1
|
Ganapathy S, Bharathi M, Hirad AH, Alarfaj AA, Thangavelu I, Arulselvan P, Jaganathan R, Ravindran R, Suriyaprakash J, Boopathi TS. Carboplatin-loaded zeolitic imidazolate framework-8: Induction of antiproliferative activity and apoptosis in breast cancer cell. Biotechnol Appl Biochem 2024. [PMID: 39491814 DOI: 10.1002/bab.2689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The challenge with breast cancer is its ongoing high prevalence and difficulties in early detection and access to effective care. A solution lies in creating tailored metal-organic frameworks to encapsulate anticancer drugs, enabling precise and targeted treatment with less adverse effects and improved effectiveness. Zeolitic imidazolate framework-8 (ZIF-8) and carboplatin (CP)-loaded ZIF-8 were synthesized and characterized using various analytical techniques. High Resolution-transmission electron microscopy of ZIF-8 and CP@ZIF-8 indicates that the particles had a spherical shape and were nanosized. The drug release rate of CP is 98% under an acidic medium (pH 5.5) because of the dissolution of ZIF-8 into its coordinating ions, whereas 35% in a physiological medium (pH 7.4) with the addition of CP, the high porosity, and pore diameter of ZIF-8 decrease from 1243 to 1041 m2/g. Breast cancer MCF-7 cells were shown greater IC50 in CP@ZIF-8 (15.01 ± 3.03 µg/mL) than free CP (34.98 ± 4.25 µg/mL) in an in vitro cytotoxicity assessment. The cytotoxicity of the CP@ZIF-8 against MCF-7 cells was studied using the methylthiazolyldiphenyl-tetrazolium bromide method. The morphological changes were examined using fluorescent staining (acridine orange-ethidium bromide and Hoechst 33258) methods. The comet assay assessed the DNA fragmentation (single-cell gel electrophoresis). The results from the study revealed that CP@ZIF-8 can be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Saravanan Ganapathy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science, Tiruchengode, Tamil Nadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Ravindran Jaganathan
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Rajeswari Ravindran
- Preclinical Department, Faculty of Medicine, Universiti Kuala Lumpur, Royal College of Medicine Perak (UniKL-RCMP), Ipoh, Perak, Malaysia
| | - Jagadeesh Suriyaprakash
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, China
| | - Thalakulam Shanmugam Boopathi
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India
- Functional Materials Laboratory, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
2
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
3
|
Gong J, Feng R, Fu X, Lin Q, Wu B. Fabrication of co-delivery liposomal formulation incorporating carmustine and cabazitaxel displays improved cytotoxic potential and induced apoptosis in ovarian cancer cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-21. [PMID: 39207251 DOI: 10.1080/09205063.2024.2387949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/22/2024] [Indexed: 09/04/2024]
Abstract
Ovarian cancer is the primary cause of death from cancer in female patients. The existing treatments for ovarian cancer are restricted and ineffective in achieving a cure for the disease. To address this issue, we provide a novel approach to treating ovarian cancer by utilizing a liposomal carrier that effectively delivers the chemotherapeutic drugs carmustine (BCNU) and cabazitaxel (CTX). Initially, the combined impact of BCNU and CTX was confirmed, revealing that this impact reaches its maximum at a ratio of 1:2 mol/mol (BCNU/CTX). After that, the BC-Lipo co-delivery system was developed, which has a high capability for loading drugs (97.48% ± 1.14 for BCNU, 86.29% ± 3.03 for CTX). This system also has a sustained release profile and a beneficial long-circulating feature. The accumulation of BC-Lipo in tumors was dramatically enhanced compared to the accumulation of the free drug. Furthermore, BC-Lipo demonstrated similar levels of cytotoxicity to free BCNU and CTX (BCNU/CTX) when tested on HeyA8 cells in an in vitro model. Biochemical staining methods investigated the cancer cell's morphological examination. The apoptosis was confirmed by FITC-Annexin-V/PI staining by flow cytometry analysis. In addition, the investigation of fluorescence and protein markers examined the apoptosis mechanistic pathway, and the results indicated that BC-Lipo induced apoptosis due to mitochondrial membrane potential variation. This proof-of-concept study has established the probability of these BCNU-CTX combined treatments as active drug delivery nanocarriers for poorly soluble BCNU and CTX.
Collapse
Affiliation(s)
- Jianming Gong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Renqian Feng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqing Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Santos JAV, Silva D, Marques MPM, Batista de Carvalho LAE. Platinum-based chemotherapy: trends in organic nanodelivery systems. NANOSCALE 2024; 16:14640-14686. [PMID: 39037425 DOI: 10.1039/d4nr01483a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Despite the investment in platinum drugs research, cisplatin, carboplatin and oxaliplatin are still the only Pt-based compounds used as first line treatments for several cancers, with a few other compounds being approved for administration in some Asian countries. However, due to the severe and worldwide impact of oncological diseases, there is an urge for improved chemotherapeutic approaches. Furthermore, the pharmaceutical application of platinum complexes is hindered by their inherent toxicity and acquired resistance. Nanodelivery systems rose as a key strategy to overcome these challenges, with recognized versatility and ability towards improving the safety, bioavailability and efficacy of the available drugs. Among the known nanocarriers, organic systems have been widely applied, taking advantage of their potential as drug vehicles. Researchers have mainly focused on the development of lipidic and polymeric carriers, including supramolecular structures, with an overall improvement of encapsulated platinum complexes. Herein, an overview of recent trends and strategies is presented, with the main focus on the encapsulation of platinum compounds into organic nanocarriers, showcasing the evolution in the design and development of these promising systems. This comprehensive review highlights formulation methods as well as characterization procedures, providing insights that may be helpful for the development of novel platinum nanocarriers aiming at future pharmaceutical applications.
Collapse
Affiliation(s)
- João A V Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniela Silva
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Maria Paula M Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Luís A E Batista de Carvalho
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
5
|
Habashy KJ, Dmello C, Chen L, Arrieta VA, Kim KS, Gould A, Youngblood MW, Bouchoux G, Burdett KB, Zhang H, Canney M, Stupp R, Sonabend AM. Paclitaxel and Carboplatin in Combination with Low-intensity Pulsed Ultrasound for Glioblastoma. Clin Cancer Res 2024; 30:1619-1629. [PMID: 38295144 DOI: 10.1158/1078-0432.ccr-23-2367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE We recently reported on clinical trials for patients with recurrent glioblastoma where low-intensity pulsed ultrasound and microbubbles (LIPU/MB) improved paclitaxel or carboplatin delivery into the brain. Here, we report variable local tumor control with paclitaxel at the maximal/target dose in our phase I trial (NCT04528680). To address this, we investigated the combination of paclitaxel with carboplatin in preclinical glioma models. EXPERIMENTAL DESIGN We performed MRI-based analysis to evaluate disease control in patients from our trial. We studied the cytotoxicity of paclitaxel and carboplatin against 11 human glioma lines as monotherapy and in combination at concentrations derived from human intraoperative studies. Synergy was assessed with the Loewe model and the survival benefit evaluated in two xenografts. We examined the effects on cell cycle progression, DNA damage, and apoptosis. RESULTS Patients treated with paclitaxel and LIPU/MB exhibited variable local tumor control, which correlated with overall survival. We observed limited cross-resistance to paclitaxel and carboplatin in glioma lines, with almost a third of them being exclusively susceptible to one drug. This combination led to susceptibility of 81% of lines and synergy in 55% of them. The combination proved more efficacious in two intracranial xenografts when administered with LIPU/MB, leading to complementary effects on cell cycle arrest. CONCLUSIONS Combining paclitaxel and carboplatin in gliomas may be more efficacious than monotherapy, as in other cancers, due to synergy and independent susceptibility to each drug. These results form the basis for an ongoing phase II trial (NCT04528680) where we investigate this combination with LIPU/MB.
