1
|
Gurzęda B, Jeżowski P, Boulanger N, Talyzin AV. Oscillating Structural Transformations in the Electrochemical Synthesis of Graphene Oxide from Graphite. Angew Chem Int Ed Engl 2024; 63:e202411673. [PMID: 39171665 PMCID: PMC11627124 DOI: 10.1002/anie.202411673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Electrochemical synthesis of graphene oxide (GO) is known to occur with potential oscillations, but the structural changes underlying these oscillations have remained unclear. In situ time-resolved synchrotron radiation X-ray diffraction demonstrates that the electrochemical synthesis of GO in aqueous H2SO4 can be described as an oscillating reaction. The transformation from graphite to GO proceeds through periodic structural oscillations that correlate with potential cycles. Stage-1 graphite intercalation compound (GIC) is found only at the peak of the potential cycle, but not at the bottom of the cycle. Stage-1 GIC is formed in the first half-cycle from stage-2 GIC and then transforms into "pristine graphite oxide" (PGO) on the lower side of the potential cycle, after which the cycle restarts with the formation of a new portion of stage-1 GIC. Water-washing results in the transformation of PGO into water-swollen GO with d(001) ~11 Å. These periodic structural changes can be considered a new type of oscillating reaction. The presented results provide broad insights into the oscillating structural changes occurring during the anodic graphite oxidation in aqueous H2SO4 and allow to update of the mechanism of GO electrochemical formation.
Collapse
Affiliation(s)
- Bartosz Gurzęda
- Department of PhysicsUmeå UniversityUmeåS-90187Sweden
- Institute of Chemistry and Technical ElectrochemistryPoznan University of TechnologyBerdychowo 4Poznan60-965Poland
| | - Paweł Jeżowski
- Institute of Chemistry and Technical ElectrochemistryPoznan University of TechnologyBerdychowo 4Poznan60-965Poland
| | | | | |
Collapse
|
2
|
Subrati A, Gutiérrez-Pineda E, Moya SE. To-Pack or Not-to-Pack: Towards Improved Graphite Electrochemical Oxidation Through Electrode Design. Chempluschem 2024; 89:e202400265. [PMID: 39098812 DOI: 10.1002/cplu.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/18/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Fabrication of batch-wise efficient, user- and environmentally-friendly, and well-defined yield methods for the synthesis of graphite oxide, the main precursor to graphene oxide and its reduced derivative, is an essential and robust research field, yet is sparingly investigated or innovated in recent years. This concept review showcases recent potential advances in the fabrication of electrochemical electrodes that meet aforementioned design parameters, wherein working electrode construction is seen to play a key role in shaping the yield characteristics and aiding the mechanistic understanding of efficiency of adopted methods. Particularly, those advances pave the way for new and various tunable design parameters by fabricating different methods of encapsulating graphite powder instead of using conventional bare monolith forms of graphite as working electrode. Encapsulation geometry, pressure, and matrix material, as well as powder size are examples of such tunable design parameters which are lacking in the monolith methods. The encapsulation validates authenticity of real-time monitoring of electrochemical intercalation, exfoliation, and oxidation of graphite powder, thereby offering excellent and well-defined control on yield.
Collapse
Affiliation(s)
- Ahmed Subrati
- Soft Matter Nanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia - San Sebastian, Spain
| | - Eduart Gutiérrez-Pineda
- Soft Matter Nanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia - San Sebastian, Spain
- Escuela de Ciencias Básicas, Tecnología e Ingeniería (ECBTI), Universidad Nacional Abierta y a Distancia (UNAD), 680001, Bucaramanga, Santander, Colombia
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia - San Sebastian, Spain
| |
Collapse
|
3
|
Salunkhe TT, Kim IT. Expanded Graphite as a Superior Anion Host Carrying High Output Voltage (4.62 V) and High Energy Density for Lithium Dual-Ion Batteries. MICROMACHINES 2024; 15:1324. [PMID: 39597136 PMCID: PMC11596263 DOI: 10.3390/mi15111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
The demand for safer, sustainable, and economical energy storage devices has motivated the development of lithium dual-ion batteries (Li_DIBs) for large-scale storage applications. For the Li_DIBs, expanded graphite (EG) cathodes are valuable as anion intercalation host frameworks to fabricate safer and more cost-effective devices. In this study, three different carbon cathode materials, including microwave-treated expanded graphite (MW-EG), ball-milled expanded graphite (BM-EG), and high-temperature-carbonized carbon nanoflakes (CNFs), were developed by different synthesis methods. Li_DIBs were configured by employing 4 M of LiPF6 in a dimethyl carbonate electrolyte and MW-EG/BM-EG/CNF as an anion host cathode. After 600 cycles, a Li-MW-EG Li_DIB exhibited a reversible capacity of 66.1 mAh/g with a high Coulombic efficiency of 96.2% at a current rate of 0.05 A/g and an outstanding average energy density of 298.97 Wh/kg (with an output voltage of 4.62 V). The remarkable electrochemical results are associated with (i) moderate structural defects with a very low ID/IG ratio (0.848), (ii) degree of graphitization, which improves the mechanical stability and conductivity, and (iii) large pore volume and pore diameter, easy facilitating the accumulation of PF6- ions. The energy density characteristics demonstrate the feasibility of utilizing MW-EG as a promising cathode for energy-related Li_DIB applications.
