of Jilin University , Changchun130033, Jilin Province , China
| | - Li Kai
- b Department of Anesthesiology , China-Japan Union Hospital Of Jilin University , Changchun130033, Jilin Province , China
| | - Wenlong Zhang
- c Department of Hematology , China-Japan Union Hospital Of Jilin University , Changchun130033, Jilin Province , China
| | - Yu Yin
- d Department of Neurology , China-Japan Union Hospital Of Jilin University , Changchun130033, Jilin Province , China
| | - Wenjun Wang
- a Department of Orthopedics , China-Japan Union Hospital Of Jilin University , Changchun130033, Jilin Province , China
| |
Collapse
|