1
|
Yang S, Zou LH, Li R, Jiang Y, Ren F, Shao A. Construction of Coumarin-Based Bioorthogonal Macromolecular Probes for Photoactivation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37906696 DOI: 10.1021/acsami.3c10859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Photoactivatable fluorescence imaging is one of the most valuable methods for visualizing protein localization, trafficking, and interactions. Here, we designed four bioorthogonal fluorescent probes K1-K4 by installing photoactive cages and HaloTag ligands onto the different positions of the coumarin fluorophore. Although K1-K4 all exhibited rapid photostimulated responses in aqueous solution, only K3 was found to have an obvious aggregation-induced emission (AIE). Next, macromolecular fluorescent probes Kn=1/2/3/4_POIs were obtained by covalently attaching K1-K4 to HaloTag-fused proteins of interest (POIs). Kn=3/4_POIs exhibited a higher fluorescence increase than that of Kn=1/2_POIs upon photoactivation in both liquid and solid phases. Moreover, K3_GFP_Halo and K4_GFP_Halo presented the fluorescence resonance energy transfer (FRET) from photocleaved K3 and K4 to GFP in the protein complex. We further examined the fluorescence labeling ability of K1-K4 to intracellular IRE1_Halo protein and found that K3 and K4 containing the HaloTag ligand on the C4 position of coumarin could be retained in cells for long-term tracking of the IRE1_Halo protein. Hence, we established a platform of novel bioorthogonal fluorescent probes conjugating onto Halo-tagged POIs for rapid photoactivation in vitro and in cells.
Collapse
Affiliation(s)
- Shuke Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Runqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Ren
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Ren F, Zhu W, Yang S, Zhang C, Hou Y, Li R, Wen J, Zou LH, Gao M, Wang WL, Wu Z, Shao A. Coumarin-Based Fluorescent Inhibitors for Photocontrollable Bioactivation. Mol Pharm 2023. [PMID: 37104703 DOI: 10.1021/acs.molpharmaceut.3c00279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Activation of the IRE-1/XBP-1 pathway is related to many human diseases. Coumarin-based derivatives acting as both IRE-1 inhibitors and bright fluorophores are highly desirable to establish an integrated fluorescent inhibitor system. Here, we take insights into the aqueous stability of a photocaged IRE-1 inhibitor PC-D-F07 through a structure activity relationship. The substituent effects indicate that the electron-withdrawing -NO2 moiety in the photocage combined with the tricyclic coumarin fluorophore contribute to the structural stability of PC-D-F07. To optimize the photocage of PC-D-F07, we incorporate a 1-ethyl-2-nitrobenzyl or 2-nitrobenzyl photolabile moiety on the hydroxyl group of the IRE-1 inhibitor to generate RF-7 and RF-8. Upon photoactivation, both RF-7 and RF-8 present an increased fluorescence response, sequentially enabling the unlocking of the ortho-1,3-dioxane acetal for the release of active IRE-1 inhibitors. Moreover, RF-7 exhibits a high repolarization ratio of converting M2-type tumor-associated macrophages (M2-TAMs) to M1-type immune-responsive macrophages. This provides a novel prodrug strategy of modulating druggable fluorophore backbones to achieve spatiotemporally controllable drug release for precise cancer treatment.