Collapse
Affiliation(s)
| | - Il Tae Kim
- Department of Chemical, Biological, and Battery Engineering, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
4
|
Matsuo Y, Inoo A, Inamoto J. Electrochemical intercalation of anions into graphite: Fundamental aspects, material synthesis, and application to the cathode of dual-ion batteries. ChemistryOpen 2024; 13:e202300244. [PMID: 38426688 PMCID: PMC11319239 DOI: 10.1002/open.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
In this review, fundamental aspects of the electrochemical intercalation of anions into graphite have been first summarized, and then described the electrochemical preparation of covalent-type GICs and application of graphite as the cathode of dual-ion battery. Electrochemical overoxidation of anion GICs provides graphite oxide and covalent-fluorine GICs, which are key functional materials for various applications including energy storage devices. The reaction conditions to obtain fully oxidized graphite has been mentioned. Concerning the application of graphite for the cathode of dual-ion battery, it stably delivers about 110 mA h g-1 of reversible capacity in usual organic electrolyte solutions. The combination of anion and solvent as well as the concentration of the anions in the electrolyte solutions greatly affect the performance of graphite cathode such as oxidation potential, rate capability, cycling properties, etc. The interfacial phenomenon is also important, and fundamental studies of charge transfer resistance, anion diffusion coefficient, and surface film formation behavior have also been summarized. The use of smaller anions, such as AlCl4 -, Br- can increase the capacity of graphite cathode. Several efforts on the structural modification of graphite and development of electrolyte solutions in which graphite cathode delivers higher capacity were also described.
Collapse
Affiliation(s)
| | - Akane Inoo
- University of Hyogo13-71 KitaojichoAkashiJapan
| | | |
Collapse
|
5
|
Gutiérrez-Pineda E, Subrati A, Rodríguez-Presa MJ, Gervasi CA, Moya SE. Electrochemical Exfoliation of Graphene Oxide: Unveiling Structural Properties and Electrochemical Performance. Chemistry 2023; 29:e202302450. [PMID: 37671633 DOI: 10.1002/chem.202302450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
An electrochemical exfoliation method for the production of graphene oxide and its characterization by electrochemical techniques are presented here. Graphite rods are used as working electrode in a three-electrode electrochemical cell, and electro-exfoliation is achieved by applying anodic polarization in a sulfuric acid solution. The electrochemical process involved two steps characterized by an intercalation at lower potential and an exfoliation at higher potential. The electrochemical behavior of the produced GO is studied through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). X ray Photoelectronic Spectroscopy (XPS), Raman spectroscopy, Transmission Electron Microscopy (TEM), and Atomic Force Microscopy (AFM) are employed to characterize the structural and chemical properties of the exfoliated GO. The results demonstrate that the electrochemical exfoliation method yields GO materials with varying degrees of oxidation, defect density, and crystallite size, depending on the applied potential and acid concentration. The graphene oxide samples exhibited distinct electrochemical properties, including charge transfer resistance, interfacial capacitance, and relaxation times for the charge transfer, as revealed by CV and EIS measurements with a specifically selected redox probe. The comprehensive characterization performed provides valuable insights into the structure-property relationships of the GO materials synthesized through electrochemical exfoliation of graphite.
Collapse
Affiliation(s)
- Eduart Gutiérrez-Pineda
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon 182 C, 2009, San Sebastián, Guipúzcoa, Spain
- Escuela de Ciencias Básicas, Tecnología e Ingeniería (ECBTI), Universidad Nacional Abierta y a Distancia (UNAD), 680001, Bucaramanga, Santander, Colombia
| | - Ahmed Subrati
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon 182 C, 2009, San Sebastián, Guipúzcoa, Spain
| | - María José Rodríguez-Presa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Claudio A Gervasi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata - CONICET, Sucursal 4 Casilla de Correo 16, 1900, La Plata, Argentina
| | - Sergio E Moya
- Soft Matter Nanotechnology Group, CIC biomaGUNE, Paseo Miramon 182 C, 2009, San Sebastián, Guipúzcoa, Spain
| |
Collapse
|
6
|
Taşdemir Ş, Morçimen ZG, Doğan AA, Görgün C, Şendemir A. Surface Area of Graphene Governs Its Neurotoxicity. ACS Biomater Sci Eng 2023. [PMID: 37201186 DOI: 10.1021/acsbiomaterials.3c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Due to their unique physicochemical properties, graphene and its derivatives are widely exploited for biomedical applications. It has been shown that graphene may exert different degrees of toxicity in in vivo or in vitro models when administered via different routes and penetrated through physiological barriers, subsequently being distributed within tissues or located within cells. In this study, in vitro neurotoxicity of graphene with different surface areas (150 and 750 m2/g) was examined on dopaminergic neuron model cells. SH-SY5Y cells were treated with graphene possessing two different surface areas (150 and 750 m2/g) in different concentrations between 400 and 3.125 μg/mL, and the cytotoxic and genotoxic effects were investigated. Both sizes of graphene have shown increased cell viability in decreasing concentrations. Cell damage increased with higher surface area. Lactate dehydrogenase (LDH) results have concluded that the viability loss of the cells is not through membrane damage. Neither of the two graphene types showed damage through lipid peroxidation (MDA) oxidative stress pathway. Glutathione (GSH) values increased within the first 24 and 48 h for both types of graphene. This increase suggests that graphene has an antioxidant effect on the SH-SY5Y model neurons. Comet analysis shows that graphene does not show genotoxicity on either surface area. Although there are many studies on graphene and its derivatives on their use with different cells in the literature, there are conflicting results in these studies, and most of the literature is focused on graphene oxide. Among these studies, no study examining the effect of graphene surface areas on the cell was found. Our study contributes to the literature in terms of examining the cytotoxic and genotoxic behavior of graphene with different surface areas.
