1
|
Liu S, Xiong Y, Dong F. Cyclodextrin metal-organic framework@SiO 2 nanocomposites for poorly soluble drug loading and release. RSC Adv 2024; 14:31868-31876. [PMID: 39380653 PMCID: PMC11460221 DOI: 10.1039/d4ra04935g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
The development of non-toxic drug carrier materials with high loading capacity, sustained release properties, stability, and biocompatibility holds significant medical value and potential for loading and releasing poorly soluble drugs. In this study, we synthesized a biocompatible, non-toxic, environmentally friendly CD-MOF porous material with high specific surface area and tunable structure. By incorporating SiO2 to enhance the stability of MOF materials, the synthesized CD-MOF@SiO2 material shows promising applications in drug delivery. The obtained CD-MOF@SiO2 nanocomposite was utilized as a carrier for the poorly soluble drug, folic acid. Characterization of the drug-loaded composite before and after drug loading was performed using scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, N2 adsorption-desorption, and X-ray diffraction analyses, showing improved stability as indicated by thermogravimetric analysis and derivative thermogravimetry data. UV spectrophotometry was used to investigate the loading and sustained release of folic acid under different conditions in PBS buffer, demonstrating that the well-structured CD-MOF@SiO2 material exhibits high drug loading and controllable release properties. The CD-MOF@SiO2 achieved a high drug loading efficiency (166.78%) and encapsulation rate (83.39%) for folic acid, leading to a significant increase in apparent solubility from 1.6 μg mL-1 in its free form to 21.74 mg mL-1, a 13 588-fold expansion. This work presents a novel, efficient, and highly valuable approach for the development of carrier materials for loading and releasing poorly soluble drugs.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Polymer Materials and Engineering, Guizhou University China
| | - Yuzhu Xiong
- College of Materials and Metallurgy, Guizhou University China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, Guizhou University China
| |
Collapse
|
2
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
3
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
4
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Sajid H. Effect of interlayer slipping on the geometric, thermal and adsorption properties of 2D covalent organic frameworks: a comprehensive review based on computational modelling studies. Phys Chem Chem Phys 2024; 26:8577-8603. [PMID: 38421236 DOI: 10.1039/d4cp00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Two-dimensional covalent organic frameworks (2D-COFs) are a class of crystalline porous organic polymers, consisting of 2D-planar sheets stacked together perpendicularly via noncovalent forces. Since their discovery, 2D-COFs have attracted extensive attention for optoelectronic and adsorption applications. Owing to the layer stacking nature of 2D COFs, various new slipped structures that are energetically favourable can be designed. These interlayer slipped structures are actively responsible for tuning (mostly enhancing) the optoelectronic properties, thermal properties, and mechanical strength of 2D COFs. This review summarizes the effect of interlayer slipping on the energetic stability, electronic behaviour and gas adsorption properties of 2D layered COFs, which is explained through computational modelling simulations. Since computational modelling offers a deep insight into electronic behaviour at the atomic scale, which is potentially impossible through experimental techniques, the introduction and role of computational techniques in such studies have also been described.
Collapse
Affiliation(s)
- Hasnain Sajid
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK.
| |
Collapse
|
6
|
Parsaei M, Akhbari K, Tylianakis E, Froudakis GE. Effects of Fluorinated Functionalization of Linker on Quercetin Encapsulation, Release and Hela Cell Cytotoxicity of Cu-Based MOFs as Smart pH-Stimuli Nanocarriers. Chemistry 2024; 30:e202301630. [PMID: 37581254 DOI: 10.1002/chem.202301630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlled delivery of target molecules is required in many medical and chemical applications. For such purposes, metal-organic frameworks (MOFs), which possess desirable features such as high porosity, large surface area, and adjustable functionalities, hold great potential as drug carriers. Herein, Quercetin (QU), as an anticancer drug, was loaded on Cu2 (BDC)2 (DABCO) and Cu2 (F4 BDC)2 )DABCO) MOFs (BDC=1,4-benzenedicarboxylate and DABCO=1,4-diazabicyclo[2.2.2]octane). As these Cu-MOFs have a high surface area, an appropriate pore size, and biocompatible ingredients, they can be utilized to deliver QU. The loading efficiency of QU in these MOFs was 49.5 % and 41.3 %, respectively. The drug-loaded compounds displayed sustained drug release over 15 days, remarkably high drug loading capacities and pH-controlled release behavior. The prepared nanostructures were characterized by different characterization technics including FT-IR, PXRD, ZP, TEM, FE-SEM, UV-vis, and BET. In addition, MTT assays were carried out on the HEK-293 and HeLa cell lines to investigate cytotoxicity. Cellular apoptosis analysis was performed to investigate the cell death mechanisms. Grand Canonical Monte Carlo simulations were conducted to analyze the interactions between MOFs and QU. Moreover, the stability of MOFs was also investigated during and after the drug release process. Ultimately, kinetic models of drug release were evaluated.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Emmanuel Tylianakis
- Department of Materials Science and Technology, Voutes Campus, University of Crete, GR-71003 Heraklion, Crete, Greece
| | - George E Froudakis
- Department of Chemistry, Voutes Campus, University of Crete, GR-71003 Heraklion, Crete, Greece
| |
Collapse
|
7
|
Shashikumar U, Joshi S, Srivastava A, Tsai PC, Shree KDS, Suresh M, Ravindran B, Hussain CM, Chawla S, Ke LY, Ponnusamy VK. Trajectory in biological metal-organic frameworks: Biosensing and sustainable strategies-perspectives and challenges. Int J Biol Macromol 2023; 253:127120. [PMID: 37820902 DOI: 10.1016/j.ijbiomac.2023.127120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The ligand attribute of biomolecules to form coordination bonds with metal ions led to the discovery of a novel class of materials called biomolecule-associated metal-organic frameworks (Bio-MOFs). These biomolecules coordinate in multiple ways and provide versatile applications. Far-spread bio-ligands include nucleobases, amino acids, peptides, cyclodextrins, saccharides, porphyrins/metalloporphyrin, proteins, etc. Low-toxicity, self-assembly, stability, designable and selectable porous size, the existence of rigid and flexible forms, bio-compatibility, and synergistic interactions between metal ions have led Bio-MOFs to be commercialized in industries such as sensors, food, pharma, and eco-sensing. The rapid growth and commercialization are stunted by absolute bio-compatibility issues, bulk morphology that makes it rigid to alter shape/porosity, longer reaction times, and inadequate research. This review elucidates the structural vitality, biocompatibility issues, and vital sensing applications, including challenges for incorporating bio-ligands into MOF. Critical innovations in Bio-MOFs' applicative spectrum, including sustainable food packaging, biosensing, insulin and phosphoprotein detection, gas sensing, CO2 capture, pesticide carriers, toxicant adsorptions, etc., have been elucidated. Emphasis is placed on biosensing and biomedical applications with biomimetic catalysis and sensitive sensor designing.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan
| | - Somi Joshi
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Kandkuri Dhana Sai Shree
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Meera Suresh
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201301, India.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung City 807, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan.; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University, Kaohsiung City 804, Taiwan.