Collapse
Affiliation(s)
- Karl J Habashy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Victor A Arrieta
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kwang-Soo Kim
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrew Gould
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mark W Youngblood
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Kirsten B Burdett
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hui Zhang
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Northwestern Medicine Lou and Jean Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
6
|
Shahlaei M, Asl SM, Derakhshani A, Kurek L, Karges J, Macgregor R, Saeidifar M, Kostova I, Saboury AA. Platinum-based drugs in cancer treatment: Expanding horizons and overcoming resistance. J Mol Struct 2024; 1301:137366. [DOI: 10.1016/j.molstruc.2023.137366] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zou J. Site-specific delivery of cisplatin and paclitaxel mediated by liposomes: A promising approach in cancer chemotherapy. ENVIRONMENTAL RESEARCH 2023; 238:117111. [PMID: 37734579 DOI: 10.1016/j.envres.2023.117111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
The site-specific delivery of drugs, especially anti-cancer drugs has been an interesting field for researchers and the reason is low accumulation of cytotoxic drugs in cancer cells. Although combination cancer therapy has been beneficial in providing cancer drug sensitivity, targeted delivery of drugs appears to be more efficient. One of the safe, biocompatible and efficient nano-scale delivery systems in anti-cancer drug delivery is liposomes. Their particle size is small and they have other properties such as adjustable physico-chemical properties, ease of functionalization and high entrapment efficiency. Cisplatin is a chemotherapy drug with clinical approval in patients, but its accumulation in cancer cells is low due to lack of targeted delivery and repeated administration results in resistance development. Gene and drug co-administration along with cisplatin/paclitaxel have resulted in increased sensitivity in tumor cells, but there is still space for more progress in cancer therapy. The delivery of cisplatin/paclitaxel by liposomes increases accumulation of drug in tumor cells and impairs activity of efflux pumps in promoting cytotoxicity. Moreover, phototherapy along with cisplatin/paclitaxel delivery can increase potential in tumor suppression. Smart nanoparticles including pH-sensitive nanoparticles provide site-specific delivery of cisplatin/paclitaxel. The functionalization of liposomes can be performed by ligands to increase targetability towards tumor cells in mediating site-specific delivery of cisplatin/paclitaxel. Finally, liposomes can mediate co-delivery of cisplatin/paclitaxel with drugs or genes in potentiating tumor suppression. Since drug resistance has caused therapy failure in cancer patients, and cisplatin/paclitaxel are among popular chemotherapy drugs, delivery of these drugs mediates targeted suppression of cancers and prevents development of drug resistance. Because of biocompatibility and safety of liposomes, they are currently used in clinical trials for treatment of cancer patients. In future, the optimal dose of using liposomes and optimal concentration of loading cisplatin/paclitaxel on liposomal nanocarriers in clinical trials should be determined.
Collapse
Affiliation(s)
- Jianyong Zou
- Department of Thoracic Surgery, The first Affiliated Hospital of Sun Yat-Sen University, 510080, Guangzhou, PR China.
| |
Collapse
|
8
|
Azarifar Z, Amini R, Tanzadehpanah H, Afshar S, Najafi R. In vitro co-delivery of 5-fluorouracil and all-trans retinoic acid by PEGylated liposomes for colorectal cancer treatment. Mol Biol Rep 2023; 50:10047-10059. [PMID: 37902908 DOI: 10.1007/s11033-023-08888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/04/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Single-target inhibitors have not been successful in cancer treatment due to the development of drug resistance. Nevertheless, therapeutic agents capable of simultaneously inhibiting multiple targets have revealed encouraging results in inducing apoptosis and overcoming drug resistance in cancerous cells. Here, we designed a composite liposomal nano-carrier co-loading 5-Fluorouracil (5-FU) with all-trans retinoic acid (ATRA) to assess anticancer efficacy of the combined drugs in colorectal cancer (CRC). METHODS A PEGylated liposomal nano-carrier with phospholipid/cholesterol/DSPE-PEG (2000) was synthesized by the thin film hydration technique for co-delivery of ATRA and 5-FU. After characterizing, the role of 5-FU and ATRA co-loaded liposomal nano-carrier in proliferation, epithelial-mesenchymal transition (EMT), apoptosis, and cancer stem cells (CSCs) were investigated by using colony forming and MTT assay, RT-qPCR and Annexin V/PI kit. RESULTS The average size of liposomes (LPs) was < 150 nm with uniform size distribution. Drug release analyses indicated that both ATRA and 5-FU could simultaneously release from LPs in a sustained release manner. The synergistic inhibitory effects of ATRA and 5-FU loaded in LPs were verified with a combination index of 0.43. Dual drug LPs showed the highest cytotoxicity, enhanced inhibition of cell proliferation, increased apoptotic potential, decreased CSCs, and attenuated EMT-associated biomarkers. Also, dual drug LPs decreased β-catenin gene expression more than other liposomal formulations. CONCLUSION These findings suggest that using LPs to achieve a synergistic effect of ATRA and 5-FU is an effectual approach to increase the therapeutic effect of 5-FU toward CRC cells.
Collapse
Affiliation(s)
- Zahra Azarifar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Tanzadehpanah
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Afshar
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
9
|
Fang G, Zhang A, Zhu L, Wang Q, Sun F, Tang B. Nanocarriers containing platinum compounds for combination chemotherapy. Front Pharmacol 2022; 13:1050928. [DOI: 10.3389/fphar.2022.1050928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Platinum compounds-based drugs are used widely in the clinic for the treatment of many types of cancer. However, serious undesirable side effects and intrinsic or acquired resistance limit their successful clinic use. Nanocarrier-based combination chemotherapy is considered to be an effective strategy to resolve these challenges. This review introduces the recent advance in nanocarriers containing platinum compounds for combination cancer chemotherapy, including liposomes, polymer nanoparticles, polymer micelles, mesoporous silica nanoparticles, carbon nanohors, polymer-caged nanobins, carbon nanotube, nanostructured lipid carriers, solid lipid nanoparticles, and multilayered fiber mats in detail.