Collapse
Affiliation(s)
- Şeyma Taşdemir
- Bioengineering Department, Celal Bayar University, Manisa 45140, Turkey
| | | | | | - Cansu Görgün
- Department of Experimental Medicine (DIMES), University of Genova, Genova 16126, Italy
| | - Aylin Şendemir
- Department of Bioengineering, Ege University, Izmir 35040, Turkey
- Department of Biomedical Technologies, Ege University, Izmir 35040, Turkey
| |
Collapse
|
7
|
Balqis N, Mohamed Jan B, Simon Cornelis Metselaar H, Sidek A, Kenanakis G, Ikram R. An Overview of Recycling Wastes into Graphene Derivatives Using Microwave Synthesis; Trends and Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103726. [PMID: 37241354 DOI: 10.3390/ma16103726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
It is no secret that graphene, a two-dimensional single-layered carbon atom crystal lattice, has drawn tremendous attention due to its distinct electronic, surface, mechanical, and optoelectronic properties. Graphene also has opened up new possibilities for future systems and devices due to its distinct structure and characteristics which has increased its demand in a variety of applications. However, scaling up graphene production is still a difficult, daunting, and challenging task. Although there is a vast body of literature reported on the synthesis of graphene through conventional and eco-friendly methods, viable processes for mass graphene production are still lacking. This review focuses on the variety of unwanted waste materials, such as biowastes, coal, and industrial wastes, for producing graphene and its potential derivatives. Among the synthetic routes, the main emphasis relies on microwave-assisted production of graphene derivatives. In addition, a detailed analysis of the characterization of graphene-based materials is presented. This paper also highlights the current advances and applications through the recycling of waste-derived graphene materials using microwave-assisted technology. In the end, it would alleviate the current challenges and forecast the specific direction of waste-derived graphene future prospects and developments.
Collapse
Affiliation(s)
- Nuralmeera Balqis
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Badrul Mohamed Jan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Akhmal Sidek
- Petroleum Engineering Department, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, N. Plastira 100, Vasilika Vouton, GR-700 13 Heraklion, Crete, Greece
| | - Rabia Ikram
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Nippes RP, Macruz PD, Scaliante MHNO, Cardozo-Filho L. Fischer–Tropsch synthesis using cobalt catalysts supported on graphene materials: a systematic review. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-05006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
9
|
Mei J, Qiu Z, Gao T, Wu Q, Zheng F, Jiang J, Liu K, Huang Y, Wang H, Li Q. Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Powder as Starting Raw Material for Graphene Production. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4413-4426. [PMID: 36922738 DOI: 10.1021/acs.langmuir.3c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Electrochemical exfoliation starting with graphite powder as the raw material for graphene production shows superiority in cost effectiveness over the popular bulk graphite. However, the crucial conductive network inside the graphite powder electrode along with its formation and influence mechanisms remains blank. Here, an adjustable-pressure graphite powder electrode with a sandwich structure was designed for this. Appropriate encapsulation pressure is necessary and conducive to constructing a continuous and stable conductive network, but overloaded encapsulation pressure is detrimental to the exfoliation and graphene quality. With an initial encapsulation pressure (IEP) of 4 kPa, the graphite powders expand rapidly to a final stable expansion pressure of 49 kPa with a final graphene yield of 46.3%, where 84% of the graphene sheets are less than 4 layers with ID/IG values between 0.22 and 1.24. Increasing the IEP to 52 kPa, the expansion pressure increases to 73 kPa, but the graphene yield decreases to 39.3% with a worse graphene quality including higher layers and ID/IG values of 1.68-2.13. In addition, small-size graphite powders are not suitable for the electrochemical exfoliation. With the particle size decreasing from 50 to 325 mesh, the graphene yield decreases almost linearly from 46.3% to 5.5%. Conductive network and electrolyte migration synergize and constrain each other, codetermining the electrochemical exfoliation. Within an encapsulated structure, the electrochemical exfoliation of the graphite powder electrode proceeds from the outside to the inside. The insights revealed here will provide direction for further development of electrochemical exfoliation of graphite powder to produce graphene.
