1
|
Yu W, Zhou Y, Zhao Y, Bai W. Syntheses and characterizations of rhenaindole complexes. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
2
|
Lin Z, Cai Y, Zhang Y, Zhang H, Xia H. Heterocyclic Suzuki-Miyaura coupling reaction of metalla-aromatics and mechanistic analysis of site selectivity. Chem Sci 2023; 14:1227-1233. [PMID: 36756314 PMCID: PMC9891379 DOI: 10.1039/d2sc05455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Pd-catalyzed Suzuki-Miyaura cross-coupling is one of the most straightforward and versatile methods for the construction of functionalized arenes and heteroarenes but site-selective cross-coupling of polyhalogenated (hetero)arenes containing identical halogen substituents remains a challenging problem. Herein, we report a new candidate for heterocyclic Suzuki-Miyaura coupling reaction. This candidate has been applied in organometallic systems by combining classical aryl boronic acid reagents with non-classical heteroarenes. Experimental and computational studies of the mechanism of the reactions were performed, with an emphasis on the identity of the reactive species in the oxidative addition step and the nature of the precise site selectivity. The influence of both the aromaticity of the metalla-aromatic substrates and the steric and electronic properties of the halogenated sites are studied in detail.
Collapse
Affiliation(s)
- Zuzhang Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yapeng Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yaowei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
3
|
Luo M, Chen D, Li Q, Xia H. Unique Properties and Emerging Applications of Carbolong Metallaaromatics. Acc Chem Res 2023; 56:924-937. [PMID: 36718118 DOI: 10.1021/acs.accounts.2c00750] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ConspectusAromatic compounds are important in synthetic chemistry, biomedicines, and materials science. As a special type of aromatic complex, transition-metal-based metallaaromatics contain at least one transition metal in an aromatic framework. The chemistry of metallaaromatics has seen much progress in computational studies and synthetic methods, but their properties and applications are still emerging. In recent years, we have disclosed a series of metal-centered conjugated polycyclic metallacycles in which a carbon chain is chelated to a metal center through at least three metal-carbon bonds. These are termed carbolong complexes and exhibit good stability to water, oxygen, light, and heat on account of their polydentate chelation and aromaticity, making them easy to handle. Carbolong complexes are not only special π-conjugated aromatics but also organometallics; therefore, they have the properties of both species. In this Account, we showcase the recent advances in their applications based on their different properties.First, carbolong complexes are a special kind of π-conjugated aromatic, with the ability to transmit electrons, allowing them to function as single-molecule conductors and candidates for electron transporting layer materials (ETLs) in solar cells. A series of carbolong complexes have been proved to be useful as achievable ETLs which enhance device performance in both organic solar cells and perovskite solar cells.Second, due to the involvement of d orbitals in the conjugation, carbolong complexes normally exhibit strong and broad absorption, even in some cases extending to the near-infrared region (NIR). The absorbed optical energy can be converted into light, heat, and ultrasound; consequently, carbolong compounds can be used as core moieties in smart materials. For example, 7C carbolong complexes were found to exhibit aggregation-enhanced near-infrared emission (AIEE). Some 12C carbolong complexes have been designed into the core moieties of NIR-responsive polymers, such as cylindrical NIR-responsive materials, self-healing materials, and shape memory materials. In contrast to the stereotypically toxic osmium compounds such as the highly toxic OsO4, some osmium carbolong complexes exhibit low cell cytotoxicity and good biocompatibility; consequently, they also have potential applications in the biomedical area. For example, benefiting from broad absorption in the NIR, 9C and 12C carbolong complexes have been used in photoacoustic imaging and photothermal therapy, respectively. In addition, photodynamic therapeutic applications which take advantage of a carbolong peroxo complex are discussed.Third, as special transition-metal complexes chelated by carbon-based ligands, a carbolong peroxo complex has displayed catalytic activity in the dehydrogenation of alcohols and a bimetallic carbolong complex has been used to catalyze difunctionalization reactions of unactivated alkenes.Overall, aromatic carbolong complexes have been applied to photovoltaics, smart materials, phototherapy, and catalytic reactions. Moving forward, we hope that this Account will shed light on future studies and theoretical research and encourage more discoveries of the properties of other metallaaromatics.