Collapse
|
10
|
Alavi SE, Raza A, Koohi Moftakhari Esfahani M, Akbarzadeh A, Abdollahi SH, Ebrahimi Shahmabadi H. Carboplatin Niosomal Nanoplatform for Potentiated Chemotherapy. J Pharm Sci 2022; 111:3029-3037. [PMID: 35675875 DOI: 10.1016/j.xphs.2022.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022]
Abstract
This study aimed to characterize a stable nano-niosome formulation, which could reduce the adverse effects of carboplatin (CB) and improve its therapeutic efficacy in the treatment of breast cancer. For this purpose, CB-loaded polyethylene glycol (PEG)ylated niosome nanoparticles (PEG-NS-CB) were synthesized using the reverse-phase evaporation method. PEG-NS-CB (226.0 ± 10.6 nm) could release CB in a controlled manner and, compared to CB and CB-loaded non-PEGylated niosome (NS-CB), caused higher cytotoxicity effects against mouse breast cancer 4T1 cells (IC50: 83.4, 26.6, and 22.5 µM for CB, NS-CB, and PEG-NS-CB, respectively). Also, PEG-NS-CB demonstrated higher stability, in which its profile of drug release, cytotoxicity, and LE% did not change significantly three months after preparation compared to those at the production time. In addition, the in vivo results demonstrated that PEG-NS-CB caused higher therapeutic (the number of alive mice: 12, 15, and 17 out of 20 in CB, NS-CB, and PEG-NS-CB receiver groups, respectively) and less toxicity effects (weight loss of 17, 12.5, and 10% in CB, NS-CB, and PEG-NS-CB receiver groups, respectively), compared to NS-CB and CB in breast cancer-bearing mice. Overall, the results of this study suggest that PEG-NS-CB could be a promising formulation for the treatment of breast cancer.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Woolloongabba 4102, Australia
| | - Maedeh Koohi Moftakhari Esfahani
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Azim Akbarzadeh
- Department of Pilot Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Abdollahi
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
11
|
Brown J, Li Z, Wang X, Kim YJ, Wang YC, Zuo Y, Hong W, Wang P, Li B, Yang L. Nanoformulation improves antitumor efficacy of MAOI immune checkpoint blockade therapy without causing aggression-related side effects. Front Pharmacol 2022; 13:970324. [PMID: 36120311 PMCID: PMC9475110 DOI: 10.3389/fphar.2022.970324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
MAOIs, a well-established class of antidepressant that operate through the inhibition of monoamine oxidase to increase available serotonin, have recently been identified as a surprisingly effective candidate for the circumvention of tumor-induced immune suppression due to their abilities to enhance antitumor T cell activity through autocrine serotonin signaling and depolarize alternatively activated tumor-associated macrophages through a reduction in reactive oxygen species production. However, this impressive class of antidepressants-turned-cancer-drugs can induce aggressive behavioral side effects when administered in immunotherapeutic doses. In this study, we investigated the possibility of avoiding these neurological side effects while simultaneously improving antitumor activity by establishing crosslinked multilamellar liposomal vesicles (cMLVs) containing the MAOI phenelzine (PLZ). Our results showed that cMLV-PLZ treatment increases antitumor efficacy in a B16-OVA mouse melanoma model compared to treatment with free phenelzine. We also found that nanoformulation resulted in the complete elimination of MAOI-related aggression. These findings suggest a promising direction for the future of MAOIs repurposed for cancer immunotherapies.
Collapse
Affiliation(s)
- James Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Zhe Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Xi Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
| | - Yanning Zuo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Weizhe Hong
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Pin Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Bo Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, The David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, CA, United States
- *Correspondence: Bo Li, ; Lili Yang,
| |
Collapse
|
12
|
Tang H, Xie Y, Zhu M, Jia J, Liu R, Shen Y, Zheng Y, Guo X, Miao D, Pei J. Estrone-Conjugated PEGylated Liposome Co-Loaded Paclitaxel and Carboplatin Improve Anti-Tumor Efficacy in Ovarian Cancer and Reduce Acute Toxicity of Chemo-Drugs. Int J Nanomedicine 2022; 17:3013-3041. [PMID: 35836838 PMCID: PMC9274295 DOI: 10.2147/ijn.s362263] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/27/2022] [Indexed: 12/29/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal gynecologic malignancy. The combination of paclitaxel (PTX) and carboplatin (CBP) is the first-line remedy for clinical ovarian cancer. However, due to the limitations of adverse reaction and lacking of targeting ability, the chemotherapy of ovarian cancer is still poorly effective. Here, a novel estrone (ES)-conjugated PEGylated liposome co-loaded PTX and CBP (ES-PEG-Lip-PTX/CBP) was designed for overcoming the above disadvantages. Methods ES-PEG-Lip-PTX/CBP was prepared by film hydration method and could recognize estrogen receptor (ER) over-expressing on the surface of SKOV-3 cells. The characterizations, stability and in vitro release of ES-PEG-Lip-PTX/CBP were studied. In vitro cellular uptake and its mechanism were observed by fluorescence microscope. In vivo targeting effect in tumor-bearing mice was determined. Pharmacokinetics and biodistribution were studied in ICR mice. In vitro cytotoxicity and in vivo anti-tumor efficacy were evaluated on SKOV-3 cells and tumor-bearing mice, respectively. Finally, the acute toxicity in ICR mice was explored for assessing the preliminary safety of ES-PEG-Lip-PTX/CBP. Results Our results showed that ES-PEG-Lip-PTX/CBP was spherical shape without aggregation. ES-PEG-Lip-PTX/CBP exhibited the optimum targeting effect on uptake in vitro and in vivo. The pharmacokinetics demonstrated ES-PEG-Lip-PTX/CBP had improved the pharmacokinetic behavior. In vitro cytotoxicity showed that ES-PEG-Lip-PTX/CBP maximally inhibited SKOV-3 cell proliferation and its IC50 values was 1.6 times lower than that of non-ES conjugated liposomes at 72 h. The in vivo anti-tumor efficacy study demonstrated that ES-PEG-Lip-PTX/CBP could lead strong SKOV-3 tumor growth suppression with a tumor volume inhibitory rate of 81.8%. Meanwhile, acute toxicity studies confirmed that ES-PEG-Lip-PTX/CBP significantly reduced the toxicity of the chemo drugs. Conclusion ES-PEG-Lip-PTX/CBP was successfully prepared with an optimal physicochemical and ER targeting property. The data of pharmacokinetics, anti-tumor efficacy and safety study indicated that ES-PEG-Lip-PTX/CBP could become a promising therapeutic formulation for human ovarian cancer in the future clinic.
