1
|
Wang Y, Xu C, Liu Q, Guo C, Zhang S. The Synthesis of Narrowly Dispersed Poly(ε-caprolactone) Microspheres by Dispersion Polymerization Using a Homopolymer Poly(dodecyl acrylate) as the Stabilizer. Polymers (Basel) 2024; 16:1911. [PMID: 39000766 PMCID: PMC11243806 DOI: 10.3390/polym16131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024] Open
Abstract
Using dodecyl acrylate as a raw material and 2-Cyanoprop-2-yl-dithiobenzoate as a chain transfer agent, poly(dodecyl acrylate) is synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Using poly(dodecyl acrylate) as stabilizers, narrowly dispersed poly(ε-caprolactone) microspheres with particle sizes ranging from 0.5 to 1.5 μm are successfully synthesized by ring-opening dispersion polymerization. The effects of the molecular weight of poly(dodecyl acrylate), the volume proportion of mixed solvent (i.e., 1,4-dioxane/heptane), and the reaction temperature on the particle size and its distribution are investigated. With careful control of the synthesis condition, microspheres can be obtained with a particle size distribution of 1.09 (Dw/Dn). The average particle size of poly(ε-caprolactone) microspheres decreased with the increase in the molecular weight of poly(dodecyl acrylate) and increased with the increase in the relative content of 1,4-dioxane. The uniformity of microspheres decreased with the increase in the polymerization temperature.
Collapse
Affiliation(s)
| | | | | | | | - Shengmiao Zhang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; (Y.W.); (C.X.); (Q.L.); (C.G.)
| |
Collapse
|
2
|
Polanowski P, Jeszka JK, Matyjaszewski K. Crosslinking and Gelation of Polymer Brushes and Free Polymer Chains in a Confined Space during Controlled Radical Polymerization─A Computer Simulation Study. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
3
|
Keller C, Kurita-Oyamada H, Grayson SM, Denslow ND. Physical Evidence of Oil Uptake and Toxicity Assessment of Amphiphilic Grafted Nanoparticles Used as Oil Dispersants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7917-7923. [PMID: 35580268 PMCID: PMC9227714 DOI: 10.1021/acs.est.1c08564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Herein, we report the toxicity evaluation of a new prototype dispersant system, silicon dioxide nanoparticles (NPs) functionalized with (3-glycidoxypropyl)triethoxysilane (GPS) and grafted poly(ε-caprolactone)-block-poly[oligo(ethylene glycol)methyl methacrylate mono-methyl ether] (NP-PCL-POEGMA). This serves as a follow up of our previous study where grafted silicon dioxide NPs functionalized with GPS and grafted hyperbranched poly(glycidol) (NP-HPG) were evaluated for reducing the toxicity in embryo, juvenile, and adult fish populations. In this study, the NP-HPG sample is used as a baseline to compare against the new NP-PCL-POEGMA samples. The relative size was established for three NP-PCL-POEGMA samples via cryogenic transmission electron microscopy. A quantitative mortality study determined that these NPs are non-toxic to embryo populations. An ethoxyresorufin-O-deethylase assay was performed on these NP-PCL-POEGMA samples to test for reduced cytochrome P450 1A after the embryos were exposed to the water-accommodated fraction of crude oil. Overall, these NP-PCL-POEGMA NPs better protected the embryo populations than the previous NP-HPG sample (using a protein activity end point), showing a trend in the right direction for prototype dispersants to replace the commercially utilized Corexit.
Collapse
Affiliation(s)
- Christopher
B. Keller
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Hajime Kurita-Oyamada
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Nancy D. Denslow
- Department
of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
4
|
Tang W, Li P, Yan D, Yan Y, Ren H, Wang B, Zhao J. Insights into the luminescent properties of poly(phenylene sulfide)–grafted metal–organic framework (Tb–MOF–PPS) via copolymerization. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221105253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, a novel poly(phenylene sulfide)-grafted metal-organic framework (Tb–MOF–PPS) was fabricated. Initially, 2,5-dichloroterephthalic acid and TbCl3·6H2O were used as raw materials to synthesize the dihalogenated MOF (Tb–MOF) through ultrasound irradiation and hydrothermal methods. Subsequently, Tb–MOF was added at different mole proportions (2.5, 5, 7.5, and 10%) for the copolymerization of PPS, and a serial of Tb–MOF–PPS composites were successfully obtained. Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy proved that the Tb–MOF was covalently connected to PPS. The introduction of the Tb–MOF had no evident influence on the thermal properties of the composites. Additionally, the fluorescence characteristics revealed that the fluorescence excitation and emission spectra of the composites had a large redshift compared with that of PPS and possessed visible-light photoluminescence properties. These results indicate that the composites obtained can be used as optical sensors.