Collapse
Affiliation(s)
- Jing Mei
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Zhian Qiu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Teng Gao
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Qiang Wu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Fenghua Zheng
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Juantao Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Kui Liu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Youguo Huang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Hongqiang Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| | - Qingyu Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi Scientific and Technological Achievements Transformation Pilot Research Base of Electrochemical Energy Materials and Devices, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
10
|
Kandhasamy N, Preethi LK, Mani D, Walczak L, Mathews T, Venkatachalam R. RGO nanosheet wrapped β-phase NiCu 2S nanorods for advanced supercapacitor applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:18546-18562. [PMID: 36215010 DOI: 10.1007/s11356-022-23359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
A new integration strategy of transition metal sulfide with carbon-based materials is used to boost its catalytic property and electrochemical performances in supercapacitor application. Herein, crystalline reduced graphene oxide (rGO) wrapped ternary metal sulfide nanorod composites with different rGO ratios are synthesized using hydrothermal technique and are compared for their physical, chemical, and electrochemical performances. It is found that their properties are tuned by the weight ratios of rGO. The electrochemical investigations reveal that β-NiCu2S/rGO nanocomposite electrode with 0.15 wt.% of rGO is found to possess maximum specific capacitance of 1583 F g-1 at current density of 15 mA g-1 in aqueous electrolyte medium. The same electrode shows excellent cycling stability with capacitance retention of 89% after 5000 charging/discharging cycles. The reproducibility test performed on NiCu2S/rGO nanocomposite electrode with 0.15 wt.% of rGO indicates that it has high reproducible capacitive response and rate capability. Thus, the present work demonstrates that the β-NiCu2S/rGO nanocomposite can serve as a potential electrode material for developing supercapacitor energy storage system.
Collapse
Affiliation(s)
- Narthana Kandhasamy
- Centre for Nano Science and Nanotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, 637215, India
| | - Laguduva K Preethi
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology (Deemed to Be University), Chennai, Tamil Nadu, 600119, India
| | - Devendiran Mani
- Central Instrumentation Laboratory, Vels Institute of Science Technology and Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600117, India
| | - Lukasz Walczak
- Science & Research Division, PREVAC Sp. Z O.O, 44-362, Rogow, Poland
| | - Tom Mathews
- Surface and Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, 603102, India
| | - Rajendran Venkatachalam
- Centre for Nano Science and Nanotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, 637215, India.
- Department of Physics, Dr. N. G. P. Arts and Science College, Coimbatore, Tamil Nadu, 641048, India.
| |
Collapse
|
11
|
Influence of thermal treatment on the structure and electrical conductivity of thermally expanded graphite. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Liu WW, Aziz A. Review on the Effects of Electrochemical Exfoliation Parameters on the Yield of Graphene Oxide. ACS OMEGA 2022; 7:33719-33731. [PMID: 36188239 PMCID: PMC9520741 DOI: 10.1021/acsomega.2c04099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Recent years have witnessed many breakthroughs in research on graphene as well as a significant improvement in the electrochemical synthesis methods of graphene oxide (GO). GO is a derivative of graphene which has attracted the focus of worldwide scientists and researchers because of its hydrophilic and easily functionalized properties. The electrochemical approach is popular because it saves time, creates zero explosion risk, releases no hazardous gases, and avoids environmental pollution. Although recent publications show that the green, rapid, and mass electrochemical synthesis of GO has more advantages as compared with the traditional Hummers method, it is crucial to study the effects of reaction parameters. Herein, we review recent various works regarding the influences of various reaction parameters on the synthesis of GO sheets. The advancement, current challenges, and solutions of electrochemical synthesis methods of GO are also outlined. Through this review, we hope to spark some clear ideas for anyone who wants to scale up the yield of GO.
Collapse
Affiliation(s)
- Wei-Wen Liu
- Institute
of Nano Electronic Engineering, Universiti
Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Azizan Aziz
- School
of Material and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Seberang Perai
Selatan, P. Pinang, Malaysia
| |
Collapse
|
13
|
Singh PK, Sharma K, Singh PK. Electro-magneto-chemical synthesis and characterization of thermally reduced graphene oxide: Influence of magnetic field and cyclic thermal loading on microstructural properties. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
A low cost, bulk synthesis of the thermally reduced graphene oxide in an aqueous solution of sulphuric acid & hydrogen peroxide via electrochemical method. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
ERSOZOGLU MG, Gursu H, Gumrukcu S, Sarac A, Sahin Y. SINGLE STEP ELECTROCHEMICAL SEMI‐EXFOLIATIATED S‐DOPED GRAPHENE‐LIKE STRUCTURES FROM COMMERCIAL CARBON FIBER AS EFFICIENT METAL‐FREE CATALYST FOR HYDROGEN EVOLUTION REACTION. ChemElectroChem 2021. [DOI: 10.1002/celc.202101455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mehmet Giray ERSOZOGLU
- Istanbul Technical University: Istanbul Teknik Universitesi Polymer Science and Technology Maslak, Istanbul Istanbul TURKEY
| | - Hurmus Gursu
- Yildiz Technical University: Yildiz Teknik Universitesi Science and Technology Application and Research Center TURKEY
| | - Selin Gumrukcu
- Istanbul Technical University: Istanbul Teknik Universitesi Chemistry TURKEY
| | - A.Sezai Sarac
- Istanbul Technical University: Istanbul Teknik Universitesi Polymer Science and Technology TURKEY
| | - Yucel Sahin
- Yildiz Teknik Universitesi Chemistry Yildiz Technical UniversityFaculty of Art and SciencesDepartment of Chemistry 34210 İstanbul TURKEY
| |
Collapse
|
16
|
Lee JU, Lee CW, Cho SC, Shin BS. Laser-Induced Graphene Heater Pad for De-Icing. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3093. [PMID: 34835856 PMCID: PMC8619929 DOI: 10.3390/nano11113093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
The replacement of electro-thermal material in heaters with lighter and easy-to-process materials has been extensively studied. In this study, we demonstrate that laser-induced graphene (LIG) patterns could be a good candidate for the electro-thermal pad. We fabricated LIG heaters with various thermal patterns on the commercial polyimide films according to laser scanning speed using an ultraviolet pulsed laser. We adopted laser direct writing (LDW) to irradiate on the substrates with computer-aided 2D CAD circuit data under ambient conditions. Our highly conductive and flexible heater was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, X-ray diffraction, and Brunauer-Emmett-Teller. The influence of laser scanning speed was evaluated for electrical properties, thermal performance, and durability. Our LIG heater showed promising characteristics such as high porosity, light weight, and small thickness. Furthermore, they demonstrated a rapid response time, reaching equilibrium in less than 3 s, and achieved temperatures up to 190 °C using relatively low DC voltages of approximately 10 V. Our LIG heater can be utilized for human wearable thermal pads and ice protection for industrial applications.