Collapse
Affiliation(s)
- Ming Luo
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dafa Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haiping Xia
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Su J, Cai P, Yan T, Yang ZM, Yuan S, Zuo JL, Zhou HC. Enhancing the photothermal conversion of tetrathiafulvalene-based MOFs by redox doping and plasmon resonance. Chem Sci 2022; 13:1657-1664. [PMID: 35282630 PMCID: PMC8826858 DOI: 10.1039/d1sc07001k] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022] Open
Abstract
Near-infrared (NIR) photothermal materials hold great promise for use in several applications, particularly in photothermal therapy, diagnosis, and imaging. However, current NIR responsive materials often show narrow absorption bands and low absorption efficiency, and have long response times. Herein, we demonstrate that the NIR absorption of tetrathiafulvalene-based metal–organic frameworks (MOFs) can be tuned by redox doping and using plasmonic nanoparticles. In this work, a MOF containing redox-active tetrathiafulvalene (TTF) units and Dy-carboxylate chains was constructed, Dy-m-TTFTB. The NIR absorption of the as-synthesized Dy-m-TTFTB was further enhanced by Ag+ or I2 oxidation, transforming the neutral TTF into a TTF˙+ radical state. Interestingly, treatment with Ag+ not only generated TTF˙+ radicals, but it also formed Ag nanoparticles (NPs) in situ within the MOF pores. With both TTF˙+ radicals and Ag NPs, Ag NPs@Dy-m-TTFTB was shown to exhibit a wide range of absorption wavelengths (200–1000 nm) and also a high NIR photothermal conversion. When the system was irradiated with an 808 nm laser (energy power of 0.7 W cm−2), Ag NPs@Dy-m-TTFTB showed a sharp temperature increase of 239.8 °C. This increase was higher than that of pristine Dy-m-TTFTB (90.1 °C) or I2 treated I3−@Dy-m-TTFTB (213.0 °C). The photo-response of the redox-active metal–organic framework has been systematically tuned by incorporating plasmonic Ag nanoparticles and tetrathiafulvalene radicals, resulting in efficient near-infrared photothermal conversion materials.![]()
Collapse
Affiliation(s)
- Jian Su
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Zhi-Mei Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Yang L, Zhao H, Xie Y, Ouyang P, Ruan Y, Chen J, Weng W, He X, Xia H. Optically Reconfigurable Shape Memory Metallo-Polymer Mediated by Carbolong Complex and Radically Exchangeable Covalent Bond. Polym Chem 2022. [DOI: 10.1039/d2py00192f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conventional shape memory polymers (SMPs) are restricted to predetermined permanent shape, therefore cannot be remoulded arbitrarily to adapt to variant application scenarios. Meanwhile, shape memory behaviour is mostly thermally active...
Collapse
|
6
|
Cao Q, Wang P, Cai Y, Hua Y, Zheng S, Cheng X, HE G, Wen TB, Chen J. Synthesis and Characterization of Rhena[10]annulynes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00463a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Most of the reported metallacycles were limited to small cyclic complexes that contain six-membered or smaller rings. Larger-membered metallacycles are still rare and mainly focus on the dimetallacycles. Herein, we...
Collapse
|
7
|
Lin X, Xie W, Lin Q, Cai Y, Hua Y, Lin J, He G, Chen J. NIR-responsive metal-containing polymer hydrogel for light-controlled microvalve. Polym Chem 2021. [DOI: 10.1039/d1py00404b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
NIR-responsive metal-containing polymer hydrogel was prepared via the radical copolymerization of N-isopropylacrylamide and an osmium aromatic complex. It has excellent photothermal property and can be used as a light-controlled microvalve.
Collapse
Affiliation(s)
- Xusheng Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Weiwei Xie
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuanting Cai
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jianfeng Lin
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen
- People's Republic of China
| |
Collapse
|
8
|
Abstract
Due to the linear property around an acetylenic carbon, the introduction of such an atom to a small cycle would result in high ring strain. Currently, the smallest isolated rings are five-membered, including metallacycloalkynes and metallapentalynes. Both types contain at least one unusual small bond angle around the acetylenic carbon, thus exhibiting abnormal reactivities. This feature article gives a comprehensive overview on these two kind complexes. The synthesis and reactivities are extensively described, the source of stability is presented, and the future prospect is discussed. The article aims to provide a better development for the chemical diversity of five-membered metallacycloalkynes and metallapentalynes.