Collapse
Affiliation(s)
- Huan Tang
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yizhuo Xie
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Ming Zhu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Juan Jia
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Rui Liu
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yujia Shen
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Yucui Zheng
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Xin Guo
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Dongfanghui Miao
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| | - Jin Pei
- Department of Biopharmacy, School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
13
|
Li P, Lou Y. Clinical Efficacy of Fuzheng Guben Anticancer Decoction Combined with Taxol in Treating Ovarian Carcinoma and Its Effect on Complication Incidence. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2782875. [PMID: 38837981 PMCID: PMC8709778 DOI: 10.1155/2021/2782875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the clinical value of Fuzheng Guben anticancer decoction combined with taxol in treating ovarian carcinoma (OC). Methods The medical records of 80 OC patients treated in the First People's Hospital of Fuyang Hangzhou (January 2018-January 2021) were retrospectively analyzed, and the patients were split into the control group and the experimental group according to the treatment regimen, with 40 cases each. Those in the control group accepted the taxol chemotherapy, and on this basis, those in the experimental group took the Fuzheng Guben anticancer decoction, so as to compare its clinical efficacy and complication incidence. Results No statistical between-group differences in patients' general information were observed (P > 0.05); compared with the control group, the disease objective remission rate of the experimental group was greatly higher (P < 0.05); before and after treatment, the changes in CD8+ were not significant, indicating no statistically significant between-group differences (P > 0.05), and after treatment, CD3+, CD4+, and CD4+/CD8+ were obviously higher than before and were obviously higher in the experimental group than in the control group (P < 0.05); after treatment, the CA125, CA199, and CEA levels were obviously lower than before and were significantly lower in the experimental group than in the control group (P < 0.05); the mean survival of the experimental group was significantly higher than that of the control group (19.80 ± 5.84 vs. 14.075 ± 5.12 months, P < 0.05); and between the two groups, the incidence rate of adverse reactions of the experimental group was remarkably lower (P < 0.05). Conclusion On the basis of taxol chemotherapy, jointly applying Fuzheng Guben anticancer decoction can significantly improve the clinical efficacy of OC, help to improve patients' immune function, lower the complication incidence rate, and prolong the mean survival.
Collapse
Affiliation(s)
- Pinger Li
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yinmei Lou
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| |
Collapse
|
14
|
Surov A, Pech M, Gessner D, Mikusko M, Fischer T, Alter M, Wienke A. Low skeletal muscle mass is a predictor of treatment related toxicity in oncologic patients. A meta-analysis. Clin Nutr 2021; 40:5298-5310. [PMID: 34536638 DOI: 10.1016/j.clnu.2021.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND & AIMS The purpose of this meta-analysis was to summarize the published data regarding associations between occurrence of severe treatment related toxicity and low skeletal muscle mass (LSMM) in oncologic patients and to perform a meta-analysis based on a large sample. METHODS MEDLINE, Cochrane, and SCOPUS databases were screened for associations between LSMM and treatment related toxicity in oncologic patients up to June 2021. Overall, 48 studies met the inclusion criteria. The following data were extracted: authors, year of publication, study design, number of patients, influence of LSMM on treatment toxicity (odds ratios and confidence intervals). The methodological quality of the involved studies was checked according to the QUADAS instrument. The meta-analysis was undertaken by using RevMan 5.4 software. DerSimonian and Laird random-effects models with inverse-variance weights were used to account for the heterogeneity between the studies. RESULTS The included 48 studies comprised 4803 patients with different malignant diseases. LSMM occurred in 1966 patients (40.9%). LSMM was associated with therapy toxicity (simple logistic regression) with an odds ratio OR = 2.19, CI95%= (1.78-2.68). LSMM was associated with DLT in patients underwent curative treatment (16 studies, 2381 patients) with OR = 2.48, CI95%= (1.77-3.48). LSMM predicted DLT in patients underwent palliative chemotherapy (30 studies, 2337 patients)with OR = 2.06, CI95%= (1.56-2.74). In the subgroups received different palliative therapies, relationships between LSMM and DLT were as follows: conventional chemotherapies (7 studies, 600 patients) OR = 2.14, CI95%= (1.38-3.31); different kinases inhibitors (13 studies, 906 patients) OR = 3.08, CI95%= (1.87-5.09); checkpoint inhibitors (7 studies, 557 patients) OR = 1.30, CI95%= (0.79-2.11). CONCLUSIONS LSMM is an essential factor of treatment toxicity in oncologic patients. Association between LSMM and DLT is strongest in patients received therapy with kinases inhibitors. The influence of LSMM on DLT is lowest in patients underwent treatment with checkpoint inhibitors. The presence of LSMM should be included into radiological reports and provided to oncologists to optimize chemotherapy. LSMM should be included into dose calculation for chemotherapy.
Collapse
Affiliation(s)
- Alexey Surov
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany.
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, Otto-von-Guericke University Magdeburg, Germany
| | - Daniel Gessner
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Germany
| | - Martin Mikusko
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Germany
| | - Thomas Fischer
- Department of Haematology and Oncology, Otto-von-Guericke University Magdeburg, Germany
| | - Mareike Alter
- Department of Dermatology, University Medical Center, Otto-von-Guericke University Magdeburg, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
15
|
Haq TU, Haik Y. S doped Cu2O-CuO nanoneedles array: Free standing oxygen evolution electrode with high efficiency and corrosion resistance for seawater splitting. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Li P, Lou Y. The Pellagra Problem. JAMA 2021; 326:573. [PMID: 34374730 PMCID: PMC8709778 DOI: 10.1001/jama.2020.18074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/14/2022]
Abstract
Objective To investigate the clinical value of Fuzheng Guben anticancer decoction combined with taxol in treating ovarian carcinoma (OC). Methods The medical records of 80 OC patients treated in the First People's Hospital of Fuyang Hangzhou (January 2018–January 2021) were retrospectively analyzed, and the patients were split into the control group and the experimental group according to the treatment regimen, with 40 cases each. Those in the control group accepted the taxol chemotherapy, and on this basis, those in the experimental group took the Fuzheng Guben anticancer decoction, so as to compare its clinical efficacy and complication incidence. Results No statistical between-group differences in patients' general information were observed (P > 0.05); compared with the control group, the disease objective remission rate of the experimental group was greatly higher (P < 0.05); before and after treatment, the changes in CD8+ were not significant, indicating no statistically significant between-group differences (P > 0.05), and after treatment, CD3+, CD4+, and CD4+/CD8+ were obviously higher than before and were obviously higher in the experimental group than in the control group (P < 0.05); after treatment, the CA125, CA199, and CEA levels were obviously lower than before and were significantly lower in the experimental group than in the control group (P < 0.05); the mean survival of the experimental group was significantly higher than that of the control group (19.80 ± 5.84 vs. 14.075 ± 5.12 months, P < 0.05); and between the two groups, the incidence rate of adverse reactions of the experimental group was remarkably lower (P < 0.05). Conclusion On the basis of taxol chemotherapy, jointly applying Fuzheng Guben anticancer decoction can significantly improve the clinical efficacy of OC, help to improve patients' immune function, lower the complication incidence rate, and prolong the mean survival.