| |
Collapse
|
8
|
Grebenyuk D, Shaulskaya M, Shevchenko A, Zobel M, Tedeeva M, Kustov A, Sadykov I, Tsymbarenko D. Tuning the Cerium-Based Metal-Organic Framework Formation by Template Effect and Precursor Selection. ACS OMEGA 2023; 8:48394-48404. [PMID: 38144061 PMCID: PMC10733954 DOI: 10.1021/acsomega.3c07906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023]
Abstract
The novel metal-organic framework [(CH3)2NH2]2[Ce2(bdc)4(DMF)2]·2H2O (Ce-MOF, H2bdc-terephthalic acid, DMF-N,N-dimethylformamide) was synthesized by a simple solvothermal method. Ce-MOF has 3D connectivity of bcu type with a dinuclear fragment connected with eight neighbors, while three types of guest species are residing in its pores: water, DMF, and dimethylammonium cations. Dimethylamine was demonstrated to have a decisive templating effect on the formation of Ce-MOF, as its deliberate addition to the solvothermal reaction allows the reproducible synthesis of the new framework. Otherwise, the previously reported MOF Ce5(bdc)7.5(DMF)4 (Ce5) or its composite with nano-CeO2 (CeO2@Ce5) was obtained. Various Ce carboxylate precursors and synthetic conditions were explored to evidence the major stability of Ce-MOF and Ce5 within the Ce carboxylate-H2bdc-DMF system. The choice of precursor impacts the surface area of Ce-MOF and thus its reactivity in an oxidative atmosphere. The in situ PXRD and TG-DTA-MS study of Ce-MOF in a nonoxidative atmosphere demonstrates that it eliminates H2O and DMF along with (CH3)2NH guest species in two distinct stages at 70 and 250 °C, respectively, yielding [Ce2(bdc)3(H2bdc)]. The H2bdc molecule is removed at 350 °C with the formation of novel modification of Ce2(bdc)3, which is stable at least up to 450 °C. According to the total X-ray scattering study with pair distribution function analysis, the most pronounced local structure transformation occurs upon departure of DMF and (CH3)2NH guest species, which is in line with the in situ PXRD experiment. In an oxidative atmosphere, Ce-MOF undergoes combustion to CeO2 at a temperature as low as 390 °C. MOF-derived CeO2 from Ce-MOF, Ce5, and CeO2@Ce5 exhibits catalytic activity in the CO oxidation reaction.
Collapse
Affiliation(s)
- Dimitry Grebenyuk
- Lomonosov
Moscow State University, Moscow 119991, Russia
- Faculty
of Materials Science, MSU-BIT University, Shenzhen 518172, China
| | | | - Artem Shevchenko
- Lomonosov
Moscow State University, Moscow 119991, Russia
- Max
Planck Institute for Solid State Research, Stuttgart 70569, Germany
| | - Mirijam Zobel
- Institute
of Crystallography, RWTH Aachen University, Aachen 52066, Germany
| | - Marina Tedeeva
- Lomonosov
Moscow State University, Moscow 119991, Russia
| | - Alexander Kustov
- Lomonosov
Moscow State University, Moscow 119991, Russia
- N.
D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilia Sadykov
- Paul
Scherrer
Institute, Villigen 5232, Switzerland
| | | |
Collapse
|
9
|
Boroushaki T, Ganjali Koli M, Eshaghi Malekshah R, Dekamin MG. Elucidating anticancer drugs release from UiO-66 as a carrier through the computational approaches. RSC Adv 2023; 13:31897-31907. [PMID: 37920197 PMCID: PMC10618728 DOI: 10.1039/d3ra05587f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023] Open
Abstract
The computational analysis of drug release from metal-organic frameworks (MOFs), specifically UiO-66, is the primary focus of this research. MOFs are recognized as nanocarriers due to their crystalline structure, porosity, and potential for added functionalities. The research examines the release patterns of three drugs: temozolomide, alendronate, and 5-fluorouracil, assessing various factors such as the drugs' distance from the UiO-66 centers, the interaction of drug functional groups with Zr metal ions, and the drug density throughout the nanocarrier. Findings reveal that 5-fluorouracil is located furthest from the UiO-66 center and exhibits the highest positive energy compared to the other drugs. Alendronate's density is observed to shift to the carrier surface, while 5-fluorouracil's density significantly decreases within the system. The drug density diminishes as the distance from the UiO-66 center of mass increases, suggesting a stronger positive interaction between the drugs and the nanocarrier. Moreover, Monte Carlo calculations were employed to load drugs onto the UiO-66 surface, leading to a substantial release of 5-fluorouracil from UiO-66. Quantum and Monte Carlo adsorption localization calculations were also conducted to gather data on the compounds' energy and geometry. This research underscores the potential of MOFs as nanocarriers for drug delivery and highlights the crucial role of temperature in regulating drug release from UiO-66. It provides insights into the complex dynamics of drug release and the factors influencing it, thereby emphasizing the promise of UiO-66 as a viable candidate for drug delivery. This work contributes to our understanding of UiO-66's role and sets the stage for improved performance optimization in the cancer treatment.