Collapse
Affiliation(s)
- Fei Ren
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wendi Zhu
- Department of Clinical Medicine, PUMC & CAMS, Beijing 100730, China
| | - Shuke Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun Zhang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingchao Hou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Runqi Li
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Wen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang-Hua Zou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Min Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wen-Long Wang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhihong Wu
- Department of Clinical Medicine, PUMC & CAMS, Beijing 100730, China
| | - Andong Shao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Abdollahi A, Ghasemi B, Nikzaban S, Sardari N, Jorjeisi S, Dashti A. Dual-Color Photoluminescent Functionalized Nanoparticles for Static-Dynamic Anticounterfeiting and Encryption: First Collaboration of Spiropyran and Coumarin. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7466-7484. [PMID: 36705276 DOI: 10.1021/acsami.2c22532] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Increasing the security of anticounterfeiting materials has been the most important challenge in recent years, and the development of dual-color photoluminescent inks with multi-level security, static/dynamic emission, and dynamic color change is an important solution to overcome this problem. In this study, the multi-functionalized copolymer nanoparticles containing different functional groups (with a concentration of 20 wt %), including ester, carboxylic acid, hydroxyl, epoxide, amide, and amine groups were synthesized successfully by the emulsion polymerization method. The results showed that the particle size and morphology of nanoparticles are affected by the polarity of functional groups. The prepared multi-functionalized copolymer nanoparticles were modified physically with spiropyran (photochromic and red fluorescence emission) and coumarin (cyan emission) derivatives to develop dual-color photoluminescent polymer nanoparticles with application in static-dynamic photoluminescent anticounterfeiting inks, which have multi-level security. The investigation of optical properties indicates that the kinetics of photochromism and photoluminescence properties of samples containing spiropyran is dependent on the local polarity on the surface of polymer nanoparticles. Hence, an increase in the polarity (functionalization with amide, carboxylic acid, and hydroxyl groups) has resulted in fast photochromism, high-intensity photoluminescence emission and increased the efficiency of the photoswitchable color change of emission from cyan to pink. Dual-color photoluminescent anticounterfeiting inks were prepared by mixing polymer nanoparticles containing spiropyran with polymer nanoparticles containing coumarin, in different ratios (1:1, 1:3, 1:5, 1:8, and 1:10). Obtained results showed that prepared samples have cyan emission under UV light of 254 nm (static mode), and a dynamic photoswitching of fluorescence emission from cyan to pink (as a function of irradiation time) was also observed under UV-light irradiation of 365 nm, which is well known as a dynamic mode of emission. The responsivity and intensity of dynamic photoluminescence emission are dependent on the local polarity of the surface functional groups, in which the samples based on amide functionalized copolymer nanoparticles displayed high-intensity emission in the static mode and high-intensity photoswitchable dual-color emission in the dynamic mode, in the case of all ratios of colloid solution mixtures. Printing security tags on cellulose paper by dual-color photoluminescent inks indicates advantages such as maximum printability, resolution, brightness, and static-dynamic photoluminescence emission with high intensity for inks based on amide functionalized nanoparticles. The static-dynamic dual-color photoluminescent anticounterfeiting ink with unique properties and multi-level security was reported for the first time by the collaboration of spiropyran and coumarin. This study can open a new approach and window to the future of advanced and high-security anticounterfeiting technologies.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Bita Ghasemi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad91779-48974, Iran
| | - Soma Nikzaban
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Saba Jorjeisi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan45137-66731, Iran
| | - Ali Dashti
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad91779-48974, Iran
| |
Collapse
|
4
|
Rational design of a negative photochromic spiropyran-containing fluorescent polymeric nanoprobe for sulfur dioxide derivative ratiometric detection and cell imaging. Anal Bioanal Chem 2023; 415:715-724. [PMID: 36520201 DOI: 10.1007/s00216-022-04462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
It is highly desirable to develop high-performance ratiometric fluorescent probes for SO2 derivative detection and realize their application in biological imaging. In this study, we report the rational design of a novel negative photochromic spiropyran derivative, spiro[azahomoadamantane-pyran] (MAHD-SP), with notable orange fluorescence in its stable ring-opened state without UV regulation. The unsaturated double bond of MAHD-SP underwent the Michael addition reaction of the SO2 derivative, making the fluorescence quenching of MAHD-SP obvious. Then, MAHD-SP, a fluorescent conjugated polymer PFO and a polymeric surfactant PEO113-b-PS49 were used to construct a ratiometric fluorescent polymeric nanoprobe (RFPN) via a coprecipitation method. The probe exhibited high sensitivity and selectivity for the ratiometric detection of SO2 derivatives in pure aqueous solutions. Moreover, the good biocompatibility of RFPN can be used to visualize exogenous and endogenous SO2 derivative generation in living cells.