Collapse
Affiliation(s)
- Wanli Tang
- College of Physics, Sichuan University, Chengdu, China
| | - Pengcheng Li
- College of Physics, Sichuan University, Chengdu, China
| | - Dawei Yan
- College of Physics, Sichuan University, Chengdu, China
| | - Yonggang Yan
- College of Physics, Sichuan University, Chengdu, China
| | - Haohao Ren
- College of Physics, Sichuan University, Chengdu, China
| | - Bo Wang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jingxian Zhao
- College of Physics, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Corcoran LG, Saldana Almaraz BA, Amen KY, Bothun GD, Raghavan SR, John VT, McCormick AV, Penn RL. Using Microemulsion Phase Behavior as a Predictive Model for Lecithin-Tween 80 Marine Oil Dispersant Effectiveness. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8115-8128. [PMID: 34191521 DOI: 10.1021/acs.langmuir.1c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine oil dispersants typically contain blends of surfactants dissolved in solvents. When introduced to the crude oil-seawater interface, dispersants facilitate the breakup of crude oil into droplets that can disperse in the water column. Recently, questions about the environmental persistence and toxicity of commercial dispersants have led to the development of "greener" dispersants consisting solely of food-grade surfactants such as l-α-phosphatidylcholine (lecithin, L) and polyoxyethylenated sorbitan monooleate (Tween 80, T). Individually, neither L nor T is effective at dispersing crude oil, but mixtures of the two (LT blends) work synergistically to ensure effective dispersion. The reasons for this synergy remain unexplained. More broadly, an unresolved challenge is to be able to predict whether a given surfactant (or a blend) can serve as an effective dispersant. Herein, we investigate whether the LT dispersant effectiveness can be correlated with thermodynamic phase behavior in model systems. Specifically, we study ternary "DOW" systems comprising LT dispersant (D) + a model oil (hexadecane, O) + synthetic seawater (W), with the D formulation being systematically varied (across 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 L:T weight ratios). We find that the most effective LT dispersants (60:40 and 80:20 L:T) induce broad Winsor III microemulsion regions in the DOW phase diagrams (Winsor III implies that the microemulsion coexists with aqueous and oil phases). This correlation is generally consistent with expectations from hydrophilic-lipophilic deviation (HLD) calculations, but specific exceptions are seen. This study then outlines a protocol that allows the phase behavior to be observed on short time scales (ca. hours) and provides a set of guidelines to interpret the results. The complementary use of HLD calculations and the outlined fast protocol are expected to be used as a predictive model for effective dispersant blends, providing a tool to guide the efficient formulation of future marine oil dispersants.
Collapse
Affiliation(s)
- Louis G Corcoran
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Brian A Saldana Almaraz
- Washington Technology Magnet School, 1495 Rice Street, Saint Paul, Minnesota 55117, United States
| | - Kamilah Y Amen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering, University of Rhode Island, 51 Lower College Road, Kingston, Rhode Island 02881, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, 4418 Stadium Drive, College Park, Maryland 20742, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, 300 Lindy Boggs Building, New Orleans, Louisiana 70112, United States
| | - Alon V McCormick
- Department of Chemical Engineering and Material Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - R Lee Penn
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Wang Y, Quevedo K, Pentzer E. Inter-capsule fusion and capsule shell destruction using dynamic covalent polymers. Polym Chem 2021. [DOI: 10.1039/d1py00271f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, capsule shells containing hindered urea bonds were prepared using interfacial polymerization in an oil-in-oil Pickering emulsion stabilized by functionalized graphene oxide nanosheets.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| | - Khamila Quevedo
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| | - Emily Pentzer
- Department of Materials Science & Engineering
- Texas A&M University
- College Station
- USA
| |
Collapse
|
7
|
Keller CB, Walley SE, Jarand CW, He J, Ejaz M, Savin DA, Grayson SM. Synthesis of poly(caprolactone)- block-poly[oligo(ethylene glycol)methyl methacrylate] amphiphilic grafted nanoparticles (AGNs) as improved oil dispersants. Polym Chem 2021. [DOI: 10.1039/d1py00418b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amphiphilic polymers have been covalently grafted from a SiO2 core with room temperature polymerizations. These amphiphilic grafted nanoparticles have been found to uptake up to 30 times their mass in crude oil within a 24 hour window.