Collapse
|
9
|
Su Q, Ding J, Du Z, Lai Y, Li H, Ouyang MA, Song L, Lin R. Recent Advances in the Reactions of Cyclic Carbynes. Molecules 2020; 25:E5050. [PMID: 33143337 PMCID: PMC7663793 DOI: 10.3390/molecules25215050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022] Open
Abstract
The acyclic organic alkynes and carbyne bonds exhibit linear shapes. Metallabenzynes and metallapentalynes are six- or five-membered metallacycles containing carbynes, whose carbine-carbon bond angles are less than 180°. Such distortion results in considerable ring strain, resulting in the unprecedented reactivity compared with acyclic carbynes. Meanwhile, the aromaticity of these metallacycles would stabilize the ring system. The fascinating combination of ring strain and aromaticity would lead to interesting reactivities. This mini review summarized recent findings on the reactivity of the metal-carbon triple bonds and the aromatic ring system. In the case of metallabenzynes, aromaticity would prevail over ring strain. The reactions are similar to those of organic aromatics, especially in electrophilic reactions. Meanwhile, fragmentation of metallacarbynes might be observed via migratory insertion if the aromaticity of metallacarbynes is strongly affected. In the case of metallapentalynes, the extremely small bond angle would result in high reactivity of the carbyne moiety, which would undergo typical reactions for organic alkynes, including interaction with coinage metal complexes, electrophilic reactions, nucleophilic reactions and cycloaddition reactions, whereas the strong aromaticity ensured the integrity of the bicyclic framework of metallapentalynes throughout all reported reaction conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liyan Song
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.S.); (J.D.); (Z.D.); (Y.L.); (H.L.); (M.-A.O.)
| | - Ran Lin
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education), College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.S.); (J.D.); (Z.D.); (Y.L.); (H.L.); (M.-A.O.)
| |
Collapse
|
10
|
Abstract
Since the prediction of the existence of metallabenzenes in 1979, metallaaromatic chemistry has developed rapidly, due to its importance in both experimental and theoretical fields. Now six major types of metallaromatic compounds, metallabenzenes, metallabenzynes, heterometallaaromatics, dianion metalloles, metallapentalenes and metallapentalynes (also termed carbolongs), and spiro metalloles, have been reported and extensively studied. Their parent organic analogues may be aromatic, non-aromatic, or even anti-aromatic. These unique systems not only enrich the large family of aromatics, but they also broaden our understanding and extend the concept of aromaticity. This review provides a comprehensive overview of metallaaromatic chemistry. We have focused on not only the six major classes of metallaaromatics, including the main-group-metal-based metallaaromatics, but also other types, such as metallacyclobutadienes and metallacyclopropenes. The structures, synthetic methods, and reactivities are described, their applications are covered, and the challenges and future prospects of the area are discussed. The criteria commonly used to judge the aromaticity of metallaaromatics are presented.
Collapse
Affiliation(s)
- Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China
| | - Yuhui Hua
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, People's Republic of China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
11
|
Chen Y, Yang L, Zheng W, Ouyang P, Zhang H, Ruan Y, Weng W, He X, Xia H. Dynamic Polymer Network System Mediated by Radically Exchangeable Covalent Bond and Carbolong Complex. ACS Macro Lett 2020; 9:344-349. [PMID: 35648539 DOI: 10.1021/acsmacrolett.0c00035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
It is appealing to develop dynamic polymer systems with multifunctionl properties. Herein, we report a polyurethane elastomer with a dynamic covalent polymer network containing a radically exchangeable 2-arylindane-l,3-dione dimer as thermally sensitive and reversible cross-links. In addition, the carbolong complex, an excellent photothermal agent, is incorporated into the dynamic network backbone. With the irradiation of NIR light, the carbolong complex rapidly generates thermal energy, which subsequently triggers the cleavage of the dynamic covalent bond to generate radicals and activate the polyurethane network. In proof-of-concept experiments, we demonstrate that the utility of a combination of radically exchangeable covalent bond and carbolong moiety brings multiple functional characteristics to the polymer network with a capability of spatiotemporal control, including thermochromism, photochromism, rewritability, malleability, and self-healing. This study holds potentials for exploring more tunable dynamics and improved material properties.