Collapse
Affiliation(s)
- Tahereh Boroushaki
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| | | | | | - Mohammad G Dekamin
- Pharmaceutical and Heterocyclic Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran
| |
Collapse
|
10
|
Shukla S, Jakowski J, Kadian S, Narayan RJ. Computational approaches to delivery of anticancer drugs with multidimensional nanomaterials. Comput Struct Biotechnol J 2023; 21:4149-4158. [PMID: 37675288 PMCID: PMC10477808 DOI: 10.1016/j.csbj.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023] Open
Abstract
Functionalized nanotubes (NTs), nanosheets, nanorods, and porous organometallic scaffolds are potential in vivo carriers for cancer therapeutics. Precise delivery through these agents depends on factors like hydrophobicity, payload capacity, bulk/surface adsorption, orientation of molecules inside the host matrix, bonding, and nonbonding interactions. Herein, we summarize advances in simulation techniques, which are extremely valuable in initial geometry optimization and evaluation of the loading and unloading behavior of encapsulated drug molecules. Computational methods broadly involve the use of quantum and classical mechanics for studying the behavior of molecular properties. Combining theoretical processes with experimental techniques, such as X-ray crystallography, NMR spectroscopy, and bioassays, can provide a more comprehensive understanding of the structure and function of biological molecules. This integrated approach has led to numerous breakthroughs in drug discovery, enzyme design, and the study of complex biological processes. This short review provides an overview of results and challenges described from erstwhile investigations on the molecular interaction of anticancer drugs with nanocarriers of different aspect ratios.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Sachin Kadian
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| | - Roger J. Narayan
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695-7907, United States
| |
Collapse
|
11
|
Demir H, Daglar H, Gulbalkan HC, Aksu GO, Keskin S. Recent advances in computational modeling of MOFs: From molecular simulations to machine learning. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Sampei H, Saegusa K, Chishima K, Higo T, Tanaka S, Yayama Y, Nakamura M, Kimura K, Sekine Y. Quantum Annealing Boosts Prediction of Multimolecular Adsorption on Solid Surfaces Avoiding Combinatorial Explosion. JACS AU 2023; 3:991-996. [PMID: 37124301 PMCID: PMC10131206 DOI: 10.1021/jacsau.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Quantum annealing has been used to predict molecular adsorption on solid surfaces. Evaluation of adsorption, which takes place in all solid surface reactions, is a crucially important subject for study in various fields. However, predicting the most stable coordination by theoretical calculations is challenging for multimolecular adsorption because there are numerous candidates. This report presents a novel method for quick adsorption coordination searches using the quantum annealing principle without combinatorial explosion. This method exhibited much faster search and more stable molecular arrangement findings than conventional methods did, particularly in a high coverage region. We were able to complete a configurational prediction of the adsorption of 16 molecules in 2286 s (including 2154 s for preparation, only required once), whereas previously it has taken 38 601 s. This approach accelerates the tuning of adsorption behavior, especially in composite materials and large-scale modeling, which possess more combinations of molecular configurations.
Collapse
Affiliation(s)
- Hiroshi Sampei
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Koki Saegusa
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenshin Chishima
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Takuma Higo
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Shu Tanaka
- Department
of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Green
Computing System Research Organization, Waseda University, Wasedamachi-27,
Shinjuku-ku, Tokyo 162-0042, Japan
| | - Yoshihiro Yayama
- Central
Technical Research Laboratory, ENEOS Corporation, 231-0815, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 100-8162, Japan
| | - Makoto Nakamura
- Quantum
Research Center, Fujitsu Ltd., 4-1-1 Kamiodanaka, Kawasaki, Kanagawa 211-8588, Japan
| | - Koichi Kimura
- Quantum
Research Center, Fujitsu Ltd., 4-1-1 Kamiodanaka, Kawasaki, Kanagawa 211-8588, Japan
| | - Yasushi Sekine
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
13
|
Lv W, Yang K, Yu J, Wu Y, Zhang M, Liu Z, Wang X, Zhou J, Ma H, Yi R, Chu H, Chen J. A generalizable strategy for crosslinkable albumin-based hydrogels and application as potential anti-tumor nanoplatform. J Biomater Appl 2023; 37:1813-1822. [DOI: 10.1177/08853282231166489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Albumin-based hydrogels have emerged as promising nanoparticle systems for the effective delivery of hydrophobic anticancer drugs. Anti-cancer drugs often cause some adverse effects, such as toxicity and rapid clearance by mononuclear phagocytic systems. Herein, a new strategy of synthesizing N-hydroxysuccinimide (NHS)-activated linker to form crosslinkable albumin-based hydrogels (CABH) is reported. The CABH favored physiochemical characteristics improvement of doxorubicin (Dox) and drug release. The CABH was constructed depending on the crosslinking reaction between NHS activated glycerol and albumin. The size of CABH was approximately 200 nm examined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was found that the particle size and size distribution of the CABH remained stable in neutral PBS for 1 week. Dox loaded CABH would be controllably released in weak acidic environment verified by in vitro release and in vitro cell imaging. The Dox loaded hydrogel results in significant killing in the case of acidic culture medium. Our work provides a crosslinking method to formulate albumin nanoplatform and improve the size, stability, drug loading capacity and controlled release, which throws light on the potential application in drug delivery.
Collapse
Affiliation(s)
- WanWan Lv
- Hunan University of Science and Technology, Xiangtan, China
| | - Kai Yang
- Hunan University of Science and Technology, Xiangtan, China
| | - Jingwen Yu
- Hunan University of Science and Technology, Xiangtan, China
| | - Yiqing Wu
- Hunan University of Science and Technology, Xiangtan, China
| | - Mengdi Zhang
- Hunan University of Science and Technology, Xiangtan, China
| | - Zichuan Liu
- Hunan University of Science and Technology, Xiangtan, China
| | - Xixuan Wang
- Hunan University of Science and Technology, Xiangtan, China
| | - Jiahui Zhou
- Hunan University of Science and Technology, Xiangtan, China
| | - Haoran Ma
- Hunan University of Science and Technology, Xiangtan, China
| | | | - Hui Chu
- Hunan University of Science and Technology, Xiangtan, China
| | - Jian Chen
- Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
14
|
Lalehchini M, Alavi Nikje MM, Mohajeri A, Kazemian H. A Green, Economic Method for Bench-Scale Activation of a MIL-101(Cr) Nanoadsorbent. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Maryam Lalehchini
- Department of Chemistry, Faculty of Science, Imam Khomeini International University (IKIU), P.O. Box 288, Qazvin34149 16818, Iran
| | - Mir Mohammad Alavi Nikje
- Department of Chemistry, Faculty of Science, Imam Khomeini International University (IKIU), P.O. Box 288, Qazvin34149 16818, Iran
| | - Ali Mohajeri
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), West Boulevard, Azadi Sports Complex, P.O. Box 14665-1998, Tehran14665137, Iran
| | - Hossein Kazemian
- Northern Analytical Lab Services, University of Northern British Columbia (UNBC), Prince George, British ColumbiaV2N 4Z9, Canada
| |
Collapse
|
15
|
Zhang X, Li T, Cao QL, Wang YJ, Hou WL, Wei J, Tian GH, Hu H, Sheng J, Geng L, Zhang DS, Zhang YZ, Li Q. Constructing [Co6(μ3-OH)6]-based pillar-layered MOF with open metal sites via steric-hindrance effect on ligand for CO2 adsorption and fixation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Ernst M, Gryn'ova G. Strength and Nature of Host-Guest Interactions in Metal-Organic Frameworks from a Quantum-Chemical Perspective. Chemphyschem 2022; 23:e202200098. [PMID: 35157349 PMCID: PMC9303424 DOI: 10.1002/cphc.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 11/10/2022]
Abstract
Metal-organic frameworks (MOFs) offer a convenient means for capturing, transporting, and releasing small molecules. Their rational design requires an in-depth understanding of the underlying non-covalent host-guest interactions, and the ability to easily and rapidly pre-screen candidate architectures in silico. In this work, we devised a recipe for computing the strength and analysing the nature of the host-guest interactions in MOFs. By assessing a range of density functional theory methods across periodic and finite supramolecular cluster scale we find that appropriately constructed clusters readily reproduce the key interactions occurring in periodic models at a fraction of the computational cost. Host-guest interaction energies can be reliably computed with dispersion-corrected density functional theory methods; however, decoding their precise nature demands insights from energy decomposition schemes and quantum-chemical tools for bonding analysis such as the quantum theory of atoms in molecules, the non-covalent interactions index or the density overlap regions indicator.