Collapse
Affiliation(s)
- Pinger Li
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| | - Yinmei Lou
- Integrated Traditional Chinese and Western Medicine, The First People's Hospital, Fuyang, Hangzhou 311400, Zhejiang, China
| |
Collapse
|
17
|
Boztepe T, Castro GR, León IE. Lipid, polymeric, inorganic-based drug delivery applications for platinum-based anticancer drugs. Int J Pharm 2021; 605:120788. [PMID: 34116182 DOI: 10.1016/j.ijpharm.2021.120788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 12/13/2022]
Abstract
The three main FDA-approved platinum drugs in chemotherapy such as carboplatin, cisplatin, and oxaliplatin are extensively applied in cancer treatments. Although the clinical applications of platinum-based drugs are extremely effective, their toxicity profile restricts their extensive application. Therefore, recent studies focus on developing new platinum drug formulations, expanding the therapeutic aspect. In this sense, recent advances in the development of novel drug delivery carriers will help with the increase of drug stability and biodisponibility, concomitantly with the reduction of drug efflux and undesirable secondary toxic effects of platinum compounds. The present review describes the state of the art of platinum drugs with their biological effects, pre- and clinical studies, and novel drug delivery nanodevices based on lipids, polymers, and inorganic.
Collapse
Affiliation(s)
- Tugce Boztepe
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET (CCT La Plata), Calle 47 y 115, B1900AJL La Plata, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| | - Ignacio E León
- Centro de Química Inorgánica, CEQUINOR (CONICET-UNLP), Bv. 120 1465, La Plata, Argentina.
| |
Collapse
|
18
|
Wang Q, Wu C, Li X, Yang D, Shi L. Cisplatin and paclitaxel co-delivery nanosystem for ovarian cancer chemotherapy. Regen Biomater 2021; 8:rbab015. [PMID: 35707698 DOI: 10.1093/rb/rbab015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
We have designed and developed an effective drug delivery system using biocompatible polymer of poly (ethylene glycol)-polyaspartic acid (mPEG-PAsp) for co-loading the chemotherapy drugs paclitaxel (PTX) and cisplatin (CP) in one nano-vehicle. This study aimed to improve the anti-cancer efficacy of combinations of chemotherapy drugs and reduce their side effects. mPEG-PAsp-(PTX/Pt) nano-micelles disperse well in aqueous solution and have a narrow size distribution (37.8 ± 3.2 nm) in dynamic light scattering (DLS). Drug release profiles found that CP released at pH 5.5 was significantly faster than that at pH 7.4. MPEG-PAsp-(PTX/Pt) nano-micelles displayed a significantly higher tumor inhibitory effect than mPEG-PAsp-PTX nano-micelles when the polymer concentrations reached 50 μg/mL. Our data indicated that polymer micelles of mPEG-PAsp loaded with the combined drug exert synergistic anti-tumor efficacy on SKOV3 ovarian cells via different action mechanisms. Results from our studies suggested that mPEG-PAsp-(PTX/Pt) nano-micelles are promising alternatives for carrying and improving the delivery of therapeutic drugs with different water solubilities.
Collapse
Affiliation(s)
- Qiaoying Wang
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| | - Changqiang Wu
- Medical Imaging Key Laboratory of Sichuan Province and School of Medical Imaging, North Sichuan Medical College, 55 Dongshun Road, Gaoping District, Nanchong, Sichuan Province, China
| | - Xiaoting Li
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| | - Dixiao Yang
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| | - Liangjun Shi
- Department of Medicine, Leshan Vocational and Technical College, No. 1336, Middle Section of Qingyijiang Avenue, Shizhong District, Leshan City, Sichuan Province, China
| |
Collapse
|
19
|
Chraibi S, Rosière R, De Prez E, Gérard P, Antoine MH, Langer I, Nortier J, Remmelink M, Amighi K, Wauthoz N. Preclinical tolerance evaluation of the addition of a cisplatin-based dry powder for inhalation to the conventional carboplatin-paclitaxel doublet for treatment of non-small cell lung cancer. Biomed Pharmacother 2021; 139:111716. [PMID: 34243618 DOI: 10.1016/j.biopha.2021.111716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the advances in targeted therapies and immunotherapy for non-small cell lung cancer (NSCLC) patients, the intravenous administration of carboplatin (CARB) and paclitaxel (PTX) in well-spaced cycles is widely indicated for the treatment of NSCLC from stage II to stage IV. Our strategy was to add a controlled-release cisplatin-based dry-powder for inhalation (CIS-DPI-ET) to the conventional CARB-PTX-IV doublet, administered during the treatment off-cycles to intensify the therapeutic response while avoiding the impairment of pulmonary, renal and haematological tolerance of these combinations. The co-administration of CIS-DPI-ET (0.5 mg/kg) and CARB-PTX-IV (17-10 mg/kg) the same day showed a higher proportion of neutrophils in BALF (35 ± 7% vs 1.3 ± 0.8%), with earlier regenerative anaemia than with CARB-PTX-IV alone. A first strategy of CARB-PTX-IV dose reduction by 25% also induced neutrophil recruitment, but in a lower proportion than with the first combination (20 ± 6% vs 0.3 ± 0.3%) and avoiding regenerative anaemia. A second strategy of delaying CIS-DPI-ET and CARB-PTX-IV administrations by 24 h avoided both the recruitment of neutrophils in BALF and regenerative anaemia. Moreover, all these groups showed higher cytotoxicity (LDH activity, protein content) with no higher renal toxicities. These two strategies seem interesting to be assessed in terms of antitumor efficacy in mice.
Collapse
Affiliation(s)
- S Chraibi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium.
| | - R Rosière
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium; InhaTarget Therapeutics, Rue Auguste Piccard 37, 6041 Gosselies, Belgium
| | - E De Prez
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - P Gérard
- InhaTarget Therapeutics, Rue Auguste Piccard 37, 6041 Gosselies, Belgium
| | - M H Antoine
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - I Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), ULB, Brussels, Belgium
| | - J Nortier
- Laboratory of Experimental Nephrology, Faculty of Medicine, ULB, Brussels, Belgium
| | - M Remmelink
- Department of Pathology, ULB, Hôpital Erasme, Brussels, Belgium
| | - K Amighi
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - N Wauthoz
- Unit of Pharmaceutics and Biopharmaceutics, Faculty of Pharmacy, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
20
|
Cressey P, Amrahli M, So PW, Gedroyc W, Wright M, Thanou M. Image-guided thermosensitive liposomes for focused ultrasound enhanced co-delivery of carboplatin and SN-38 against triple negative breast cancer in mice. Biomaterials 2021; 271:120758. [PMID: 33774525 DOI: 10.1016/j.biomaterials.2021.120758] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
Abstract
Triggerable nanocarriers have the potential to significantly improve the therapeutic index of existing anticancer agents. They allow for highly localised delivery and release of therapeutic cargos, reducing off-target toxicity and increasing anti-tumour activity. Liposomes may be engineered to respond to an externally applied stimulus such as focused ultrasound (FUS). Here, we report the first co-delivery of SN-38 (irinotecan's super-active metabolite) and carboplatin, using an MRI-visible thermosensitive liposome (iTSL). MR contrast enhancement was achieved by the incorporation of a gadolinium lipid conjugate in the liposome bilayer along with a dye-labelled lipid for near infrared fluorescence bioimaging. The resulting iTSL were successfully loaded with SN-38 in the lipid bilayer and carboplatin in the aqueous core - allowing co-delivery of both. The iTSL demonstrated both thermosensitivity and MR-imageability. In addition, they showed effective local targeted co-delivery of carboplatin and SN-38 after triggered release with brief FUS treatments. A single dosage induced significant improvement of anti-tumour activity (over either the free drugs or the iTSL without FUS-activation) in triple negative breast cancer xenografts tumours in mice.