Collapse
Affiliation(s)
- Christopher B. Keller
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Susan E. Walley
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Curtis W. Jarand
- Department of Physics and Engineering Physics, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Jibao He
- Coordinated Instrument Facility, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Muhammad Ejaz
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| | - Daniel A. Savin
- Department of Chemistry, Leigh Hall, University of Florida, Gainesville, Florida 32611, USA
| | - Scott M. Grayson
- Department of Chemistry, Percival Stern Hall, Tulane University, New Orleans, Louisiana, 70118, USA
| |
Collapse
|
8
|
Dhara M, Rudra S, Mukherjee N, Jana T. Hollow polymer nanocapsules with a ferrocenyl copolymer shell. Polym Chem 2021. [DOI: 10.1039/d1py00590a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hollow polymer nanocapsules consisting of ferrocenyl shell have been developed by crosslinking the polymer chains grafted over silica nanoparticles synthesized via one pot surface-initiated RAFT polymerization.
Collapse
Affiliation(s)
- Moumita Dhara
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | - Somdatta Rudra
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| | | | - Tushar Jana
- School of Chemistry
- University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
9
|
Zhang Q, Chen Y, Lu R, Yao Y, Li C, Yu Y, Zhang S. Cross-linked small-molecule capsules with excitation wavelength-dependent photoluminescence and high loading capacity: design, synthesis and application in imaging-guided drug delivery. J Mater Chem B 2020; 8:2719-2725. [PMID: 32149293 DOI: 10.1039/c9tb02465d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cross-linked small-molecule micelles (cSMs) have found applications in many fields but their low loading capacity and non-fluorescence property hindered their further development. Herein, water-soluble organic nanoparticles were applied as templates to "stretch" the hydrophobic core of cSMs and photo-cross-linking was employed to supply photoluminescence. The resulting cross-linked small-molecule capsules (cSCs) not only reserve the superior properties of cSMs of accurate monomer, easy functionalization and robust stability, but also achieve high drug loading capacity and excitation wavelength-dependent fluorescence, where the drug loading contents (DLCs) for various hydrophobic drugs were more than 30-fold higher than that of cSMs, and the maximum quantum yield could be as high as 12.0%. Featuring these superiorities, the cSCs hold promising potential in many fields and an example of doxorubicin-loaded cSCs (DOX@cSCs) for multichannel imaging-guided drug delivery is shown in this work.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yun Chen
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Ruilin Lu
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| | - Yongchao Yao
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Chuanqi Li
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Yunlong Yu
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | - Shiyong Zhang
- National Engineering Research Centre for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China. and College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
10
|
Luo Q, Pentzer E. Encapsulation of Ionic Liquids for Tailored Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5169-5176. [PMID: 31721558 DOI: 10.1021/acsami.9b16546] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This spotlight article highlights the favorable impact encapsulation of ionic liquids (ILs) has on multiple advanced applications. ILs are molten salts with many attractive properties such as negligible vapor pressure, good thermal stability, and high ionic conductivity; however, their widespread implementation in advanced applications is hampered by their relatively high viscosity, which makes them difficult to handle and results in slow mass transfer rates. The ability to encapsulate IL in a shell holds potential to impact many applications, including separations, gas sequestration, and energy storage and management, given that the capsule structure provides high surface area compared to that of bulk IL and also allows handling of the IL as a solid. Herein, we discuss encapsulation of ILs using different approaches and highlight the contributions from our lab in both capsule preparation and application. Specifically, we have developed the ability to use 2D carbon nanoparticle surfactants and interfacial polymerization to prepare capsules of IL using both IL-in-water and IL-in-oil Pickering emulsions as templates. This facile, one-step method to encapsulate ILs gives structures with beneficial performance in supercapacitors, separations, and CO2 sequestration, as discussed herein. We conclude this spotlight with an outlook on how to improve upon these systems for next-generation applications.
Collapse
Affiliation(s)
- Qinmo Luo
- Department of Chemistry , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering , Texas A&M University , College Station , Texas 77840 , United States
| |
Collapse
|
11
|
Kalaj M, Bentz KC, Ayala S, Palomba JM, Barcus KS, Katayama Y, Cohen SM. MOF-Polymer Hybrid Materials: From Simple Composites to Tailored Architectures. Chem Rev 2020; 120:8267-8302. [PMID: 31895556 DOI: 10.1021/acs.chemrev.9b00575] [Citation(s) in RCA: 305] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Metal-organic frameworks (MOFs) are inherently crystalline, brittle porous solids. Conversely, polymers are flexible, malleable, and processable solids that are used for a broad range of commonly used technologies. The stark differences between the nature of MOFs and polymers has motivated efforts to hybridize crystalline MOFs and flexible polymers to produce composites that retain the desired properties of these disparate materials. Importantly, studies have shown that MOFs can be used to influence polymer structure, and polymers can be used to modulate MOF growth and characteristics. In this Review, we highlight the development and recent advances in the synthesis of MOF-polymer mixed-matrix membranes (MMMs) and applications of these MMMs in gas and liquid separations and purifications, including aqueous applications such as dye removal, toxic heavy metal sequestration, and desalination. Other elegant ways of synthesizing MOF-polymer hybrid materials, such as grafting polymers to and from MOFs, polymerization of polymers within MOFs, using polymers to template MOFs, and the bottom-up synthesis of polyMOFs and polyMOPs are also discussed. This review highlights recent papers in the advancement of MOF-polymer hybrid materials, as well as seminal reports that significantly advanced the field.
