1
|
Kini GP, Parashar M, Jahandar M, Lee J, Chung S, Cho K, Shukla VK, Singh R. Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells. NEW J CHEM 2022. [DOI: 10.1039/d2nj00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two DPP-based hole-transporting materials with different aromatic π-bridges have been synthesized and tested for perovskite solar cells. Improved power conversion efficiency and stability were achieved by employing DPP-TT.
Collapse
Affiliation(s)
- Gururaj P. Kini
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Mritunjaya Parashar
- Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Muhammad Jahandar
- Surface Technology Division, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Seongsan-gu, Changwon, Gyeongnam, 51508, Republic of Korea
| | - Jaewon Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Vivek Kumar Shukla
- Department of Applied Physics, School of Vocational Studies and Applied Sciences, Gautam Buddha University, Greater Noida, Uttar Pradesh 201312, India
| | - Ranbir Singh
- School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, Mandi, Himachal Pradesh, 175005, India
| |
Collapse
|
2
|
Sharma A, Singh R, Kini GP, Hyeon Kim J, Parashar M, Kim M, Kumar M, Kim JS, Lee JJ. Side-Chain Engineering of Diketopyrrolopyrrole-Based Hole-Transport Materials to Realize High-Efficiency Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7405-7415. [PMID: 33534549 DOI: 10.1021/acsami.0c17583] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design and synthesis of a stable and efficient hole-transport material (HTM) for perovskite solar cells (PSCs) are one of the most demanding research areas. At present, 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (spiro-MeOTAD) is a commonly used HTM in the fabrication of high-efficiency PSCs; however, its complicated synthesis, addition of a dopant in order to realize the best efficiency, and high cost are major challenges for the further development of PSCs. Herein, various diketopyrrolopyrrole-based small molecules were synthesized with the same backbone but distinct alkyl side-chain substituents (i.e., 2-ethylhexyl-, n-hexyl-, ((methoxyethoxy)ethoxy)ethyl-, and (2-((2-methoxyethoxy)ethoxy)ethyl)acetamide, designated as D-1, D-2, D-3, and D-4, respectively) as HTMs. The variation in the alkyl chain has shown obvious effects on the optical and electrochemical properties as well as on the molecular packing and film-forming ability. Consequently, the power conversion efficiency (PCE) of the PSC under one sun illumination (100 mW cm-2) is shown to increase in the order of D-1 (8.32%) < D-2 (11.12%) < D-3 (12.05%) < D-4 (17.64%). Various characterization techniques reveal that the superior performance of D-4 can be ascribed to the well-aligned highest occupied molecular orbital energy level with the counter electrode, the more compact π-π stacking with a higher coherence length, and the excellent hole mobility of 1.09 × 10-3 cm2 V-1 s-1, thus providing excellent energetics for effective charge transport with minimal charge-carrier recombination. Furthermore, the addition of the dopant Li-TFSI in D-4 is shown to deliver a remarkable PCE of 20.19%, along with a short-circuit current density (JSC), open-circuit voltage (VOC), and fill factor (FF) of 22.94 mA cm-2, 1.14 V, and 73.87%, respectively, and superior stability compared to that of other HTMs. These results demonstrate the effectiveness of side-chain engineering for tailoring the properties of HTMs, thus offering new design tactics to fabricate for the synthesis of highly efficient and stable HTMs for PSCs.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Council of Scientific & Industrial Research-Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30, Chandigarh 160030, India
| | - Ranbir Singh
- Department of Energy & Materials Engineering, Research Center for Photoenergy, Harvesting & Conversion Technology (phct), Dongguk University, Seoul 04620, Republic of Korea
| | - Gururaj P Kini
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Mritunjaya Parashar
- Department of Energy & Materials Engineering, Research Center for Photoenergy, Harvesting & Conversion Technology (phct), Dongguk University, Seoul 04620, Republic of Korea
| | - Min Kim
- School of Chemical Engineering, Jeonbuk National University, 567, Baekje-daero, Jeonju 54896, Republic of Korea
| | - Manish Kumar
- Pohang Accelerator Laboratory, Pohang University of Science & Technology, Pohang 790-784, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Joon Lee
- Department of Energy & Materials Engineering, Research Center for Photoenergy, Harvesting & Conversion Technology (phct), Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Keshtov ML, Kuklin SA, Zou Y, Khokhlov AR, Konstantinov IO, Ostapov IE, Makhaeva EE, Sharma GD. New Donor–Acceptor Random Terpolymers with Wide Absorption Spectra of 300–1000 nm for Photovoltaic Applications. DOKLADY PHYSICAL CHEMISTRY 2021. [DOI: 10.1134/s0012501620120040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