Collapse
Affiliation(s)
- Paul Cressey
- School of Cancer & Pharmaceutical Sciences, King's College London, UK
| | - Maral Amrahli
- School of Cancer & Pharmaceutical Sciences, King's College London, UK
| | - Po-Wah So
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - Wladyslaw Gedroyc
- Radiology Department, Imperial College Healthcare NHS Trust, London, UK
| | - Michael Wright
- School of Cancer & Pharmaceutical Sciences, King's College London, UK
| | - Maya Thanou
- School of Cancer & Pharmaceutical Sciences, King's College London, UK.
| |
Collapse
|
21
|
Wu M, Zhong C, Zhang Q, Wang L, Wang L, Liu Y, Zhang X, Zhao X. pH-responsive delivery vehicle based on RGD-modified polydopamine-paclitaxel-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles for targeted therapy in hepatocellular carcinoma. J Nanobiotechnology 2021; 19:39. [PMID: 33549107 PMCID: PMC7866683 DOI: 10.1186/s12951-021-00783-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
A limitation of current anticancer nanocarriers is the contradiction between multiple functions and favorable biocompatibility. Thus, we aimed to develop a compatible drug delivery system loaded with paclitaxel (PTX) for hepatocellular carcinoma (HCC) therapy. A basic backbone, PTX-loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) PHBV nanoparticle (PHBV-PTX-NPs), was prepared by emulsion solvent evaporation. As a gatekeeper, the pH-sensitive coating was formed by self-polymerization of dopamine (PDA). The HCC-targeted arginine-glycine-aspartic acid (RGD)-peptide and PDA-coated nanoparticles (NPs) were combined through the Michael addition. Subsequently, the physicochemical properties of RGD-PDA-PHBV-PTX-NPs were characterized by dynamic light scattering-autosizer, transmission electron microscope, fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry and X-ray spectroscopy. As expected, the RGD-PDA-PHBV-PTX-NPs showed robust anticancer efficacy in a xenograft mouse model. More importantly, they exhibited lower toxicity than PTX to normal hepatocytes and mouse in vitro and in vivo, respectively. Taken together, these results indicate that the RGD-PDA-PHBV-PTX-NPs are potentially beneficial for easing conflict between multifunction and biocompatible characters of nanocarriers. ![]()
Collapse
Affiliation(s)
- Mingfang Wu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, Zhejiang, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qian Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Lu Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Lingling Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Yanjie Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Xiaoxue Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China.,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China
| | - Xiuhua Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 hexing road, Harbin, 150040, Heilongjiang, China. .,Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Ministry of Education, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
22
|
Duan H, Liu Y, Gao Z, Huang W. Recent advances in drug delivery systems for targeting cancer stem cells. Acta Pharm Sin B 2021; 11:55-70. [PMID: 33532180 PMCID: PMC7838023 DOI: 10.1016/j.apsb.2020.09.016] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells with functions similar to those of normal stem cells. Although few in number, they are capable of self-renewal, unlimited proliferation, and multi-directional differentiation potential. In addition, CSCs have the ability to escape immune surveillance. Thus, they play an important role in the occurrence and development of tumors, and they are closely related to tumor invasion, metastasis, drug resistance, and recurrence after treatment. Therefore, specific targeting of CSCs may improve the efficiency of cancer therapy. A series of corresponding promising therapeutic strategies based on CSC targeting, such as the targeting of CSC niche, CSC signaling pathways, and CSC mitochondria, are currently under development. Given the rapid progression in this field and nanotechnology, drug delivery systems (DDSs) for CSC targeting are increasingly being developed. In this review, we summarize the advances in CSC-targeted DDSs. Furthermore, we highlight the latest developmental trends through the main line of CSC occurrence and development process; some considerations about the rationale, advantages, and limitations of different DDSs for CSC-targeted therapies were discussed.
Collapse
Key Words
- ABC, ATP binding cassette
- AFN, apoferritin
- ALDH, aldehyde dehydrogenase
- BM-MSCs-derived Exos, bone marrow mesenchymal stem cells-derived exosomes
- Biomarker
- CAFs, cancer-associated fibroblasts
- CL-siSOX2, cationic lipoplex of SOX2 small interfering RNA
- CMP, carbonate-mannose modified PEI
- CQ, chloroquine
- CSCs, cancer stem cells
- Cancer stem cells
- Cancer treatment
- Cellular level
- DCLK1, doublecortin-like kinase 1
- DDSs, drug delivery systems
- DLE, drug loading efficiency
- DOX, doxorubicin
- DQA-PEG2000-DSPE, dequlinium and carboxyl polyethylene glycol-distearoylphosphatidylethanolamine
- Dex, dexamethasone
- Drug delivery systems
- ECM, extracellular matrix
- EMT, epithelial–mesenchymal transition
- EPND, nanodiamond-Epirubicin drug complex
- EpCAM, epithelial cell adhesion molecule
- GEMP, gemcitabine monophosphate
- GLUT1, glucose ligand to the glucose transporter 1
- Glu, glucose
- HCC, hepatocellular carcinoma
- HH, Hedgehog
- HIF1α, hypoxia-inducible factor 1-alpha
- HNSCC, head and neck squamous cell carcinoma
- IONP, iron oxide nanoparticle
- LAC, lung adenocarcinoma
- LNCs, lipid nanocapsules
- MAPK, mitogen-activated protein kinase
- MB, methylene blue
- MDR, multidrug resistance
- MNP, micellar nanoparticle
- MSNs, mesoporous silica nanoparticles
- Molecular level
- NF-κB, nuclear factor-kappa B
- Nav, navitoclax
- Niche
- PBAEs, poly(β-aminoester)
- PDT, photodynamic therapy
- PEG-PCD, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol)
- PEG-PLA, poly(ethylene glycol)-b-poly(d,l-lactide)
- PEG-b-PLA, poly(ethylene glycol)-block-poly(d,l-lactide)
- PLGA, poly(ethylene glycol)-poly(d,l-lactide-co-glycolide)
- PTX, paclitaxel
- PU-PEI, polyurethane-short branch-polyethylenimine
- SLNs, solid lipid nanoparticles
- SSCs, somatic stem cells
- Sali-ABA, 4-(aminomethyl) benzaldehyde-modified Sali
- TNBC, triple negative breast cancer
- TPZ, tirapazamine
- Targeting strategies
- cRGD, cyclic Arg-Gly-Asp
- iTEP, immune-tolerant, elastin-like polypeptide
- mAbs, monoclonal antibodies
- mPEG-b-PCC-g-GEM-g-DC-g-CAT, poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylenecarbonate-graft-dodecanol-graft-cationic ligands)
- ncRNA, non-coding RNAs
- uPAR, urokinase plasminogen activator receptor
Collapse
Affiliation(s)
- Hongxia Duan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Miller EM, Samec TM, Alexander-Bryant AA. Nanoparticle delivery systems to combat drug resistance in ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 31:102309. [PMID: 32992019 DOI: 10.1016/j.nano.2020.102309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022]
Abstract
Due to the lack of early symptoms and difficulty of accurate diagnosis, ovarian cancer is the most lethal gynecological cancer faced by women. First-line therapy includes a combination of tumor resection surgery and chemotherapy regimen. However, treatment becomes more complex upon recurrence due to development of drug resistance. Drug resistance has been linked to many mechanisms, including efflux transporters, apoptosis dysregulation, autophagy, cancer stem cells, epigenetics, and the epithelial-mesenchymal transition. Thus, developing and choosing effective therapies is exceptionally complex. There is a need for increased specificity and efficacy in therapies for drug-resistant ovarian cancer, and research in targeted nanoparticle delivery systems aims to fulfill this challenge. Although recent research has focused on targeted nanoparticle-based therapies, few of these therapies have been clinically translated. In this review, non-viral nanoparticle delivery systems developed to overcome drug-resistance in ovarian cancer were analyzed, including their structural components, surface modifications, and drug-resistance targeted mechanisms.