Collapse
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Sergio Ayala
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Joseph M Palomba
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Kyle S Barcus
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Yuji Katayama
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States.,Asahi Kasei Corporation, 2-1 Samejima, Fuji-city, Shizuoka 416-8501, Japan
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
12
|
Zheng K, Ren J, He J. Thermally Responsive Unimolecular Nanoreactors from Amphiphilic Dendrimer-Like Copolymer Prepared via Anionic Polymerization and Cross Metathesis Reaction. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00920] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ke Zheng
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Jie Ren
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Junpo He
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Wichaita W, Polpanich D, Tangboriboonrat P. Review on Synthesis of Colloidal Hollow Particles and Their Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02330] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Waraporn Wichaita
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| | - Duangporn Polpanich
- NANOTEC, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Pramuan Tangboriboonrat
- Department of Chemistry, Faculty of Science, Mahidol University, Rama 6 Road, Phyathai, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Brannigan RP, Kimmins SD, Bobbi E, Caulfield S, Heise A. Synthesis of Novel
bis
‐Triazolinedione Crosslinked Amphiphilic Polypept(o)ide Nanostructures. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruairí P. Brannigan
- Department of ChemistryRoyal College of Surgeons in Ireland (RCSI) 123 St Stephen's Green Dublin 2 D02 YN77 Ireland
| | - Scott D. Kimmins
- Department of ChemistryRoyal College of Surgeons in Ireland (RCSI) 123 St Stephen's Green Dublin 2 D02 YN77 Ireland
| | - Elena Bobbi
- Department of ChemistryRoyal College of Surgeons in Ireland (RCSI) 123 St Stephen's Green Dublin 2 D02 YN77 Ireland
| | - Séamus Caulfield
- Department of ChemistryRoyal College of Surgeons in Ireland (RCSI) 123 St Stephen's Green Dublin 2 D02 YN77 Ireland
| | - Andreas Heise
- Department of ChemistryRoyal College of Surgeons in Ireland (RCSI) 123 St Stephen's Green Dublin 2 D02 YN77 Ireland
| |
Collapse
|
15
|
Nandi M, Maiti B, Banerjee S, De P. Hydrogen bonding driven self-assembly of side-chain amino acid and fatty acid appended poly(methacrylate)s: Gelation and application in oil spill recovery. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29289] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mridula Nandi
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur, 741246, Nadia West Bengal India
| | - Binoy Maiti
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur, 741246, Nadia West Bengal India
| | - Soham Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur, 741246, Nadia West Bengal India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences; Indian Institute of Science Education and Research, Kolkata; Mohanpur, 741246, Nadia West Bengal India
| |
Collapse
|
16
|
Abstract
Hollow polymer nanocapsules (HPNs) have gained tremendous interest in recent years due to their numerous desirable properties compared to their solid counterparts.
Collapse
Affiliation(s)
- Kyle C. Bentz
- Department of Chemistry
- University of Florida
- Gainesville
- USA
| | | |
Collapse
|
17
|
Kubo T, Bentz KC, Powell KC, Figg CA, Swartz JL, Tansky M, Chauhan A, Savin DA, Sumerlin BS. Modular and rapid access to amphiphilic homopolymers via successive chemoselective post-polymerization modification. Polym Chem 2017. [DOI: 10.1039/c7py01585b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A modular and simplified post-polymerization modification strategy is developed for the synthesis of amphiphilic homopolymers.
Collapse
Affiliation(s)
- Tomohiro Kubo
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Kyle C. Bentz
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Kristin C. Powell
- Department of Chemical Engineering
- University of Florida
- Gainesville
- USA
| | - C. Adrian Figg
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Jeremy L. Swartz
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Maxym Tansky
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Anuj Chauhan
- Department of Chemical Engineering
- University of Florida
- Gainesville
- USA
| | - Daniel A. Savin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory
- Center for Macromolecular Science & Engineering
- Department of Chemistry
- University of Florida
- Gainesville
| |
Collapse
|