Collapse
|
5
|
Zhao R, Zheng J, Chen Z, Wang M, Zhang D, Ding L, Fu C, Zhang C, Deng K. Synthesis and Aggregation‐Induced Emission of Polyamide‐Amines as Fluorescent Switch Controlled by Hg
2+
‐Glutathione. ChemistrySelect 2022. [DOI: 10.1002/slct.202103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronghui Zhao
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
- Affiliated Hospital of Hebei University Baoding 071000 China
| | - Jinxin Zheng
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Zhuo Chen
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Meng Wang
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Da Zhang
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Lan Ding
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Congcong Fu
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Chunfang Zhang
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| | - Kuilin Deng
- Collegde of Chemistry & Environmental Science Hebei University Baoding 071002 China
| |
Collapse
|
6
|
Sun J, Li H, Gu X, Tang BZ. Photoactivatable Biomedical Materials Based on Luminogens with Aggregation-Induced Emission (AIE) Characteristics. Adv Healthc Mater 2021; 10:e2101177. [PMID: 34637607 DOI: 10.1002/adhm.202101177] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/21/2021] [Indexed: 12/17/2022]
Abstract
Fluorescence probes with aggregation-induced emission (AIE) property are fascinating and vital in biological fields due to their bright fluorescence in the solid state. In contrast, traditional AIE materials are obscured by the off-target effects and lack of spatial and temporal control. Photoactivatable materials with AIE characteristics, whose physicochemical behaviors can be remotely activated by light, provide great potential in biochemical information acquisition with high spatial and temporal resolution. By using AIE-featured photoactivatable fluorescence probes, accurate analysis of the targets of interest is possible. For example, where, when, and to what extent a process is started or stopped by manipulating the non-invasive light accurately. Thus, many researchers are enthusiastic about developing AIE-featured photoactivatable materials and mainly focus on developing novel molecules by rational molecular structure design, and exploring advanced applications by appropriate molecular functionalization. In this review, the recent achievements of photoactivatable materials with AIE characteristics from the aspects involving inherent mechanism of photoactivity, molecular design strategy, and the corresponding applications in biological fields, are summarized. The biological applications are highlighted and discussed, including photoactivatable bioimaging, diagnosis, and photo-controlled therapy. Finally, the challenges and prospects of the AIE-featured photoactivatable materials are also outlined and discussed.
Collapse
Affiliation(s)
- Jiangman Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xinggui Gu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Materials Science and Engineering State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong (Shenzhen) Shenzhen 518172 China
| |
Collapse
|
7
|
Abdollahi A, Dashti A. Photoluminescent Nanoinks with Multilevel Security for Quick Authentication of Encoded Optical Tags by Sunlight: Effective Physicochemical Parameters on Responsivity, Printability, and Brightness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44878-44892. [PMID: 34506114 DOI: 10.1021/acsami.1c12404] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigation of developed photoactive security inks and anticounterfeiting technologies in recent years indicates significant challenges for future of this research area, such as increase of security, fast responsivity, and facile authentication. Here, amine-functionalized latex nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). Size of the latex nanoparticles was increased as a function of poly(dimethylaminoethyl acrylate) (PDMAEMA) contents, and also a decrease of particle size was obtained in response to an increase of temperature from 25 to 70 °C, above the lower critical solution temperature (LCST) of PDMAEMA. Surface physical modification of the functional latex nanoparticle with spiropyran photoswitches led to the development of anticounterfeiting nanoinks that have multilevel security and photochromic/fluorescence properties with a higher intensity and also brightness. The photoluminescent nanoinks were made of spiropyran latex nanoparticles and used for printing of the encoded optical security tags on cellulosic papers and banknotes. The results displayed that an increase of the particle size above 100 nm and an increase of the