Collapse
Affiliation(s)
- Emily M Miller
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | - Timothy M Samec
- Nanobiotechnology Laboratory, Department of Bioengineering, Clemson University, Clemson, SC
| | | |
Collapse
|
24
|
Li J, Zheng L, Wang R, Sun D, Liang S, Wu J, Liu Y, Tian X, Li T, Yang Y, Han L. Synergistic Combination of Sodium Aescinate-Stabilized, Polymer-Free, Twin-Like Nanoparticles to Reverse Paclitaxel Resistance. Int J Nanomedicine 2020; 15:5839-5853. [PMID: 32848393 PMCID: PMC7428345 DOI: 10.2147/ijn.s259432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The development of paclitaxel (PTX) resistance seriously restricts its clinical efficacy. An attractive option for combating resistance is inhibiting the expression of P-glycoprotein (P-gp) in tumor cells. We have reported that flavokawain A (FKA) inhibited P-gp protein expression in PTX-resistant A549 (A549/T) cells, indicating that FKA combined with PTX may reverse PTX resistance. However, due to the variable pharmacokinetics of FKA and PTX, the conventional cocktail combination in clinics may cause uncertainty of treatment efficacy in vivo. MATERIALS AND METHODS To synergistically elevate the anti-cancer activity of PTX and FKA in vivo, the national medical products administration (NMPA) approved sodium aescinate (Aes) was utilized to stabilize hydrophobic PTX and FKA to form polymer-free twin like PTX-A nanoparticles (NPs) and FKA-A NPs. RESULTS The resulting nanoparticles prepared simply by nanoprecipitation possessed similar particle size, good stability and ultrahigh drug loadings of up to 50%. With the aid of Aes, these two drugs accumulated in tumor tissue by passive targeting and were efficiently taken up by A549/T cells; this resulted in significant suppression of tumor growth in A549/T homograft mice at a low PTX dose (2.5 mg·kg-1). Synergistic effects and reversed PTX resistance were achieved by the combination of PTX-A NPs and FKA-A NPs by inhibiting P-gp expression in tumor cells. CONCLUSION Using NMPA-approved Aes to prepare twin-like nanoparticles without introducing any new materials provides an efficient platform for combination chemotherapy and clinical translation.
Collapse
Affiliation(s)
- Juan Li
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| | - Lei Zheng
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250031, People’s Republic of China
| | - Rongmei Wang
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| | - Deqing Sun
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| | - Shuang Liang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250012, People’s Republic of China
| | - Jing Wu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| | - Xiaona Tian
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| | - Tingting Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Yang Yang
- China National Center for Biotechnology Development, Beijing100039, People’s Republic of China
| | - Leiqiang Han
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong250033, People’s Republic of China
| |
Collapse
|
25
|
Xiao X, Oswald JT, Wang T, Zhang W, Li W. Use of Anticancer Platinum Compounds in Combination Therapies and Challenges in Drug Delivery. Curr Med Chem 2020; 27:3055-3078. [PMID: 30394206 DOI: 10.2174/0929867325666181105115849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022]
Abstract
As one of the leading and most important metal-based drugs, platinum-based pharmaceuticals are widely used in the treatment of solid malignancies. Despite significant side effects and acquired drug resistance have limited their clinical applications, platinum has shown strong inhibitory effects for a wide assortment of tumors. Drug delivery systems using emerging technologies such as liposomes, dendrimers, polymers, nanotubes and other nanocompositions, all show promise for the safe delivery of platinum-based compounds. Due to the specificity of nano-formulations; unwanted side-effects and drug resistance can be largely averted. In addition, combinational therapy has been shown to be an effective way to improve the efficacy of platinum based anti-tumor drugs. This review first introduces drug delivery systems used for platinum and combinational therapeutic delivery. Then we highlight some of the recent advances in the field of drug delivery for combinational therapy; specifically progress in leveraging the cytotoxic nature of platinum-based drugs, the combinational effect of other drugs with platinum, while evaluating the drug targeting, side effect reducing and sitespecific nature of nanotechnology-based delivery platforms.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| | - James Trevor Oswald
- School of Nanotechnology Engineering, University Of Waterloo, Waterloo, Canada
| | - Ting Wang
- Department of the Gastrointestinal Surgery, The first Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Weina Zhang
- Common Subjects Department, Shangqiu Medical College, Henan 476100, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, 132013, China
| |
Collapse
|
26
|
Yamashita M, Mayama M, Suganami A, Azuma K, Tsuka T, Ito N, Imagawa T, Tamura Y, Okamoto Y. Photohyperthermal therapy using liposomally formulated indocyanine green for feline nasal lymphoma: A case report. Mol Clin Oncol 2020; 13:37. [PMID: 32793349 DOI: 10.3892/mco.2020.2107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/05/2020] [Indexed: 11/06/2022] Open
Abstract
Our previous research has focused on the development of a novel cancer therapy by using photohyperthermal therapy (PHT) with indocyanine green (ICG) as an optical sensitizer. ICG-Lipo is a liposomally formulated ICG derivative in which ICG is tagged with an octadeca-alkyl chain to incorporate into liposome bilayers, and contains antitumor drugs such as carboplatin and paclitaxel within the inner membrane space. The present study reported a case of feline nasal lymphoma that was treated with combination therapy of PHT with ICG-Lipo. An antitumour effect was observed, and the patient entered remission. Complications from the radiation treatment included skin burns and bleeding from the irradiated hard palate. Serious side effects related to the drugs were not observed. This report suggested that PHT using ICG-Lipo enabled efficient and safe treatment of lymphoma, and that treatment with a liposomal drug delivery system was enhanced by PHT.