Collapse
Affiliation(s)
- Jun-Uk Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (C.-W.L.); (S.-C.C.)
| | - Chan-Woo Lee
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (C.-W.L.); (S.-C.C.)
| | - Su-Chan Cho
- Department of Cogno-Mechatronics Engineering, Pusan National University, Pusan 46241, Korea; (J.-U.L.); (C.-W.L.); (S.-C.C.)
| | - Bo-Sung Shin
- Department of Optics and Mechatronics Engineering, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
17
|
Graphene Oxide Synthesis, Properties and Characterization Techniques: A Comprehensive Review. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5030064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The unique properties of graphene oxide (GO) have attracted the attention of the research community and cost-effective routes for its production are studied. The type and percentage of the oxygen groups that decorate a GO sheet are dependent on the synthesis path, and this path specifies the carbon content of the sheet. The chemical reduction of GO results in reduced graphene oxide (rGO) while the removal of the oxygen groups is also achievable with thermal processes (tpGO). This review article introduces the reader to the carbon allotropes, provides information about graphene which is the backbone of GO and focuses on GO synthesis and properties. The last part covers some characterization techniques of GO (XRD, FTIR, AFM, SEM-EDS, N2 porosimetry and UV-Vis) with a view to the fundamental principles of each technique. Some critical aspects arise for GO synthesized and characterized from our group.
Collapse
|
18
|
Baek G, Yang SC. Effect of the Two-Dimensional Magnetostrictive Fillers of CoFe 2O 4-Intercalated Graphene Oxide Sheets in 3-2 Type Poly(vinylidene fluoride)-Based Magnetoelectric Films. Polymers (Basel) 2021; 13:1782. [PMID: 34071659 PMCID: PMC8198746 DOI: 10.3390/polym13111782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022] Open
Abstract
In the last decade, magnetoelectric (ME) polymer films have been developed by including zero-dimensional or one-dimensional magnetostrictive fillers in a piezoelectric polymer matrix. Existing reports on ME polymer films reveal that the shape of the magnetostrictive fillers is a critical determinant of the polymeric phase conformation, strain transfer between the piezoelectric and magnetostrictive phases, and dipole alignment in the films. In this study, to investigate the effect of two-dimensional (2D) magnetostrictive fillers on piezoelectric, magnetic, and magnetoelectric responses, 3-2 type ME films were prepared using CoFe2O4-intercalated graphene oxide (CFO-i-GO) fillers and poly(vinylidene fluoride) (PVDF) polymers. The 2D fillers of CFO-i-GO were hydrothermally synthesized by CFO intercalation into the interlayers of GO sheets with different lateral sizes, which were controlled by ultrasonication treatment. It was found that the large-lateral-size GO (LGO), medium-lateral-size GO (MGO), and small-lateral-size GO (SGO) fillers in the PVDF-based ME films exhibited a lateral size effect on CFO intercalation, polymeric phase conformation, dipole alignment, and magnetoelectric responses. A maximum ME coefficient (αME) of 3.0 mV/cm∙Oe was achieved with a strong linearity (r2) of 0.9992 at an off-resonance frequency (f) of 1 kHz and applied direct current (dc) magnetic field (Hdc) of ± 1000 Oe. The 3-2 type polymer-based ME films with reliable ME responses have potential for use in high-feasibility ME devices for biomedical sensing applications.
Collapse
Affiliation(s)
| | - Su-Chul Yang
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, Korea;
| |
Collapse
|
19
|
Feng Y, Li W, An J, Zhao Q, Wang X, Liu J, He W, Li N. Graphene family for hydrogen peroxide production in electrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144491. [PMID: 33736245 DOI: 10.1016/j.scitotenv.2020.144491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The development of carbon-based materials to catalyze two-electron (2e-) pathway of oxygen reduction reaction (ORR) offers great potential for hydrogen peroxide (H2O2) production. As a class of novel two-dimensional (2D) carbon materials, graphene and its derivatives have raised increasing attention as excellent noble-metal-free catalysts in 2e ORR due to their unique structure, physical and chemical properties. This review focuses on the synthesis of main graphene family members and graphene based electrodes, as well as their applications for H2O2 generation in electrochemical systems. We describe the functions of the graphene family in electrochemical systems, such as accelerating electron transfer and increasing oxygen transfer for cathodes in electrochemical systems, aiming to reveal the enhancement mechanisms of graphene and its derivatives on H2O2 production. Furthermore, the challenges and prospects for graphene family used as catalyst for H2O2 production in the future are also proposed.