PDMAEMA contents led to a remarkable decrease of printability, fluorescent emission, brightness, intensity of photochromism, and also resolution of the printed security tags. As a significant advantage of the developed security inks, the printed security tags could be authenticated easily and fast upon sunlight irradiation by means of photochromism. The responsivity of encoded tags from the invisible to visible state is immediate upon sunlight irradiation for some seconds, whose intensity of coloration is appropriate and detectable clearly by naked eyes. The security anticounterfeiting inks based on spiropyran with multilevel security have been reported for the first time for applying in printing of encoded security tags on cellulosic papers, banknotes, and other documents, where the printed marks are detectable on sunlight exposure.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Research Laboratory of Polymer Testing (RPT Lab.), Research Institute of Oil & Gas, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ali Dashti
- Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Research Laboratory of Polymer Testing (RPT Lab.), Research Institute of Oil & Gas, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
8
|
Wu L, Jiang Q, Lu H, Feng S. Unexpected Fluorescence Emission Behaviors of Tetraphenylethylene-Functionalized Polysiloxane and Highly Reversible Sensor for Nitrobenzene. Polymers (Basel) 2021; 13:polym13183046. [PMID: 34577947 PMCID: PMC8470815 DOI: 10.3390/polym13183046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 11/23/2022] Open
Abstract
Tetraphenylethylene (TPE), a typical luminogen with aggregation-induced emission (AIE) features, has been widely used to prepare AIE fluorescent materials. In this study, TPE-functionalized polydimethylsiloxane (n-TPE-AP-PDMS) was successfully synthesized by attaching TPE to polydimethylsiloxane via aza-Michael addition. The introduction of polydimethylsiloxane to TPE had no obvious effect on photophysical properties. Intriguingly, n-TPE-AP-PDMS exhibited two opposite fluorescence emission behaviors in different systems: aggregation-induced quenching (ACQ) behavior in a tetrahydrofuran/water mixture and typical AIE phenomenon in a tetrahydrofuran/hexane mixture. This unexpected transition from ACQ to AIE can be attributed to a twisted intramolecular charge-transfer effect and flexible aminopropyl polydimethylsiloxane. n-TPE-AP-PDMS was further used as a fluorescent probe to detect nitrobenzene and it showed high quenching efficiency. Moreover, the n-TPE-AP-PDMS film showed high reversibility so that the quenching efficiency remained constant after five cycles. This work can provide a deeper understanding of AIE behavior and guidance to develop a new AIE polymer for chemosensors with high performance.
Collapse
|
9
|
Tao M, Liang X, Guo J, Zheng S, Qi Q, Cao Z, Mi Y, Zhao Z. Dynamic Photochromic Polymer Nanoparticles Based on Matrix-Dependent Förster Resonance Energy Transfer and Aggregation-Induced Emission Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33574-33583. [PMID: 34247480 DOI: 10.1021/acsami.1c09677] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dynamic color-tunable fluorescent materials are sought-after materials in many applications. Here, we report a polymeric matrix-regulated fluorescence strategy via synergistically modulating aggregation-induced emission (AIE) properties and the Förster resonance energy transfer (FRET) process, which leads to tunable dynamic variation of color and photoluminescence (PL) intensity of fluorescent polymeric nanoparticles (FRET-PNPs) driven by photoirradiation. The FRET-PNPs were prepared via a facile one-pot miniemulsion copolymerization with the tetraphenyletheyl (TPE) and spiropyran (SP) units chemically bonded to the polymer matrix. The FRET-PNPs exhibited dynamic variation of fluorescence properties (colors and PL intensity) under photoirradiation on the timescale of minutes. The variation of the polymer matrix composition could deliberately influence the AIE property of TPE units and the isomerization process of SP to merocyanine units, which further affect the FRET efficiency of FRET-PNPs and, eventually, lead to versatile dynamic fluorescence variation. The dynamic fluorescence property as well as the excellent processability and film formation ability of FRET-PNPs allowed for diverse applications, such as warning labels, dynamic decorative painting, and multiple information encryption. Without sophisticated molecular design or tedious preparation processes, a new perspective for the design, fabrication, and performance optimization of fluorescent nanomaterials for innovative applications was proposed.