El-Shehawy AA, Attia AM, Abdallah ARIA, El-Hendawy MM. Synthesis, characterization, photophysical properties, and computational studies on N-hexylphenothiazine/cyanopyridine based π-conjugated copolymers. HIGH PERFORM POLYM 2021. [DOI: 10.1177/0954008320988757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, π-conjugated copolymers, namely N-hexylphenothiazine/cyanopyridine/phenyl/benzothiadiazole, N-hexylphenothiazine/cyanopyridine/phenyl/9,9-dihexylfluorene, and N-hexylphenothiazine/cyanopyridine/phenyl/9,9-diethylhexylfluorene were readily synthesized via Pd-catalyzed Suzuki cross-coupling reaction. The polymer structures and their photophysical properties were characterized by elemental analysis, 1H NMR, GPC, TGA, XRD, UV-vis absorption and PL spectroscopy measurements. The coupling agent effect on photophysical properties of copolymers was investigated to rationally design polymers with particular physical properties to be employed in optoelectronic devices. The UV-vis absorption spectroscopy of copolymers showed λmax at a range of ∼334–474 nm and red-shifted in their films to a range of ∼342–381 nm. These copolymers displayed highly intense fluorescence in their solutions and films. The PL spectra of copolymers indicated red and near-infrared light, rendering them a prospect for being red and near-infrared light-emitting materials for PLEDs. XRD analysis demonstrated a d-spacing range of ∼3.79–4.32 Å, reflecting π-π stacking and some degree of crystallinity in some polymers, and only P1 and P2 showed peaks in the small-angle region, indicating lamellar structures. To understand the relationship between molecular structures of target materials and their photophysical and photovoltaic properties, density functional theory (DFT) and its time-dependent form (TD-DFT) were employed.
Collapse
Affiliation(s)
- Ashraf A El-Shehawy
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Adel M Attia
- Department of Chemistry, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Morad M El-Hendawy
- Department of Chemistry, Faculty of Science, New Valley University, Kharga, Egypt
| |
Collapse
|
5
|
Benzothiadiazole-based Conjugated Polymers for Organic Solar Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2537-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
El‐Shehawy AA, Abdu ME, El‐Hendawy MM, El‐Khouly M, Sherif MH, Moustafa HY. Synthesis, photophysical, and theoretical studies on π‐conjugated copolymers based on benzothiadiazole and cyanopyridine acceptor moieties along with other π‐bridge units. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ashraf A. El‐Shehawy
- Department of Chemistry, Faculty of Science Kafrelsheikh University Kafrelsheikh Egypt
| | - Mohamed E. Abdu
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Morad M. El‐Hendawy
- Department of Chemistry, Faculty of Science New Valley University Kharga Egypt
| | - Mohamed El‐Khouly
- Department of Chemistry, Faculty of Science Kafrelsheikh University Kafrelsheikh Egypt
| | - Mohamed H. Sherif
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Hamed Y. Moustafa
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
7
|
Kini GP, Jeon SJ, Moon DK. Design Principles and Synergistic Effects of Chlorination on a Conjugated Backbone for Efficient Organic Photovoltaics: A Critical Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906175. [PMID: 32020712 DOI: 10.1002/adma.201906175] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/27/2019] [Indexed: 05/20/2023]
Abstract
The pursuit of low-cost, flexible, and lightweight renewable power resources has led to outstanding advancements in organic solar cells (OSCs). Among the successful design principles developed for synthesizing efficient conjugated electron donor (ED) or acceptor (EA) units for OSCs, chlorination has recently emerged as a reliable approach, despite being neglected over the years. In fact, several recent studies have indicated that chlorination is more potent for large-scale production than the highly studied fluorination in several aspects, such as easy and low-cost synthesis of materials, lowering energy levels, easy tuning of molecular orientation, and morphology, thus realizing impressive power conversion efficiencies in OSCs up to 17%. Herein, an up-to-date summary of the current progress in photovoltaic results realized by incorporating a chlorinated ED or EA into OSCs is presented to recognize the benefits and drawbacks of this interesting substituent in photoactive materials. Furthermore, other aspects of chlorinated materials for application in all-small-molecule, semitransparent, tandem, ternary, single-component, and indoor OSCs are also presented. Consequently, a concise outlook is provided for future design and development of chlorinated ED or EA units, which will facilitate utilization of this approach to achieve the goal of low-cost and large-area OSCs.