Collapse
Affiliation(s)
- Masamichi Yamashita
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | | | - Akiko Suganami
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Azuma
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Takeshi Tsuka
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Norihiko Ito
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Tomohiro Imagawa
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| | - Yutaka Tamura
- Department of Bioinformatics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Yoshiharu Okamoto
- Joint Department of Veterinary Clinical Medicine, Faculty of Agriculture, Tottori University, Tottori 680-8550, Japan
| |
Collapse
|
27
|
Wang J. Combination Treatment of Cervical Cancer Using Folate-Decorated, pH-Sensitive, Carboplatin and Paclitaxel Co-Loaded Lipid-Polymer Hybrid Nanoparticles. Drug Des Devel Ther 2020; 14:823-832. [PMID: 32161442 PMCID: PMC7049774 DOI: 10.2147/dddt.s235098] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/01/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Cervical cancer is one of the most common causes of death among women globally. Combinations of cisplatin, paclitaxel, bevacizumab, carboplatin, topotecan, and gemcitabine are recommended as first-line therapies. METHODS This study focuses on the development of folate-decorated, pH-sensitive lipid-polymer hybrid nanoparticles (LPNs). Loading carboplatin (CBP) and paclitaxel (PTX), LPNs were expected to combine the therapeutic effects of CBP and PTX, thus show synergistic ability on cervical cancer. RESULTS FA-CBP/PTX-LPNs showed the sizes of 169.9 ± 5.6 nm, with a narrow size distribution of 0.151 ± 0.023. FA-CBP/PTX-LPNs exhibited pH-responsive drug release, high cellular uptake efficiency (66.7 ± 3.1%), and prominent cell inhibition capacity (23 ± 1.1%). In vivo tumor distribution and tumor inhibition efficiency of FA-CBP/PTX-LPNs was the highest, with no obvious body weight lost. CONCLUSION High tumor distribution and remarkable antitumor efficiency obtained using in vitro as well as in vivo models further proved the FA-CBP/PTX-LPNs is a promising tool for cervical cancer therapy.
Collapse
Affiliation(s)
- Junjian Wang
- Institution of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou310022, Zhejiang Province, People’s Republic of China
- Department of Gynecological Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, Zhejiang Province, People’s Republic of China
- Department of Gynecological Surgery, Zhejiang Cancer Hospital, Hangzhou310022, Zhejiang Province, People’s Republic of China
| |
Collapse
|
28
|
Bonifácio VDB. Ovarian Cancer Biomarkers: Moving Forward in Early Detection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:355-363. [PMID: 32130708 DOI: 10.1007/978-3-030-34025-4_18] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ovarian cancer is a silent cancer which rate survival mainly relays in early stage detection. The discovery of reliable ovarian cancer biomarkers plays a crucial role in the disease management and strongly impact in patient's prognosis and survival. Although having many limitations CA125 is a classical ovarian cancer biomarker, but current research using proteomic or metabolomic methodologies struggles to find alternative biomarkers, using non-invasive our relatively non-invasive sources such as urine, serum, plasma, tissue, ascites or exosomes. Metabolism and metabolites are key players in cancer biology and its importance in biomarkers discovery cannot be neglected. In this chapter we overview the state of art and the challenges facing the use and discovery of biomarkers and focus on ovarian cancer early detection.
Collapse
Affiliation(s)
- Vasco D B Bonifácio
- IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
29
|
Assali M, Kittana N, Qasem SA, Adas R, Saleh D, Arar A, Zohud O. Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity. RSC Adv 2019; 9:1055-1061. [PMID: 35517625 PMCID: PMC9059504 DOI: 10.1039/c8ra08794f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/23/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a major worldwide health problem, for which chemotherapy is a common treatment option. However drug toxicity and the development of resistance to chemotherapy are two main challenges associated with the traditional anticancer drugs. Combined pharmacological therapy based on different mechanisms might be an effective strategy in cancer treatment, and could exhibit a synergistic therapeutic efficacy. Herein, we aim to combine combretastatin A4 (CA4) and camptothecin (Cpt) chemically into a codrug through two hydrophilic linkers utilizing click chemistry to improve their water solubility and anticancer activity. The synthesized amphiphilic structure could self-assemble into a micelle structure as confirmed by atomic force microscopy (AFM) and dynamic light scattering (DLS), which showed a high stability and improved water solubility at pH 7.4, with a low critical micelle concentration (CMC) value of 0.9 mM. Moreover, in vitro hydrolysis was observed upon incubation of the hybrid compound with an esterase enzyme, which suggested a complete disassembly into the starting active drugs. Finally, cytotoxicity studies on HeLa cancer cells showed that the codrug demonstrated an enhanced (five fold) cytotoxicity as compared with the free drugs. In addition the combination index (CI) was <1, which suggests a synergistic activity for the codrug. Moreover, the tested concentrations of the codrug were not significantly cytotoxic to a noncancerous fibroblast cell line. The imaging of HeLa cells treated with FITC-loaded micelles showed a rapid internalization. In conclusion, the codrug of CA4 and Cpt might be a potential novel anticancer drug as it demonstrated a synergistic cytotoxic activity that might spare noncancerous cells.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| | - Sahar Alhaj Qasem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| | - Raghad Adas
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| | - Doaa Saleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| | - Asala Arar
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| | - Osayd Zohud
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An Najah National University P. O. Box 7 Nablus Palestine
| |
Collapse
|
30
|
Fernandes C, Suares D, Yergeri MC. Tumor Microenvironment Targeted Nanotherapy. Front Pharmacol 2018; 9:1230. [PMID: 30429787 PMCID: PMC6220447 DOI: 10.3389/fphar.2018.01230] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in nanotechnology have brought new approaches to cancer diagnosis and therapy. While enhanced permeability and retention effect promotes nano-chemotherapeutics extravasation, the abnormal tumor vasculature, high interstitial pressure and dense stroma structure limit homogeneous intratumoral distribution of nano-chemotherapeutics and compromise their imaging and therapeutic effect. Moreover, heterogeneous distribution of nano-chemotherapeutics in non-tumor-stroma cells damages the non-tumor cells, and interferes with tumor-stroma crosstalk. This can lead not only to inhibition of tumor progression, but can also paradoxically induce acquired resistance and facilitate tumor cell proliferation and metastasis. Overall, the tumor microenvironment plays a vital role in regulating nano-chemotherapeutics distribution and their biological effects. In this review, the barriers in tumor microenvironment, its consequential effects on nano-chemotherapeutics, considerations to improve nano-chemotherapeutics delivery and combinatory strategies to overcome acquired resistance induced by tumor microenvironment have been summarized. The various strategies viz., nanotechnology based approach as well as ligand-mediated, redox-responsive, and enzyme-mediated based combinatorial nanoapproaches have been discussed in this review.
Collapse
Affiliation(s)
| | | | - Mayur C Yergeri
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies - NMIMS, Mumbai, India
| |
Collapse
|
31
|
Figueiredo SA, Salvador JA, Cortés R, Cascante M. Design, synthesis and biological evaluation of novel C-29 carbamate celastrol derivatives as potent and selective cytotoxic compounds. Eur J Med Chem 2017; 139:836-848. [DOI: 10.1016/j.ejmech.2017.08.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
|