Collapse
Affiliation(s)
- Meng Tao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiaoqin Liang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingjing Guo
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qi Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifang Mi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Province Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
10
|
Budyka MF, Nikulin PA, Gavrishova TN, Chashchikhin OV. Photomodulation of a Dual‐Color Luminescent System Combining Quantum Dots with a FRET Acceptor Ligand**. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202000285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mikhail F. Budyka
- Institute of Problems of Chemical Physics Russian Academy of Sciences pr. Akademika Semenova 1, Chernogolovka Moscow region 142432 Russian Federation
| | - Pavel A. Nikulin
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Tatiana N. Gavrishova
- Institute of Problems of Chemical Physics Russian Academy of Sciences pr. Akademika Semenova 1, Chernogolovka Moscow region 142432 Russian Federation
| | - Oleg V. Chashchikhin
- Department of Organic Chemistry Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
11
|
Du S, Zhu X, Zhang L, Liu M. Switchable Circularly Polarized Luminescence in Supramolecular Gels through Photomodulated FRET. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15501-15508. [PMID: 33764753 DOI: 10.1021/acsami.1c00181] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While the tremendous deal of efforts has been dedicated to the design and fabrication of materials with circularly polarized luminescence (CPL), the development of the chiroptical switch between different CPL signals is one of the important routes toward its application. Here, we prepared a supramolecular gel from the coassemblies containing a chiral gelator (9-fluoren-methoxycarbonyl-functionalized glutamate derivatives, FLG), a fluorescent molecule [(rhodamine B, RhB) or (2',7'-dichlorofluorescein sodium salt, DCF)], and a photochromic molecule [1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene, DAE], thus constructing photomodulated switchable CPL soft materials. It was found that FLG could form supramolecular gel in ethanol and self-assemble into left-handed twisted nanostructures. During the formation of a co-gel with RhB (or DCF) and DAE, the chirality of FLG could be effectively transferred to both the fluorescent and photochromic components, which induced them with chiroptical properties including CPL and circular dichroism (CD). DAE undergoes a reversible transition between the achromatous open state and the dark purple closed state in the co-gel under alternating irradiation with UV and visible light. During such a process, an intermolecular Förster resonance energy transfer (FRET) behavior from fluorescent RhB to ring-closed DAE caused the emission quenching of RhB, which led to CPL silence of RhB in the co-gel. Subsequent irradiation with visible light caused the restoration of the emission and CPL activity with the restored open state. These changes could be repeated many times upon alternate UV and visible irradiation. Therefore, a reversible CPL switch was fabricated in supramolecular gels through the photomodulated FRET process.
Collapse
Affiliation(s)
- Sifan Du
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Dong L, Peng HQ, Niu LY, Yang QZ. Modulation of Aggregation-Induced Emission by Excitation Energy Transfer: Design and Application. Top Curr Chem (Cham) 2021; 379:18. [PMID: 33825076 DOI: 10.1007/s41061-021-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Excitation energy transfer (EET) as a fundamental photophysical process is well-explored for developing functional materials with tunable photophysical properties. Compared to traditional fluorophores, aggregation-induced emission luminogens (AIEgens) exhibit unique advantages for building EET systems, especially serving as energy donors, due to their outstanding photophysical properties such as bright fluorescence in aggregation state, broad absorption and emission spectra, large Stokes shift, and high photobleaching resistance. In addition, the photophysical properties of AIEgens can be modulated by energy transfer for improved luminescence performance. Therefore, a variety of EET systems based on AIEgens have been constructed and their applications in different areas have been explored. In this review, we summarize recent progress in the design strategy of AIE-based energy transfer systems for light-harvesting, fluorescent probes and theranostic systems, with an emphasis on design strategies to achieve desirable properties. The limitations, challenges and future opportunities of AIE-EET systems are briefly outlined. Design strategies and applications (light-harvesting, fluorescent probe and theranostics) of AIEgen-based excitation energy systems are discussed in this review.
Collapse
Affiliation(s)
- Lei Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Hui-Qing Peng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Cui Y, Zhou Y, Liang G. Transformable fluorescent nanoparticles (TFNs) of amphiphilic block copolymers for visual detection of aromatic amines in water. Polym Chem 2021. [DOI: 10.1039/d1py00919b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A kind of novel transformable fluorescent nanoparticle made of block copolymers is constructed for the sensitive detection of aromatic amines in water.