Collapse
Affiliation(s)
- Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Wen Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
20
|
Akkalamattam Maitheen Kunju R, Gopalakrishnan J. Polyaniline nanorod adsorbed on reduced graphene oxide nanosheet for enhanced dielectric, viscoelastic and thermal properties of epoxy nanocomposites. POLYM ENG SCI 2021. [DOI: 10.1002/pen.25698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jayalatha Gopalakrishnan
- Department of Polymer Science and Rubber Technology CUSAT Kochi Kerala India
- Inter University Centre for Nanomaterials and Devices CUSAT Kochi Kerala India
| |
Collapse
|
21
|
Neelgund GM, Oki A, Bandara S, Carson L. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide. J Mater Chem B 2021; 9:1792-1803. [PMID: 33393530 DOI: 10.1039/d0tb02366c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we present the rational synthesis of a multimode photothermal agent, NGO-FA-CuS, for the advancement of photothermal therapy of cancer. The hierarchical architecture created in NGO-FA-CuS was attained by the covalent conjugation of folic acid (FA) to nanographene oxide (NGO) through amide bonding, followed by the hydrothermal deposition of CuS nanoflowers. In this approach, instead of mere mixing or deposition, FA was covalently bonded to NGO, which helped in retaining their intrinsic properties after binding and allowed to access them in the resulting hybrid nanostructure. In this specifically designed photothermal agent, NGO-FA-CuS, each component has an explicit task, i.e., NGO, FA and CuS act as the quencher, cancer cell-targeting moiety and photothermal transduction agent, respectively. Prior to the grafting of FA molecules and the deposition of CuS nanoflowers, sulfonic acid groups were introduced into NGO to provide stability under physiological conditions. Under irradiation using a 980 nm laser, NGO-FA-CuS was able to attain a temperature of 63.1 °C within 5 min, which is far beyond the survival temperature for cancer cells. Therefore, the resulting temperature recorded for NGO-FA-CuS was sufficient to induce hyperthermia in cancer cells to cause their death. When coming into contact with cancer cells, NGO-FA-CuS can cause a rapid increase in the temperature of their nucleus, destroy the genetic substances, and ultimately lead to exhaustive apoptosis under illumination using a near-infrared (NIR) laser. An excellent photothermal efficiency of 46.2% under illumination using a 980 nm laser and outstanding cytotoxicity against HeLa, SKOV3 and KB cells were attained with NGO-FA-CuS. Moreover, NGO-FA-CuS displays exceptional persistent photo-stability without photo-corrosiveness. The photothermal effect of NGO-FA-CuS was found to be dependent on its concentration and the power density of the laser source. It was found that its cytotoxicity toward cancer cells was enhanced with an increase in the concentration of NGO-FA-CuS and the incubation period.
Collapse
Affiliation(s)
- Gururaj M Neelgund
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | - Aderemi Oki
- Department of Chemistry, Prairie View A&M University, Prairie View, TX 77446, USA.
| | - Subhani Bandara
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| | - Laura Carson
- Cooperative Agricultural Research Center, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|
22
|
McLaren RL, Laycock CJ, Brousseau E, Owen GR. Examining slit pore widths within plasma-exfoliated graphitic material utilising Barrett–Joyner–Halenda analysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj01702k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BJH analysis is shown to be a highly useful method to estimate the distance between stacks within plasma-exfoliated graphitic material, and is shown to coincide with data obtained from SEM, AFM and XRD analysis.
Collapse
Affiliation(s)
| | | | | | - Gareth R. Owen
- School of Applied Science
- University of South Wales
- Treforest
- UK
| |
Collapse
|
23
|
Lebron YAR, Moreira VR, Drumond GP, da Silva MM, Bernardes RDO, Santos LVDS, Jacob RS, Viana MM, de Vasconcelos CKB. Graphene oxide for efficient treatment of real contaminated water by mining tailings: Metal adsorption studies to Paraopeba river and risk assessment. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Trikkaliotis DG, Mitropoulos AC, Kyzas GZ. Low-cost route for top-down synthesis of over- and low-oxidized graphene oxide. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Moreira VR, Lebron YAR, da Silva MM, de Souza Santos LV, Jacob RS, de Vasconcelos CKB, Viana MM. Graphene oxide in the remediation of norfloxacin from aqueous matrix: simultaneous adsorption and degradation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34513-34528. [PMID: 32557024 DOI: 10.1007/s11356-020-09656-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 05/27/2023]
Abstract
In the present study, the simultaneous adsorption degradation of norfloxacin (NOR) by graphene oxide from aqueous matrix was verified. Graphene oxide (GO, ~ 8 layers) was prepared using modified Hummers method through the oxidation/exfoliation of expanded graphite. Spectroscopic techniques confirmed the NOR adsorption onto GO surface and the partial antibiotic degradation promoted by hydroxyl radicals derived from GO. Furthermore, the mass spectra after the adsorption-degradation processes showed NOR degradation intermediates that was compared and confirmed by other studies. The nanomaterial showed a removal capacity of 374.9 ± 29.8 mg g-1, observing greater contribution from the NOR in the zwitterionic form and removals up to 94.8%. The intraparticle diffusion process, assessed by Boyd's model and Fick's law, presented a greater contribution in the removal process, reaching the equilibrium 30 min after the beginning. In addition, the temperature increase would disadvantage the process, which was considered thermodynamically viable throughout the evaluated temperature range. Finally, the process was scaled-up in a single stage batch adsorber considering a NOR removal efficiency of 95%. This resulted in mass requirement of 63.6 g of GO in order to treat 0.5 m3 of contaminated water. In general, the simultaneous adsorption-degradation process was considered innovative and promising in pharmaceutical compounds remediation.