Collapse
Affiliation(s)
- Michelle Ernst
- Computational Carbon Chemistry GroupHeidelberg Institute for Theoretical Studies (HITS gGmbH)69118HeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg University69120HeidelbergGermany
| | - Ganna Gryn'ova
- Computational Carbon Chemistry GroupHeidelberg Institute for Theoretical Studies (HITS gGmbH)69118HeidelbergGermany
- Interdisciplinary Center for Scientific ComputingHeidelberg University69120HeidelbergGermany
| |
Collapse
|
17
|
Abstract
In the past two decades, metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) assembled from metal ions or clusters and organic linkers via metal-ligand coordination bonds have captivated significant scientific interest on account of their high crystallinity, exceptional porosity, and tunable pore size, high modularity, and diverse functionality. The opportunity to achieve functional porous materials by design with promising properties, unattainable for solid-state materials in general, distinguishes MOFs from other classes of materials, in particular, traditional porous materials such as activated carbon, silica, and zeolites, thereby leading to complementary properties. Scientists have conducted intense research in the production of chiral MOF (CMOF) materials for specific applications including but not limited to chiral recognition, separation, and catalysis since the discovery of the first functional CMOF (i.e., d- or l-POST-1). At present, CMOFs have become interdisciplinary between chirality chemistry, coordination chemistry, and material chemistry, which involve in many subjects including chemistry, physics, optics, medicine, pharmacology, biology, crystal engineering, environmental science, etc. In this review, we will systematically summarize the recent progress of CMOFs regarding design strategies, synthetic approaches, and cutting-edge applications. In particular, we will highlight the successful implementation of CMOFs in asymmetric catalysis, enantioselective separation, enantioselective recognition, and sensing. We envision that this review will provide readers a good understanding of CMOF chemistry and, more importantly, facilitate research endeavors for the rational design of multifunctional CMOFs and their industrial implementation.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Zhijie Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| |
Collapse
|
18
|
Fanourgakis GS, Gkagkas K, Froudakis G. Introducing artificial MOFs for improved machine learning predictions: Identification of top-performing materials for methane storage. J Chem Phys 2022; 156:054103. [DOI: 10.1063/5.0075994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- George S. Fanourgakis
- Department of Chemistry, University of Crete, Voutes Campus, GR-70013 Heraklion, Crete, Greece
| | - Konstantinos Gkagkas
- Material Engineering Division, Toyota Motor Europe NV/SA, Technical Center, Hoge Wei 33B, 1930 Zaventem, Belgium
| | - George Froudakis
- Department of Chemistry, University of Crete, Voutes Campus, GR-70013 Heraklion, Crete, Greece
| |
Collapse
|
19
|
Boroushaki T, Dekamin MG, Hashemianzadeh SM, Naimi-Jamal MR, Ganjali Koli M. A molecular dynamic simulation study of anticancer agents and UiO-66 as a carrier in drug delivery systems. J Mol Graph Model 2022; 113:108147. [DOI: 10.1016/j.jmgm.2022.108147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022]
|
20
|
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted Delivery Methods for Anticancer Drugs. Cancers (Basel) 2022; 14:622. [PMID: 35158888 PMCID: PMC8833699 DOI: 10.3390/cancers14030622] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/07/2023] Open
Abstract
Several drug-delivery systems have been reported on and often successfully applied in cancer therapy. Cell-targeted delivery can reduce the overall toxicity of cytotoxic drugs and increase their effectiveness and selectivity. Besides traditional liposomal and micellar formulations, various nanocarrier systems have recently become the focus of developmental interest. This review discusses the preparation and targeting techniques as well as the properties of several liposome-, micelle-, solid-lipid nanoparticle-, dendrimer-, gold-, and magnetic-nanoparticle-based delivery systems. Approaches for targeted drug delivery and systems for drug release under a range of stimuli are also discussed.
Collapse
Affiliation(s)
- Valery V. Veselov
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - Alexander E. Nosyrev
- Center of Bioanalytical Investigation and Molecular Design, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia; (V.V.V.); (A.E.N.)
| | - László Jicsinszky
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Renad N. Alyautdin
- Department of Pharmacology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 8 Trubetskaya ul, 119991 Moscow, Russia
| |
Collapse
|
21
|
Han C, Zhang X, Sun Q, Chen D, Miao T, Su K, Li Q, Huang S, Qian J. Phthalocyanine-induced iron active species in metal–organic framework-derived porous carbon for efficient alkaline zinc–air batteries. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00394e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The FePc-encapsulated MOF can be thermally converted into a series of Fe-based active centers embedded into N-doped carbon nanomaterials. It shows good oxygen reduction activity in terms of mass activity, long-term durability and methanol tolerance.