Collapse
|
12
|
Dzhardimalieva GI, Rabinskiy LN, Kydralieva KA, Uflyand IE. Recent advances in metallopolymer-based drug delivery systems. RSC Adv 2019; 9:37009-37051. [PMID: 35539076 PMCID: PMC9075603 DOI: 10.1039/c9ra06678k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022] Open
Abstract
Metallopolymers (MPs) or metal-containing polymers have shown great potential as new drug delivery systems (DDSs) due to their unique properties, including universal architectures, composition, properties and surface chemistry. Over the past few decades, the exponential growth of many new classes of MPs that deal with these issues has been demonstrated. This review presents and assesses the recent advances and challenges associated with using MPs as DDSs. Among the most widely used MPs for these purposes, metal complexes based on synthetic and natural polymers, coordination polymers, metal-organic frameworks, and metallodendrimers are distinguished. Particular attention is paid to the stimulus- and multistimuli-responsive metallopolymer-based DDSs. Of considerable interest is the use of MPs for combination therapy and multimodal systems. Finally, the problems and future prospects of using metallopolymer-based DDSs are outlined. The bibliography includes articles published over the past five years.
Collapse
Affiliation(s)
- Gulzhian I Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS Academician Semenov Avenue 1 Chernogolovka Moscow Region 142432 Russian Federation
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Lev N Rabinskiy
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Kamila A Kydralieva
- Moscow Aviation Institute (National Research University) Volokolamskoe Shosse, 4 Moscow 125993 Russia
| | - Igor E Uflyand
- Department of Chemistry, Southern Federal University B. Sadovaya Str. 105/42 Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
13
|
Zhang H, Zhao H, Zhuo K, Hua Y, Chen J, He X, Weng W, Xia H. “Carbolong” polymers with near infrared triggered, spatially resolved and rapid self-healing properties. Polym Chem 2019. [DOI: 10.1039/c8py01482e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugated Möbius metalla-aromatic “carbolong” is incorporated into polymers to achieve spatially resolved, repeated and fast healing through a photothermal effect.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Haibo Zhao
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Kaiyue Zhuo
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Yuhui Hua
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- China
| | - Xumin He
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Wengui Weng
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| | - Haiping Xia
- Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- China
| |
Collapse
|
14
|
Deng Z, Zhu C, Hua Y, He G, Guo Y, Lu R, Cao X, Chen J, Xia H. Synthesis and characterization of metallapentalenoxazetes by the [2+2] cycloaddition of metallapentalynes with nitrosoarenes. Chem Commun (Camb) 2019; 55:6237-6240. [DOI: 10.1039/c9cc02594d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cycloaddition of metallapentalynes with nitrosoarenes produces metallapentalenoxazetes, in which two unstable frameworks are stabilized with a metal fragment.
Collapse
Affiliation(s)
- Zhihong Deng
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Congqing Zhu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yuhui Hua
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Guomei He
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ying Guo
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Ruqiang Lu
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Haiping Xia
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Department of Chemistry
| |
Collapse
|
15
|
Hua Y, Lan Q, Fei J, Tang C, Lin J, Zha H, Chen S, Lu Y, Chen J, He X, Xia H. Metallapentalenofuran: Shifting Metallafuran Rings Promoted by Substituent Effects. Chemistry 2018; 24:14531-14538. [DOI: 10.1002/chem.201802928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Yuhui Hua
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Qing Lan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Hexukun Zha
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Shiyan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Yinghua Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Jiangxi Chen
- Department of Materials Science and Engineering; College of Materials; Xiamen University; Xiamen 361005 China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and; Collaborative Innovation Center of Chemistry for Energy Materials (iChEM); College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 China
| |
Collapse
|
16
|
Lu Z, Lin Q, Cai Y, Chen S, Chen J, Wu W, He X, Xia H. Cylindrical NIR-Responsive Metallopolymer Containing Möbius Metalla-aromatics. ACS Macro Lett 2018; 7:1034-1038. [PMID: 35650957 DOI: 10.1021/acsmacrolett.8b00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metalla-aromatic complexes are very stable and excellent light-absorbing compounds, owing to their highly conjugated frameworks. The metallopolymers containing metalla-aromatic substructures consist of a new type of functional polymer, because they exhibit characteristics of both metalla-aromatic and polymeric units. Herein, we reported a corn-like cylindrical metallopolymer, prepared from the controlled polymerization of N-isopropylacrylamide (NIPAM) by a polyrotaxane-based macroinitiator, followed by postpolymerization modification with a photothermal metalla-aromatic complex. The corn-like shape of this metallopolymer was confirmed by transmission electron microscopy (TEM). Combining the photothermal effect of the metalla-aromatic unit and the thermosensitive property of PNIPAM, the corn-like metallopolymer exhibits a NIR-responsive behavior and represents a new smart material.