Collapse
Affiliation(s)
- Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| | - Yuri Abner Rocha Lebron
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
| | - Marielle Mara da Silva
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
| | - Lucilaine Valéria de Souza Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
| | - Raquel Sampaio Jacob
- Department of Civil Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
| | - Cláudia Karina Barbosa de Vasconcelos
- Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
- Department of Physics and Chemistry, Pontifical Catholic University of Minas Gerais, P.O. Box 1686, Belo Horizonte, MG, 30535-901, Brazil
| | - Marcelo Machado Viana
- Department of Chemistry, Federal University of Minas Gerais, P.O. Box 1294, Belo Horizonte, MG, 30270-901, Brazil.
| |
Collapse
|
26
|
Abstract
Heterogeneous photocatalysts for water decontamination were obtained by the optimized synthesis of bismuth-functionalized reduced graphene oxide (rGO/Bi) using the Hummer method and microwave treatment. Sulfamethazine (SMZ) was used as model pollutant to evaluate the photocatalytic efficacy. Photocatalysts were characterized by VP-SEM, HRTEM, XDR, XPS, RAMAN, and FTIR analyses, which confirmed the effective reduction of GO to rGO and the presence of bismuth as a crystalline phase of Bi2O3 polydispersed on the surface. Their performance was influenced by the rGO/Bi ratio, microwave temperature, and treatment time. The as-obtained 5%rGO/Bi composite had the highest photocatalytic activity for SMZ degradation under visible light irradiation (λ > 400 nm), achieving 100% degradation after only 2 h of treatment. The degradation yield decreased with higher percentages of rGO. Accordingly, the rGO/Bi catalysts efficiently removed SMZ, showing a high photocatalytic activity, and remained unchanged after three treatment cycles; furthermore, cytotoxicity tests demonstrated the nontoxicity of the aqueous medium after SMZ degradation. These findings support the potential value of these novel composites as photocatalysts to selectively remove pollutants in water treatment plants.
Collapse
|
27
|
Yakovlev AV, Yakovleva EV, Tseluikin VN, Krasnov VV, Mostovoy AS, Vikulova MA, Frolov IH, Rakhmetulina LA. Synthesis of Multilayer Graphene Oxide in Electrochemical Graphite Dispersion in H2SO4. RUSS J APPL CHEM+ 2020. [DOI: 10.1134/s1070427220020093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Mechanochemical versus chemical routes for graphitic precursors and their performance in micropollutants removal in water. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.02.073] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Chernysheva M, Rychagov A, Kornilov D, Tkachev S, Gubin S. Investigation of sulfuric acid intercalation into thermally expanded graphite in order to optimize the synthesis of electrochemical graphene oxide. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113774] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Lowe SE, Shi G, Zhang Y, Qin J, Jiang L, Jiang S, Al-Mamun M, Liu P, Zhong YL, Zhao H. The role of electrolyte acid concentration in the electrochemical exfoliation of graphite: Mechanism and synthesis of electrochemical graphene oxide. NANO MATERIALS SCIENCE 2019. [DOI: 10.1016/j.nanoms.2019.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Sravani B, Maseed H, Y C, Y VMR, V V S S S, Madhavi G, L SS. A Pt-free graphenaceous composite as an electro-catalyst for efficient oxygen reduction reaction. NANOSCALE 2019; 11:13300-13308. [PMID: 31287482 DOI: 10.1039/c9nr02912e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Use of Pt-based electro-catalysts for the oxygen reduction reaction (ORR) is a major hindrance in large-scale application of proton exchange membrane fuel cells (PEMFCs). Hence, new, cost-effective and high performance electro-catalysts are required for the commercial success of PEMFCs. In this work, a Pt-free magnesium oxide (MgO) decorated multi-layered reduced graphene oxide (MLGO) composite is tested as an electro-catalyst for the ORR. The ORR activity of MgO/MLGO in terms of diffusion-controlled current density is found to be superior (6.63 mA per cm2-geo) than that of in-house prepared Pt/rGO (5.96 mA per cm2-geo) and commercial Pt/C (5.02 mA per cm2-geo). The applicability of less expensive MgO/MLGO not only provides a new electro-catalyst but also provides a new direction in exploring metal oxide-based electro-catalysts for the ORR.
Collapse
Affiliation(s)
- Bathinapatla Sravani
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa - 516 005, Andhra Pradesh, India.
| | - H Maseed
- School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad - 500 046, Telangana, India.
| | - Chandrasekhar Y
- School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad - 500 046, Telangana, India.
| | - Veera Manohara Reddy Y
- Electrochemical Research Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India
| | - Srikanth V V S S
- School of Engineering Sciences and Technology, University of Hyderabad, Gachibowli, Hyderabad - 500 046, Telangana, India.
| | - G Madhavi
- Electrochemical Research Laboratory, Department of Chemistry, Sri Venkateswara University, Tirupati - 517 502, Andhra Pradesh, India
| | - Subramanyam Sarma L
- Nanoelectrochemistry Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa - 516 005, Andhra Pradesh, India.