Collapse
Affiliation(s)
- Cheng Han
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, P. R. China
| | - Xiaodeng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, P. R. China
| | - Qiuhong Sun
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, P. R. China
| | - Tingting Miao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, P. R. China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, Yunnan, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, P. R. China
| |
Collapse
|
22
|
Construction of two new Co(II)-organic frameworks based on diverse metal clusters: Highly selective C2H2 and CO2 capture and magnetic properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Soltani S, Akhbari K. Facile and single-step entrapment of chloramphenicol in ZIF-8 and evaluation of its performance in killing infectious bacteria with high loading content and controlled release of the drug. CrystEngComm 2022. [DOI: 10.1039/d1ce01593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CLN@ZIF-8 was prepared by trapping chloramphenicol during ZIF-8 synthesis with high DLC and DLE. It showed H2O2-sensitive controlled release with higher drug release under the simulated infectious conditions and short-time antibacterial activity.
Collapse
Affiliation(s)
- Sajjad Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
24
|
Yang Q, Song R, Wang Y, Hu X, Chen Z, Li Z, Tan W. One-pot synthesis of Zr-MOFs on MWCNTs for high-performance electrochemical supercapacitor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Udourioh GA, Solomon MM, Epelle EI. Metal Organic Frameworks as Biosensing Materials for COVID-19. Cell Mol Bioeng 2021; 14:535-553. [PMID: 34249167 PMCID: PMC8260022 DOI: 10.1007/s12195-021-00686-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus disease (COVID-19) pandemic outbreak is the most startling public health crises with attendant global socio-economic burden ever experienced in the twenty-first century. The level of devastation by this outbreak is such that highly impacted countries will take years to recover. Studies have shown that timely detection based on accelerated sample testing and accurate diagnosis are crucial steps to reducing or preventing the spread of any pandemic outbreak. In this opinionated review, the impacts of metal organic frameworks (MOFs) as a biosensor in a pandemic outbreak is investigated with reference to COVID-19. Biosensing technologies have been proven to be very effective in clinical analyses, especially in assessment of severe infectious diseases. Polymerase chain reactions (PCR, RT-PCR, CRISPR) - based test methods predominantly used for SARS-COV-2 diagnoses have serious limitations and the health scientists and researchers are urged to come up with a more robust and versatile system for solving diagnostic problem associated with the current and future pandemic outbreaks. MOFs, an emerging crystalline material with unique characteristics will serve as promising biosensing materials in a pandemic outbreak such as the one we are in. We hereby highlight the characteristics of MOFs and their sensing applications, potentials as biosensors in a pandemic outbreak and draw the attention of researchers to a new vista of research that needs immediate action.
Collapse
Affiliation(s)
- Godwin A. Udourioh
- Analytical/Material Chemistry Laboratory, Department of Pure and Applied Chemistry, Faculty of Natural and Applied Sciences, Veritas University, Abuja, P.O.Box 6523, Garki, Abuja Nigeria
| | - Moses M. Solomon
- Department of Chemistry, College of Science and Technology, Covenant University, Canaanland, Km10, Idiroko Road, Ota, Ogun State Nigeria
| | - Emmanuel I. Epelle
- Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FB UK
| |
Collapse
|
26
|
Sun X, Keywanlu M, Tayebee R. Experimental and molecular dynamics simulation study on the delivery of some common drugs by ZIF‐67, ZIF‐90, and ZIF‐8 zeolitic imidazolate frameworks. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaodong Sun
- Department of Hepatobiliary Surgery The Third Hospital of Jinan Jinan China
| | - Maryam Keywanlu
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| | - Reza Tayebee
- Department of Chemistry, School of Sciences Hakim Sabzevari University Sabzevar Iran
| |
Collapse
|
27
|
Ayvaz Koroglu M, Kurkcuoglu O, Sungur FA. Monte Carlo and Molecular Dynamics Simulations suggest controlled release of corticosteroids from mesoporous host MIL-101 (Cr). MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1991579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Merve Ayvaz Koroglu
- Department of Polymer Science and Technology, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Fethiye Aylin Sungur
- Department of Computational Science and Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
28
|
|
29
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Thompson MJ, Wells SA, Düren T. Cisplatin uptake and release in pH sensitive zeolitic imidazole frameworks. J Chem Phys 2021; 154:244703. [PMID: 34241364 DOI: 10.1063/5.0046054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cancer remains hard to treat, partially due to the non-specificity of chemotherapeutics. Metal-organic frameworks (MOFs) are promising carriers for targeted chemotherapy, yet, to date, there have been few detailed studies to systematically enhance drug loading while maintaining controlled release. In this work, we investigate which molecular simulation methods best capture the experimental uptake and release of cisplatin from UiO-66 and UiO-66(NH2). We then screen a series of biocompatible, pH-sensitive zeolitic imidazolate frameworks (ZIFs) for their ability to retain cisplatin in healthy parts of the patient and release it in the vicinity of a tumor. Pure-component GCMC simulations show that the maximum cisplatin loading depends on the pore volume. To achieve this maximum loading in the presence of water, either the pore size needs to be large enough to occupy both cisplatin and its solvation shell or the MOF-cisplatin interaction must be more favorable than the cisplatin-shell interaction. Both solvated and non-solvated simulations show that cisplatin release rates can be controlled by either decreasing the pore limiting diameters or by manipulating framework-cisplatin interaction energies to create strong, dispersed adsorption sites. The latter method is preferable if cisplatin loading is performed from solution into a pre-synthesized framework as weak interaction energies and small pore window diameters will hinder cisplatin uptake. Here, ZIF-82 is most promising. If it is possible to load cisplatin during crystallization, ZIF-11 would outcompete the other MOFs screened as cisplatin cannot pass through its pore windows; therefore, release rates would be purely driven by the pH triggered framework degradation.