Collapse
Affiliation(s)
- Yuhan Cui
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yusheng Zhou
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guodong Liang
- PCFM lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
|
15
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Wang D, Zhang T, Wu B, Ye C, Wei Z, Cao Z, Wang G. Reversibly Photoswitchable Dual-Color Fluorescence and Controlled Release Properties of Polymeric Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01735] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Desheng Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tingting Zhang
- Yantai Engineering and Technology College, Yantai 264000, China
| | - Bo Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunxiao Ye
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengyang Wei
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ziquan Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
A Three‐Color Fluorescent Supramolecular Nanoassembly of Phototherapeutics Activable by Two‐Photon Excitation with Near‐Infrared Light. Chemistry 2019; 25:7091-7095. [DOI: 10.1002/chem.201900917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 02/06/2023]
|
18
|
Fast responsive photo-switchable dual-color fluorescent cyclodextrin nanogels for cancer cell imaging. Carbohydr Polym 2019; 210:379-388. [DOI: 10.1016/j.carbpol.2019.01.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/24/2019] [Accepted: 01/24/2019] [Indexed: 11/20/2022]
|
19
|
Chen T, He B, Tao J, He Y, Deng H, Wang X, Zheng Y. Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and In Vivo biofate of nanomedicines. Adv Drug Deliv Rev 2019; 143:177-205. [PMID: 31201837 DOI: 10.1016/j.addr.2019.04.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/25/2019] [Accepted: 04/08/2019] [Indexed: 12/24/2022]
Abstract
Extensive studies on nanomedicines have been conducted for drug delivery and disease diagnosis (especially for cancer therapy). However, the intracellular and in vivo biofate of nanomedicines, which is significantly associated with their clinical therapeutic effect, is poorly understood at present. This is because of the technical challenges to quantify the disassembly and behaviour of nanomedicines. As a fluorescence- and distance-based approach, the Förster Resonance Energy Transfer (FRET) technique is very successful to study the interaction of nanomedicines with biological systems. In this review, principles on how to select a FRET pair and construct FRET-based nanomedicines have been described first, followed by their application to study structural integrity, biodistribution, disassembly kinetics, and elimination of nanomedicines at intracellular and in vivo levels, especially with drug nanocarriers including polymeric micelles, polymeric nanoparticles, and lipid-based nanoparticles. FRET is a powerful tool to reveal changes and interaction of nanoparticles after delivery, which will be very useful to guide future developments of nanomedicine.
Collapse
Affiliation(s)
- Tongkai Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jingsong Tao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuan He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
20
|
Abdollahi A, Sahandi-Zangabad K, Roghani-Mamaqani H. Light-Induced Aggregation and Disaggregation of Stimuli-Responsive Latex Particles Depending on Spiropyran Concentration: Kinetics of Photochromism and Investigation of Reversible Photopatterning. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13910-13923. [PMID: 30395471 DOI: 10.1021/acs.langmuir.8b02296] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Light-controlling the physical and chemical properties of smart polymers by using photochromic compounds has been an interesting research subject. Incorporation of spiropyran (SP) on the surface of particles can induce photoswitchable aggregation/disaggregation to stimuli-responsive colloids. Herein, we developed a novel class of stimuli-responsive latex particles bearing SP with different contents (0, 0.5, 1, 3, and 5 wt %) by semicontinuous emulsifier-free emulsion copolymerization, which is able to change the particle size by light-induced aggregation/disaggregation in response to ultraviolet (UV) irradiation and visible light. The scanning electron microscopy images revealed the spherical morphology of the latex particles, with the size in the range of 400-900 nm. Light-induced aggregation and disaggregation of stimuli-responsive latex particles were investigated by dynamic light scattering and also confirmed by variation of transmittance during UV illumination time using ultraviolet-visible spectroscopy. The range of the light-induced shift in the particle size is about 200-600 nm (depending on the concentration of SP), where the reduction of transmittance upon UV irradiation (and conversely upon visible light) confirms the ability of latex particles for displaying reversible photoswitchable aggregation/disaggregation and also light-controlling the particle size. The kinetics of SP to merocyanine (MC) and MC to SP isomerizations were experimentally investigated and fitted by exponential equations. The photochromic latexes displayed remarkable photoswitchability and photofatigue resistant properties under alternating UV and visible light irradiation cycles. Additionally, these stimuli-responsive latexes displayed potential applications such as anticounterfeiting inks in erasable and rewritable writings on cellulosic papers for increasing safety in security documents.