| |
Collapse
|
32
|
Electrochemical formation of graphite oxide from the mixture composed of sulfuric and nitric acids. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Bandi S, Ravuri S, Peshwe DR, Srivastav AK. Graphene from discharged dry cell battery electrodes. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:358-369. [PMID: 30537653 DOI: 10.1016/j.jhazmat.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/26/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Utilization of extracted graphite rods from discharged dry cell batteries for synthesis of graphene oxide / graphene serves two purposes, one is waste management which supports environmental safety and the second is low cost production of graphene oxide / graphene which are highly promising 2D materials in various fields of research. In the present work, a sustainable feasibility for the synthesis of graphene oxide / graphene from graphite rods of waste dry cell batteries is demonstrated. The graphite rods separated from the waste dry cell batteries were subjected to electrochemical exfoliation (ECE) in an acidic media. The graphene oxide (GO) obtained from this method was subjected to reduction heat treatment under argon atmosphere at suitable temperature and time period. Finally, the reduced graphene oxide (rGO) i.e., graphene was characterized using XRD, FTIR, Raman Spectroscopy, TGA, BET, SEM and TEM. The few layer graphene structure is supposed to be less defective in comparison to similar exfoliation techniques due to less oxygen-functional groups associated with the intermediate graphene oxide.
Collapse
Affiliation(s)
- Suresh Bandi
- Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Syamsai Ravuri
- Center for Nanotechnology Research, VIT University, Vellore, 632014, India
| | - Dilip Ramkrishna Peshwe
- Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - Ajeet Kumar Srivastav
- Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| |
Collapse
|
34
|
Chen L, Wang H, Li X, Nie C, Liang T, Xie F, Liu K, Peng X, Xie J. Highly hydrophilic carbon nanoparticles: uptake mechanism by mammalian and plant cells. RSC Adv 2018; 8:35246-35256. [PMID: 35547047 PMCID: PMC9087372 DOI: 10.1039/c8ra06665e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 11/25/2022] Open
Abstract
As one of the carbon based materials, the potential application of carbon nanoparticles (CNPs) has emerged in the promotion of plant growth. However, knowledge on the biological mechanism of how the CNPs interact with plant cells is limited. In this study, nanostructures of CNPs were examined. The particles exhibited particulate morphology and their size distribution was in the range of 18 to 70 nm, with an average size of 30 nm. Hydrophilic groups of COOH and OH were present on the surface of CNPs, and CNPs showed the common feature of graphitic sp2 hybridization carbons. The CNPs were determined to be biocompatible with these two cell lines, mammalian cells (A549 cells) and plant cells (BY-2 cells). The COOH groups on the surface of CNPs were functionalized via covalent binding with a fluorescent dye for improvement of the fluorescence. The fluorescent carbon nanoparticles (FCNPs) were found to cross the cell membrane and enter cells (A549 cells and BY-2 cells) in an energy-dependent manner. Subsequently, the mechanism of FCNPs interaction with the cell membrane was evaluated in the presence of inhibitors that specifically affect different endocytosis membrane proteins. The FCNPs mainly entered A549 cells through caveolin-mediated endocytosis and macropinocytosis, and clathrin-dependent endocytosis was also involved in the transportation of the FCNPs. Clathrin-independent endocytosis mediated in the internalization of FCNPs in BY-2 cells. The way FCNPs entering cells will provide a fundamental understanding of the influence of CNPs on cell membrane.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian Liaoning 116023 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116012 China
| | - Hongbo Wang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Xiang Li
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Cong Nie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Taibo Liang
- Key Laboratory of Ecological Environment and Tobacco Quality, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China
| | - Fuwei Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Kejian Liu
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian Liaoning 116012 China
| | - Jianping Xie
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute of CNTC 2 Fengyang Road Zhengzhou 450001 China +86-371-67672113
| |
Collapse
|
35
|
Potential oscillations affected by the electrochemical overoxidation of graphite in aqueous nitric acid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Veera Manohara Reddy Y, Bathinapatla S, Łuczak T, Osińska M, Maseed H, Ragavendra P, Subramanyam Sarma L, Srikanth VVSS, Madhavi G. An ultra-sensitive electrochemical sensor for the detection of acetaminophen in the presence of etilefrine using bimetallic Pd–Ag/reduced graphene oxide nanocomposites. NEW J CHEM 2018. [DOI: 10.1039/c7nj04775d] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we report a one-step procedure for the fabrication of Pd–Ag bimetallic nanoparticles on the surface of a graphene oxide (rGO) support.
Collapse
Affiliation(s)
- Y. Veera Manohara Reddy
- Electrochemical Research Laboratory
- Department of Chemistry
- Sri Venkateswara University
- Tirupati
- India
| | - Sravani Bathinapatla
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa
- India
| | - T. Łuczak
- Department of Chemistry
- Adam Mickiewicz University in Poznań
- 61-614 Poznań
- Poland
| | - M. Osińska
- Poznan University of Technology
- Institute of Chemistry and Technical Electrochemistry
- Poznań
- Poland
| | - H. Maseed
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad
- India
| | - P. Ragavendra
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa
- India
| | - L. Subramanyam Sarma
- Nanoelectrochemistry Laboratory
- Department of Chemistry
- Yogi Vemana University
- Kadapa
- India
| | - V. V. S. S. Srikanth
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad
- India
| | - G. Madhavi
- Electrochemical Research Laboratory
- Department of Chemistry
- Sri Venkateswara University
- Tirupati
- India
| |
Collapse
|