Collapse
Affiliation(s)
- Megan J Thompson
- Department of Chemical Engineering, Centre for Advanced Separations Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Stephen A Wells
- Department of Chemical Engineering, Centre for Advanced Separations Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| | - Tina Düren
- Department of Chemical Engineering, Centre for Advanced Separations Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
31
|
Jaafar A, Platas-Iglesias C, Bilbeisi RA. Thiosemicarbazone modified zeolitic imidazolate framework (TSC-ZIF) for mercury(ii) removal from water. RSC Adv 2021; 11:16192-16199. [PMID: 35479125 PMCID: PMC9030954 DOI: 10.1039/d1ra02025k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Zeolitic imidazolate frameworks (ZIF-8), and their derivatives, have been drawing increasing attention due to their thermal and chemical stability. The remarkable stability of ZIF-8 in aqueous and high pH environments renders it an ideal candidate for the removal of heavy metals from wastewater. In this study, we present the preparation of novel aldehyde-based zeolitic imidazolate frameworks (Ald-ZIF) through the integration of mixed-linkers: 2-methylimidazole (MIM) and imidazole-4-carbaldehyde (AldIM). The prepared Ald-ZIFs were post-synthetically modified with bisthiosemicarbazide (Bisthio) and thiosemicarbazide (Thio) groups, incorporating thiosemicarbazone (TSC) functionalities to the core of the framework. This modification results in the formation of TSC-functionalized ZIF derivatives (TSC-ZIFs). Thiosemicarbazones are versatile metal chelators, hence, adsorption properties of TSC-ZIFs for the removal of mercury(ii) from water were explored. Removal of mercury(ii) from homoionic aqueous solutions, binary and tertiary systems in competition with lead(ii) and cadmium(ii) under ambient conditions and neutral pH are reported in this study. MIM3.5:Thio1:Zn improved the removal efficiency of mercury(ii) from water, up to 97% in two hours, with an adsorption capacity of 1667 mg g-1. Desorption of mercury(ii) from MIM3.5:Thio1:Zn was achieved under acidic conditions, regenerating MIM3.5:Thio1:Zn for five cycles of mercury(ii) removal. TSC-ZIF derivatives, designed and developed here, represent a new class of dynamically functionalized adsorption material displaying the advantages of simplicity, efficiency, and reusability.
Collapse
Affiliation(s)
- Amani Jaafar
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña 15071 A Coruña Galicia Spain
| | - Rana A Bilbeisi
- American University of Beirut (AUB), Department of Civil and Environmental Engineering Riad El Solh Beirut 1107-2020 Lebanon
| |
Collapse
|
32
|
Molecular simulations of the adsorption and separation of hydrogen sulfide, carbon dioxide, methane, and nitrogen and their binary mixtures (H 2S/CH 4), (CO 2/CH 4) on NUM-3a metal-organic frameworks. J Mol Model 2021; 27:133. [PMID: 33893884 DOI: 10.1007/s00894-021-04709-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/10/2021] [Indexed: 10/21/2022]
Abstract
In this work, the adsorptions of carbon dioxide, methane, nitrogen, and hydrogen sulfide and the separation of their binary mixtures into NUM-3a Metal-Organic Framework (MOF) were studied through Grand Canonical Monte Carlo (GCMC) simulation method. The simulated pure gas uptakes using three generic force fields (UFF, Dreiding, and OPLS) at 298 K were compared with the experimental values. The accuracy of the applied force fields for each gas was compared with the experimental isotherms and discussed. Our results show that OPLS has the best accuracy in the case of methane while Dreiding was the best for CO2 and N2. Simulated gas uptakes indicated that H2S was more adsorbed by NUM-3a than CO2, CH4, and N2. The calculated adsorption selectivity of NUM-3a for the binary mixtures of CH4 with H2S is larger than that of CO2. NUM-3a possess more affinity for H2S and CO2 than for CH4, where it may be a promising adsorbent material for separating carbon dioxide and hydrogen sulfide from methane. Furthermore, the most probable sites for the adsorption of the studied gases on the NUM-3a were investigated. The heats of adsorptions, as well as Henry's law constants, were also calculated, and it was in line with the observed gas adsorptions. The most preferred sites for the adsorption of carbon dioxide and hydrogen sulfide are the carboxyl groups and inside the channels and around the metal centers. However, methane and nitrogen are mainly accumulating in the channels' s apexes of NUM-3a around the metal center.
Collapse
|
33
|
|
34
|
Jin J, Xue J, Liu Y, Yang G, Wang YY. Recent progresses in luminescent metal-organic frameworks (LMOFs) as sensors for the detection of anions and cations in aqueous solution. Dalton Trans 2021; 50:1950-1972. [PMID: 33527951 DOI: 10.1039/d0dt03930f] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The discharge of excessive metal ions and anions into water bodies leads to the serious pollution of water and environment, which in turn has a certain impact on industry, agriculture, and human life. Because of the unique advantages of luminescent metal-organic frameworks (LMOFs), they have been successfully explored as various fluorescent probes to quickly and effectively detect these pollutants. This perspective not only introduces the design strategy and classification of LMOFs, especially the construction methods of water-stable LMOFs, but also reports the latest progresses in some LMOFs between 2016 and 2020 as well as expounds the mechanisms of LMOFs for detecting anions and cations. Moreover, the luminescence properties of LMOFs are related to the selection of metal ions, the structure of organic ligands, the pore size, and the interaction of guest molecules. Finally, the further development of LMOFs is summarized and prospected in this field.
Collapse
Affiliation(s)
- Jing Jin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Juanjuan Xue
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yanchen Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P.R. China.
| |
Collapse
|
35
|
Cardenal AD, Ramadhar TR. The crystalline sponge method: quantum chemical in silico derivation and analysis of guest binding energies. CrystEngComm 2021. [DOI: 10.1039/d1ce00997d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computational techniques combined with single-crystal structural data provide a means to further analyse MOF-based crystalline sponge complexes.
Collapse
Affiliation(s)
- Ashley D. Cardenal
- Department of Chemistry, Howard University, Washington, District of Columbia, 20059, USA
| | - Timothy R. Ramadhar
- Department of Chemistry, Howard University, Washington, District of Columbia, 20059, USA
| |
Collapse
|
36
|
Huangfu M, Wang M, Lin C, Wang J, Wu P. Luminescent metal–organic frameworks as chemical sensors based on “mechanism–response”: a review. Dalton Trans 2021; 50:3429-3449. [DOI: 10.1039/d0dt04276e] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The comprehensive review systematically summarizes the recent developments in the study of LMOFs as chemical sensors based on “mechanism–response”.
Collapse
Affiliation(s)
- Mengjie Huangfu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- People's Republic of China
| | - Man Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- People's Republic of China
| | - Chen Lin
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- People's Republic of China
| | - Jian Wang
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- People's Republic of China
| | - Pengyan Wu
- School of Chemistry and Materials Science & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials
- Jiangsu Normal University
- Xuzhou
- People's Republic of China
| |
Collapse
|
37
|
Yang Y, Fu Y, You S, Li M, Qin C, Zhao L, Su Z. Synthesis and CO 2 photoreduction of two 3d–4f heterometal–organic frameworks. NEW J CHEM 2021. [DOI: 10.1039/d1nj03479k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two 3d–4f heterometal–organic frameworks with similar structures were synthesized by a steam-assisted conversion method and exhibited high activity and selectivity for the photoreduction of CO2.