Collapse
Affiliation(s)
- Zhengyu Lu
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Shiduan Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Weitai Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
17
|
Abstract
The construction of metal-carbon bonds is one of the most important issues of organometallic chemistry. However, the chelation of polydentate ligands to a metal via several metal-carbon bonds is rare. Metallapentalyne, which can be viewed as a 7-carbon (7C) chain coordinated to a metal via three metal-carbon bonds, was first reported in 2013. Although metallapentalyne contains a metal-carbon triple bond in a five-membered ring (5MR) and the bond angle around the carbyne carbon is only 129.5°, metallapentalyne exhibits excellent stability to air, moisture, and heat. Metallapentalyne possesses the rare planar Möbius aromaticity, which is in sharp contrast to the Hückel antiaromaticity in pentalyne. The metal fragment not only relieves the large ring strain present in pentalyne but also results in the transformation of the antiaromaticity in pentalyne to aromaticity in metallapentalyne. With the extension of the carbon chain from 7 to 12 carbon atoms, a series of novel polycyclic frameworks were constructed via the formation of several metal-carbon bonds. Some interesting phenomena were observed for these complexes. For instance, (1) the carbyne carbon of the 7C framework could react with both nucleophilic and electrophilic reagents, leading to the formation of 16- and 18-electron metallapentalenes; (2) σ aromaticity was first observed in an unsaturated system in the 8C framework; (3) two classical antiaromatic frameworks, cyclobutadiene and pentalene, were simultaneously stabilized in the 9C framework for the first time; (4) three fused 5MRs bridged by a metal are coplanar in the 10C framework; (5) the first [2 + 2 + 2] cycloaddition of a late transition metal carbyne complex with alkynes was realized during the construction of an 11C framework; (6) the largest number of carbon atoms coordinated to a metal atom in the equatorial plane was observed in the 12C framework; and (7) sharing of the transition metal by multiple aromatic units has seldom been observed in the metalla-aromatics. Therefore, the term carbolong chemistry has been used to describe the chemistry of these novel frameworks. More interestingly, carbolong complexes exhibit diverse properties, which could lead to potential future applications. As the discovery and creation of molecular fragments lead to advancements in chemistry, medical science, and materials chemistry, these novel polydentate carbon chain chelates might have important influences in these fields due to their facile synthesis, high stability, and unique properties.
Collapse
Affiliation(s)
- Congqing Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Facile preparation of thermoresponsive fluorescent silica nanopaprticles based composites through the oxygen tolerance light-induced RAFT polymerization. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Lin Q, Li S, Lin J, Chen M, Lu Z, Tang C, Chen Z, He X, Chen J, Xia H. Synthesis and Characterization of Photothermal Osmium Carbolong Complexes. Chemistry 2018; 24:8375-8381. [DOI: 10.1002/chem.201800656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Qin Lin
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Shenyan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Jianfeng Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Meijin Chen
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Zhengyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Chun Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| | - Jiangxi Chen
- Department of Materials Science and Engineering, College of Materials; Xiamen University; Xiamen 361005 P. R. China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering; Xiamen University; Xiamen 361005 P. R. China
| |
Collapse
|
20
|
Espín J, Garzón-Tovar L, Boix G, Imaz I, Maspoch D. The photothermal effect in MOFs: covalent post-synthetic modification of MOFs mediated by UV-Vis light under solvent-free conditions. Chem Commun (Camb) 2018; 54:4184-4187. [DOI: 10.1039/c8cc01593g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photothermal effect can be used to perform covalent post-synthetic modifications on metal–organic frameworks under solvent-free conditions.
Collapse
Affiliation(s)
- Jordi Espín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Luis Garzón-Tovar
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Gerard Boix
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2)
- CSIC and The Barcelona Institute of Science and Technology
- 08193 Barcelona
- Spain
- ICREA
| |
Collapse
|
21
|
Lu Z, Cai Y, Wei Y, Lin Q, Chen J, He X, Li S, Wu W, Xia H. Photothermal Möbius aromatic metallapentalenofuran and its NIR-responsive copolymer. Polym Chem 2018. [DOI: 10.1039/c8py00176f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel thermally and NIR-light responsive metallopolymer was copolymerized from a photothermal aromatic metallapentalenofuran and a glycol methyl ether methacrylate.
Collapse
Affiliation(s)
- Zhengyu Lu
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yuanting Cai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Yuanqing Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Qin Lin
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Jiangxi Chen
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Xumin He
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Shunhua Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Weitai Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| |
Collapse
|