Collapse
Affiliation(s)
- Gururaj P Kini
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory, Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Korea
| |
Collapse
|
8
|
El‐Shehawy AA, Abdo NI, El‐Hendawy MM, Abdallah AI, Lee J. Dialkylthienosilole and
N
‐alkyldithienopyrrole‐based copolymers: Synthesis, characterization, and photophysical study. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nabiha I. Abdo
- Higher Institute of Engineering and Technology New Borg El‐Arab City Egypt
| | | | | | - Jae‐Suk Lee
- School of Material Science and Engineering, the Grubbs Center for Polymers and Catalysis and Research Institute for Solar and Sustainable Energy (RISE)Gwangju Institute of Science and Technology (GIST) Gwangju Republic of Korea
| |
Collapse
|
9
|
Low-bandgap D-A1-D-A2 type copolymers based on TPTI unit for efficient fullerene and nonfullerene polymer solar cells. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Lee H, Oh S, Song CE, Lee HK, Lee SK, Shin WS, So WW, Moon SJ, Lee JC. Stable P3HT: amorphous non-fullerene solar cells with a high open-circuit voltage of 1 V and efficiency of 4%. RSC Adv 2019; 9:20733-20741. [PMID: 35515564 PMCID: PMC9065772 DOI: 10.1039/c9ra03188j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
A non-fullerene small molecule acceptor, SF-HR composed of 3D-shaped spirobifluorene and hexyl rhodanine, was synthesized for use in bulk heterojunction organic solar cells (OSCs). It possesses harmonious molecular aggregation between the donor and acceptor, due to the interesting diagonal molecular shape of SF-HR. Furthermore, the energy level of SF-HR matches well with that of the donor polymer, poly(3-hexyl thiophene) (P3HT) in this system which can affect efficient charge transfer and transport properties. As a result, OSCs made from a P3HT:SF-HR photoactive layer exhibited a power conversion efficiency rate of 4.01% with a high VOC of 1.00 V, a JSC value of 8.23 mA cm−2, and a FF value of 49%. Moreover, the P3HT:SF-HR film showed superior thermal and photo-stability to P3HT:PC71BM. These results indicate that SF-HR is specialized as a non-fullerene acceptor for use in high-performance OSCs. A 3D-shaped SF-HR was designed and synthesized for use in non-fullerene organic solar cells. Owing to the aligned energy levels, the P3HT:SF-HR system exhibited a high efficiency of 4.01% with good thermal stability and photostability.![]()
Collapse
Affiliation(s)
- HyunKyung Lee
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
| | - Sora Oh
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Chang Eun Song
- Energy Materials Research Center
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Hang Ken Lee
- Energy Materials Research Center
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
| | - Sang Kyu Lee
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Won Suk Shin
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Won-Wook So
- Energy Materials Research Center
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
| | - Sang-Jin Moon
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| | - Jong-Cheol Lee
- Advanced Materials Division
- Korea Research Institute of Chemical Technology (KRICT)
- Daejeon 34114
- Republic of Korea
- Advanced Materials and Chemical Engineering
| |
Collapse
|
11
|
Kini GP, Choi JY, Jeon SJ, Suh IS, Moon DK. Effects of incorporated pyrazine on the interchain packing and photovoltaic properties of wide-bandgap D–A polymers for non-fullerene polymer solar cells. Polym Chem 2019. [DOI: 10.1039/c9py00674e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The impact of using pyrazine as an acceptor core for designing donor–acceptor (D–A) based wide bandgap polymers for application in non-fullerene solar cells was evaluated.
Collapse
Affiliation(s)
- Gururaj P. Kini
- Nano and Information Materials (NIMs) Laboratory
- Department of Chemical Engineering
- Konkuk University
- Seoul 05029
- Korea
| | - Jun Young Choi
- Nano and Information Materials (NIMs) Laboratory
- Department of Chemical Engineering
- Konkuk University
- Seoul 05029
- Korea
| | - Sung Jae Jeon
- Nano and Information Materials (NIMs) Laboratory
- Department of Chemical Engineering
- Konkuk University
- Seoul 05029
- Korea
| | - Il Soon Suh
- Nano and Information Materials (NIMs) Laboratory
- Department of Chemical Engineering
- Konkuk University
- Seoul 05029
- Korea
| | - Doo Kyung Moon
- Nano and Information Materials (NIMs) Laboratory
- Department of Chemical Engineering
- Konkuk University
- Seoul 05029
- Korea
| |
Collapse
|
12
|
Yu S, Peng A, Zhang S, Huang H. Noncovalent conformational locks in organic semiconductors. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9315-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Kini GP, Choi JY, Jeon SJ, Suh IS, Moon DK. Controlling the interchain packing and photovoltaic properties via fluorine substitution in terpolymers based on benzo[1,2-c:4,5-c']dithiophene-4,8-dione and benzothiadiazole units. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.06.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|