Collapse
Affiliation(s)
- Amin Abdollahi
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box: 51335-1996, Tabriz 51368 , Iran
| | - Keyvan Sahandi-Zangabad
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box: 51335-1996, Tabriz 51368 , Iran
| | - Hossein Roghani-Mamaqani
- Department of Polymer Engineering , Sahand University of Technology , P.O. Box: 51335-1996, Tabriz 51368 , Iran
| |
Collapse
|
21
|
Guan X, Lu B, Jin Q, Li Z, Wang L, Wang K, Lai S, Lei Z. AIE-Active Fluorescent Nonconjugated Polymer Dots for Dual-Alternating-Color Live Cell Imaging. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03776] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Baocui Lu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Qijun Jin
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Zhifei Li
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Lin Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Kailong Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Shoujun Lai
- School of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730070, P.R. China
| | - Ziqiang Lei
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
22
|
Ramakrishna B, Narayanaswamy K, Singh SP, Bangal PR. Reversible Fluorescence Modulation in a Dyad Comprising Phenothiazine Derivative and Spiropyran. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bheerappagari Ramakrishna
- Analytical Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| | - Kamatham Narayanaswamy
- Polymers and Functional Materials; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| | - Surya Prakash Singh
- Polymers and Functional Materials; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| | - Prakriti Ranjan Bangal
- Analytical Division; CSIR-Indian Institute of Chemical Technology; Uppal Road Tarnaka, Hyderabad 500007 Telangana India
| |
Collapse
|
23
|
Ma L, Wang S, Li C, Cao D, Li T, Ma X. Photo-controlled fluorescence on/off switching of a pseudo[3]rotaxane between an AIE-active pillar[5]arene host and a photochromic bithienylethene guest. Chem Commun (Camb) 2018; 54:2405-2408. [PMID: 29457184 DOI: 10.1039/c8cc00213d] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A fluorescence photo-switch was constructed based on a host-guest pseudo[3]rotaxane between an AIE-active pillar[5]arene host bearing tetraphenyl ethylene moieties and a photo-responsive dithienylethylene guest containing two cyano-triazole branches. Its fluorescence on/off switching could be controlled by the photochromism reaction of the dithienylethylene unit.
Collapse
Affiliation(s)
- Liangwei Ma
- School of Chemistry and Chemical Engineering, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, China. and School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Sheng Wang
- School of Chemistry and Chemical Engineering, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, China. and School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Chengpeng Li
- School of Chemistry and Chemical Engineering, Development Center for New Materials Engineering & Technology in Universities of Guangdong, Lingnan Normal University, Zhanjiang 524048, China.
| | - Derong Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510641, China.
| | - Teng Li
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
24
|
Conte C, Fraix A, Thomsen H, Ungaro F, Cardile V, Graziano ACE, Ericson MB, Quaglia F, Sortino S. Monitoring the release of a NO photodonor from polymer nanoparticles via Förster resonance energy transfer and two-photon fluorescence imaging. J Mater Chem B 2018; 6:249-256. [DOI: 10.1039/c7tb02781h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polymer nanoparticles entrapping a NO photodonor are designed to monitor its release in human skin samples through two-photon fluorescence imaging.
Collapse
Affiliation(s)
- Claudia Conte
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Aurore Fraix
- Laboratory of Photochemistry
- Department of Drug Science
- Catania
- Italy
| | - Hanna Thomsen
- Biomedical Photonics Group
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Sweden
| | - Francesca Ungaro
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | - Venera Cardile
- Department of Bio-Medical and Biotechnological Sciences
- University of Catania
- I-95125 Catania
- Italy
| | - Adriana C. E. Graziano
- Department of Bio-Medical and Biotechnological Sciences
- University of Catania
- I-95125 Catania
- Italy
| | - Marica B. Ericson
- Biomedical Photonics Group
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Sweden
| | - Fabiana Quaglia
- Drug Delivery Laboratory
- Department of Pharmacy
- University of Napoli Federico II
- Napoli
- Italy
| | | |
Collapse
|
25
|
Chen J, Zhong W, Xue M, Wang H, Yu M, Zhang P, Yi P. Photochromic RAFT reagent helps construct superior photoswitchable fluorescent polymer nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging. Polym Chem 2017. [DOI: 10.1039/c7py01408b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoswitchable fluorescent polymeric nanoparticles with photochromic RAFT chain transfer reagent were synthesized for rewritable fluorescence patterning and intracellular dual color imaging.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Weibang Zhong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Mingju Xue
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Maolin Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Pinggui Yi
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| |
Collapse
|