Collapse
Affiliation(s)
- Yu Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Yaomei Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Siqi You
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Mingyue Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Liang Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Zhongmin Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China
| |
Collapse
|
38
|
Bikiaris ND, Ainali NM, Christodoulou E, Kostoglou M, Kehagias T, Papasouli E, Koukaras EN, Nanaki SG. Dissolution Enhancement and Controlled Release of Paclitaxel Drug via a Hybrid Nanocarrier Based on mPEG-PCL Amphiphilic Copolymer and Fe-BTC Porous Metal-Organic Framework. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2490. [PMID: 33322372 PMCID: PMC7763675 DOI: 10.3390/nano10122490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 01/12/2023]
Abstract
In the present work, the porous metal-organic framework (MOF) Basolite®F300 (Fe-BTC) was tested as a potential drug-releasing depot to enhance the solubility of the anticancer drug paclitaxel (PTX) and to prepare controlled release formulations after its encapsulation in amphiphilic methoxy poly(ethylene glycol)-poly(ε-caprolactone) (mPEG-PCL) nanoparticles. Investigation revealed that drug adsorption in Fe-BTC reached approximately 40%, a relatively high level, and also led to an overall drug amorphization as confirmed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The dissolution rate of PTX-loaded MOF was substantially enhanced achieving a complete (100%) release within four days, while the neat drug only reached a 13% maximum rate (3-4 days). This PTX-Fe-BTC nanocomposite was further encapsulated into a mPEG-PCL matrix, a typical aliphatic amphiphilic copolyester synthesized in our lab, whose biocompatibility was validated by in vitro cytotoxicity tests toward human umbilical vein endothelial cells (HUVEC). Encapsulation was performed according to the solid-in-oil-in-water emulsion/solvent evaporation technique, resulting in nanoparticles of about 143 nm, slightly larger of those prepared without the pre-adsorption of PTX on Fe-BTC (138 nm, respectively). Transmission electron microscopy (TEM) imaging revealed that spherical nanoparticles with embedded PTX-loaded Fe-BTC nanoparticles were indeed fabricated, with sizes ranging from 80 to 150 nm. Regions of the composite Fe-BTC-PTX system in the infrared (IR) spectrum are identified as signatures of the drug-MOF interaction. The dissolution profiles of all nanoparticles showed an initial burst release, attributed to the drug amount located at the nanoparticles surface or close to it, followed by a steadily and controlled release. This is corroborated by computational analysis that reveals that PTX attaches effectively to Fe-BTC building blocks, but its relatively large size limits diffusion through crystalline regions of Fe-BTC. The dissolution behaviour can be described through a bimodal diffusivity model. The nanoparticles studied could serve as potential chemotherapeutic candidates for PTX delivery.
Collapse
Affiliation(s)
- Nikolaos D. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Nina Maria Ainali
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Evi Christodoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Thomas Kehagias
- Laboratory of Electron Microscopy, Department of Physics, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece;
| | - Emilia Papasouli
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Emmanuel N. Koukaras
- Laboratory of Quantum and Computational Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (E.P.); (E.N.K.)
| | - Stavroula G. Nanaki
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (N.D.B.); (N.M.A.); (E.C.)
| |
Collapse
|
39
|
Two Cd(II)-organic frameworks for the highly luminescence sensitive detection of CrVI ions in an aqueous medium. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
40
|
Gordi Z, Ghorbani M, Ahmadian Khakhiyani M. Adsorptive removal of enrofloxacin with magnetic functionalized graphene oxide@ metal-organic frameworks employing D-optimal mixture design. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1935-1947. [PMID: 32319707 DOI: 10.1002/wer.1346] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 06/11/2023]
Abstract
A novel sorbent based on a mixture of magnetic functionalized graphene oxide and MOFs was developed to remove enrofloxacin (EFX) from water samples. The prepared sorbent was characterized using Fourier transform infrared spectra, scanning electron microscope images, and X-ray powder diffraction pattern. The sorbent compositions were optimized by the mixture experimental design. Under the optimal condition, the percentages of each sorbent component, including triethylene tetramine-functionalized graphene oxide (FGO), Fe3 O4 , and MOF-5, were 40%, 21%, and 39%, respectively. Besides, the intraparticle diffusion and pseudo-second-order kinetic models can describe the EFX adsorption procedure because of two adsorption mechanisms of EFX on FGO and MOF-5. A positive standard enthalpy of 49.80 kJ/mol indicated the EFX adsorption is endothermic with a chemisorption process. The negative values of ΔGo obtained in the range of -8.979 to -3.431 kJ/mol at all studied temperatures showed that the adsorption process was also spontaneous. The Langmuir and Freundlich isotherm models were analyzed with the partition coefficient to reduce bias in the isotherm model evaluation. The maximum adsorption capacity of 344.83 mg/g and a high partition coefficient of 17.42 g/L in an initial EFX concentration of 10 mg/L were obtained for the EFX removal. PRACTITIONER POINTS: Magnetic functionalized graphene oxide @MOF-5 as a sorbent for the enrofloxacin removal is synthesized. The percentage amount of each component of the sorbent is optimized using the D-optimal mixture design. Adsorption mechanisms of enrofloxacin on magnetic functionalized graphene oxide @MOF-5 are discussed. Thermodynamic parameters for the enrofloxacin adsorption with the sorbents are determined. Isotherm model for the enrofloxacin removal with the sorbent is investigated.
