1
|
Feng Y, Khalid M, Xiao H, Hu P. Two-dimensional material assisted-growth strategy: new insights and opportunities. NANOTECHNOLOGY 2024; 35:322001. [PMID: 38688246 DOI: 10.1088/1361-6528/ad4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
The exploration and synthesis of novel materials are integral to scientific and technological progress. Since the prediction and synthesis of two-dimensional (2D) materials, it is expected to play an important role in the application of industrialization and the information age, resulting from its excellent physical and chemical properties. Currently, researchers have effectively utilized a range of material synthesis techniques, including mechanical exfoliation, redox reactions, chemical vapor deposition, and chemical vapor transport, to fabricate two-dimensional materials. However, despite their rapid development, the widespread industrial application of 2D materials faces challenges due to demanding synthesis requirements and high costs. To address these challenges, assisted growth techniques such as salt-assisted, gas-assisted, organic-assisted, and template-assisted growth have emerged as promising approaches. Herein, this study gives a summary of important developments in recent years in the assisted growth synthesis of 2D materials. Additionally, it highlights the current difficulties and possible benefits of the assisted-growth approach for 2D materials. It also highlights novel avenues of development and presents opportunities for new lines of investigation.
Collapse
Affiliation(s)
- Yuming Feng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Mansoor Khalid
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haiying Xiao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Key Lab of Microsystem and Microstructure of Ministry of Education, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
2
|
An H, Hu Y, Song N, Mu T, Bai S, Peng Y, Liu L, Tang Y. Two-dimensional heterostructures built from ultrathin CeO 2 nanosheet surface-coordinated and confined metal-organic frameworks with enhanced stability and catalytic performance. Chem Sci 2022; 13:3035-3044. [PMID: 35382466 PMCID: PMC8905825 DOI: 10.1039/d2sc00308b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/12/2022] [Indexed: 01/11/2023] Open
Abstract
Two-dimensional (2D) metal-organic framework (MOF) based heterostructures will be greatly advantageous to enhance catalytic performance because they increase the contact surface and charge transfer. Herein, a novel 2D heterostructure named CeO2@NiFe-MOFs, in which monolayer NiFe-MOFs is coordinated with ceria (CeO2) to improve catalytic and stability performance, is successfully constructed by the strategy of in situ growth on the surface of ultrathin CeO2 nanosheets being functionalized with monolayer carboxylic acid groups. The 2D heterostructure possesses a sandwich structure, where monolayer NiFe-MOFs are coordinated to both the top and bottom surface of CeO2 nanosheets via joining carboxylic acid groups. In particular, CeO2 with robust coordination plays a significant role in the anchoring of carboxylic acid groups and binding strength of heterostructures. The 2D CeO2@NiFe-MOF heterostructure with a joint effect of metal-ligand coordination not only presents good structural stability but also significantly enhances the oxygen evolution reaction (OER) efficiencies in comparison to bare NiFe-MOFs, achieving a current density of 20 mA cm-2 at a low overpotential of 248 mV as well as durability for at least 40 h. Meanwhile, the electronics, optics, band gap energy and local strains of CeO2 decorated with 2D NiFe-MOFs are different to the properties of bare CeO2. Our study on the construction of an ultrathin CeO2 surface-coordinated and confined MOF layer may pave a new way for novel 2D MOF composites/heterostructures or multi-functional 2D CeO2 materials to be used in energy conversion or other fields.
Collapse
Affiliation(s)
- Haiyan An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yang Hu
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Nan Song
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Tingliang Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Shiqiang Bai
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and Technology, Lanzhou University Lanzhou 730000 China
| | - Liangliang Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Yu Tang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
3
|
Zhou Y. Controllable design, synthesis and characterization of nanostructured rare earth metal oxides. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2018-0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Rare earth metal oxide nanomaterials have drawn much attention in recent decades due to their unique properties and promising applications in catalysis, chemical and biological sensing, separation, and optical devices. Because of the strong structure–property correlation, controllable synthesis of nanomaterials with desired properties has long been the most important topic in nanoscience and nanotechnology and still maintains a grand challenge. A variety of methods, involving chemical, physical, and hybrid method, have been developed to precisely control nanomaterials, including size, shape, dimensionality, crystal structure, composition, and homogeneity. These nanostructural parameters play essential roles in determining the final properties of functional nanomaterials. Full understanding of nanomaterial properties through characterization is vital in elucidating the fundamental principles in synthesis and applications. It allows researchers to discover the correlations between the reaction parameters and nanomaterial properties, offers valuable insights in improving synthetic routes, and provokes new design strategies for nanostructures. In application systems, it extrapolates the structure–activity relationship and reaction mechanism and helps to establish quality model for similar reaction processes. The purpose of this chapter is to provide a comprehensive overview and a practical guide of rare earth oxide nanomaterial design and characterization, with special focus on the well-established synthetic methods and the conventional and advanced analytical techniques. This chapter addresses each synthetic method with its advantages and certain disadvantages, and specifically provides synthetic strategies, typical procedures and features of resulting nanomaterials for the widely-used chemical methods, such as hydrothermal, solvothermal, sol–gel, co-precipitation, thermal decomposition, etc. For the nanomaterial characterization, a practical guide for each technique is addressed, including working principle, applications, materials requirements, experimental design and data analysis. In particular, electron and force microscopy are illuminated for their powerful functions in determining size, shape, and crystal structure, while X-ray based techniques are discussed for crystalline, electronic, and atomic structural determination for oxide nanomaterials. Additionally, the advanced characterization methodologies of synchrotron-based techniques and in situ methods are included. These non-traditional methods become more and more popular because of their capabilities of offering unusual nanostructural information, short experiment time, and in-depth problem solution.
Graphical Abstract:
Collapse
|
4
|
Construction of high quality ultrathin lanthanide oxyiodide nanosheets for enhanced CT imaging and anticancer drug delivery to efficient cancer theranostics. Biomaterials 2020; 230:119670. [DOI: 10.1016/j.biomaterials.2019.119670] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 11/18/2022]
|
5
|
Xu J, Chen X, Xu Y, Du Y, Yan C. Ultrathin 2D Rare-Earth Nanomaterials: Compositions, Syntheses, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1806461. [PMID: 31018020 DOI: 10.1002/adma.201806461] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 02/01/2019] [Indexed: 05/25/2023]
Abstract
Ultrathin 2D nanomaterials possess promising properties due to electron confinement within single or a few atom layers. As an emerging class of functional materials, ultrathin 2D rare-earth nanomaterials may incorporate the unique optical, magnetic, and catalytic behaviors of rare-earth elements into layers, exhibiting great potential in various applications such as optoelectronics, magnetic devices, transistors, high-efficiency catalysts, etc. Despite its importance, reviews on ultrathin 2D rare-earth nanomaterials or related topics are rare and only focus on a certain family of ultrathin 2D rare-earth nanomaterials. This work is the first comprehensive review in this impressive field, which covers all families of ultrathin 2D rare-earth nanomaterials, illustrating their compositions, syntheses, and applications. After summarizing the current achievements, the challenges and opportunities of future research on ultrathin 2D rare-earth nanomaterials are evaluated.
Collapse
Affiliation(s)
- Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Xiaoyun Chen
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yueshan Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Chunhua Yan
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|