Collapse
Affiliation(s)
- Zinat Gordi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Mahdi Ghorbani
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | | |
Collapse
|
41
|
Zhang QJ, Zhao JK, Li Y, Wu XY, Ma LL, Ding ZM. 5-Fluorouracil Trapping in a Porous Ba(II)-organic Framework: Drug Delivery and Anti-thyroid Cancer Activity Evaluation. RUSS J COORD CHEM+ 2020. [DOI: 10.1134/s1070328420080072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Khoshoei A, Ghasemy E, Poustchi F, Shahbazi MA, Maleki R. Engineering the pH-Sensitivity of the Graphene and Carbon Nanotube Based Nanomedicines in Smart Cancer Therapy by Grafting Trimetyl Chitosan. Pharm Res 2020; 37:160. [PMID: 32747991 PMCID: PMC7399690 DOI: 10.1007/s11095-020-02881-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/13/2020] [Indexed: 01/05/2023]
Abstract
PURPOSE The aim of this study was to introduce a smart and responsive drug carrier for Doxorubicin (DOX) and Paclitaxel (PAX) for desirable therapeutic application. METHOD Loading and releasing of DOX and PAX from smart and pH-sensitive functionalized single-walled carbon nanotube (SWCNTs) and graphene carriers have been simulated by molecular dynamics. The influences of chitosan polymer on proposed carriers have been studied, and both carriers were functionalized with carboxyl groups to improve the loading and releasing properties of the drugs. RESULTS The results showed that DOX could be well adsorbed on both functionalized SWCNTs and graphene. In contrast, there was a weak electrostatic and Van der Waals interaction between both these drugs and carriers at cancerous tissues, which is highly favorable for cancer therapy. Adding trimethyl chitosan (TMC) polymer to carriers facilitated DOX release at acidic tissues. Furthermore, at blood pH, the PAX loaded on the functionalized SWCNTs carrier represented the highest dispersion of the drug while the DOX-graphene showed the highest concentration of the drug at a point. In addition, the mean-square displacement (MSD) results of PAX-graphene indicated that the PAX could be adsorbed quickly and be released slowly. Finally, functionalized graphene-TMC-PAX is a smart drug system with responsive behavior and controllable drug release, which are essential in cancer therapy. CONCLUSION Simultaneous application of the carboxyl group and TMC can optimize the pH sensitivity of the SWCNTs and graphene to prepare a novel and smart drug carrier for cancer therapy.
Collapse
Affiliation(s)
- Azadeh Khoshoei
- Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Fatemeh Poustchi
- Department of Nanotechnology, University of Guilan, Guilan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Reza Maleki
- Department of Chemical Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|
43
|
Wang ZY, Li P, Cui L, Qiu JG, Jiang B, Zhang CY. Integration of nanomaterials with nucleic acid amplification approaches for biosensing. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Xu TY, Nie HJ, Li JM, Shi ZF. Luminescent Zn(II)/Cd(II) coordination polymers based on 1-(tetrazol-5-H)-3,5-bis(1-triazole)benzene for sensing Fe3+, Cr2O72−, and CrO42− in water. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Lou X, Hu X, Xiang S, Li C, Yang Q, Hu B. A green ligand-based copper–organic framework: a high-capacity lithium storage material and insight into its abnormal capacity-increase behavior. NEW J CHEM 2020. [DOI: 10.1039/d0nj04061d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The abnormal capacity-increase behavior of high-Li-storage-performance Cu-CIT MOF is investigated by EPR and XAFS, which is found to be induced by gradual redox participation of metal centers during cycles.
Collapse
Affiliation(s)
- Xiaobing Lou
- School of Physics & Electrical Engineering
- Anyang Normal University
- Anyang
- P. R. China
| | - Xiaoshi Hu
- College of Materials & Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
- State Key Laboratory of Precision Spectroscopy
| | - Shuyan Xiang
- College of Materials & Environmental Engineering
- Hangzhou Dianzi University
- Hangzhou
- P. R. China
| | - Chao Li
- State Key Laboratory of Precision Spectroscopy
- Shanghai Key Laboratory of Magnetic Resonance
- School of Physics and Electronic Science
- East China Normal University
- Shanghai 200241
| | - Qi Yang
- State Key Laboratory of Precision Spectroscopy
- Shanghai Key Laboratory of Magnetic Resonance
- School of Physics and Electronic Science
- East China Normal University
- Shanghai 200241
| | - Bingwen Hu
- State Key Laboratory of Precision Spectroscopy
- Shanghai Key Laboratory of Magnetic Resonance
- School of Physics and Electronic Science
- East China Normal University
- Shanghai 200241
| |
Collapse
|
46
|
Current and emerging applications of nanostructured metal–organic frameworks in cancer-targeted theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110091. [DOI: 10.1016/j.msec.2019.110091] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 02/08/2023]
|
47
|
Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 2019; 553:768-777. [DOI: 10.1016/j.jcis.2019.06.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
|
48
|
Wang D, Zhao C, Gao G, Xu L, Wang G, Zhu P. Multifunctional NaLnF 4@MOF-Ln Nanocomposites with Dual-Mode Luminescence for Drug Delivery and Cell Imaging. NANOMATERIALS 2019; 9:nano9091274. [PMID: 31500216 PMCID: PMC6781070 DOI: 10.3390/nano9091274] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
Abstract
Multifunctional nanomaterials for bioprobe and drug carrier have drawn great attention for their applications in the early monitoring the progression and treatment of cancers. In this work, we have developed new multifunctional water-soluble NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence, which is based on stokes luminescent mesoporous lanthanide metal-organic frameworks (MOFs-Y:Eu3+) and anti-stokes luminescent NaYF4:Tm3+/Yb3+ nanoparticles. The fluorescence mechanism and dynamics are investigated and the applications of these nanocomposites as bioprobes and drug carriers in the cancer imaging and treatment are explored. Our results demonstrate that these nanocomposites with the excellent two-color emission show great potential in drug delivery, cancer cell imaging, and treatment, which are attributed to the unique spatial structure and good biocompatibility characteristics of NaLnF4@MOF-Ln nanocomposites.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Chen Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Guoyang Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Linna Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
| | - Guofeng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China; (D.W.); (C.Z.); (G.G.); (L.X.)
- Correspondence: (G.W.); (P.Z.); Tel.: +1-918-631-5125 (P.Z.)
| | - Peifen Zhu
- Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104, USA
- Correspondence: (G.W.); (P.Z.); Tel.: +1-918-631-5125 (P.Z.)
| |
Collapse
|
49
|
Nanomaterials as efficient platforms for sensing DNA. Biomaterials 2019; 214:119215. [DOI: 10.1016/j.biomaterials.2019.05.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
50
|
Zhang YM, He JX, Zhu W, Li YF, Fang H, Yao H, Wei TB, Lin Q. Novel pillar[5]arene-based supramolecular organic framework gel for ultrasensitive response Fe3+ and F− in water. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:62-69. [DOI: 10.1016/j.msec.2019.02.094] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
|