1
|
Adam A, Mertz D. Iron Oxide@Mesoporous Silica Core-Shell Nanoparticles as Multimodal Platforms for Magnetic Resonance Imaging, Magnetic Hyperthermia, Near-Infrared Light Photothermia, and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1342. [PMID: 37110927 PMCID: PMC10145772 DOI: 10.3390/nano13081342] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The design of core-shell nanocomposites composed of an iron oxide core and a silica shell offers promising applications in the nanomedicine field, especially for developing efficient theranostic systems which may be useful for cancer treatments. This review article addresses the different ways to build iron oxide@silica core-shell nanoparticles and it reviews their properties and developments for hyperthermia therapies (magnetically or light-induced), combined with drug delivery and MRI imaging. It also highlights the various challenges encountered, such as the issues associated with in vivo injection in terms of NP-cell interactions or the control of the heat dissipation from the core of the NP to the external environment at the macro or nanoscale.
Collapse
|
2
|
Kulpa-Greszta M, Tomaszewska A, Dziedzic A, Pązik R. Temperature effects induced by NIR photo-stimulation within I st and II nd optical biological windows of seed-mediated multi-shell nanoferrites. Dalton Trans 2023; 52:2580-2591. [PMID: 36756813 DOI: 10.1039/d2dt04178b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Different types of ferrite core-shell structures, namely CoFe2O4@CoFe2O4, CoFe2O4@Fe3O4, CoFe2O4@MnFe2O4, and CoFe2O4@MnFe2O4@ZnFe2O4, were prepared by the seed-mediated approach. We show that this synthetic methodology offers great and important flexibility in the engineering of multi-shell ferrite nanoparticles which can be further used in various advanced applications. This impressive tool can be used for particle size tuning of homo- and heterostructures through convenient control of the concentration of metal acetylacetonates without the necessity of changing synthetic parameters, i.e., temperature, time, and solvent. The contactless conversion of laser light within Ist (808 nm) and IInd (1122 nm) biological optical windows was studied on the fabricated ferrite core-shell materials which showed promising heating effects that can be a basis of their practical exploitation in the biomedical field.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| |
Collapse
|
3
|
Dependence of Structural, Morphological and Magnetic Properties of Manganese Ferrite on Ni-Mn Substitution. Int J Mol Sci 2022; 23:ijms23063097. [PMID: 35328516 PMCID: PMC8949668 DOI: 10.3390/ijms23063097] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 02/01/2023] Open
Abstract
This paper presents the influence of Mn2+ substitution by Ni2+ on the structural, morphological and magnetic properties of Mn1−xNixFe2O4@SiO2 (x = 0, 0.25, 0.50, 0.75, 1.00) nanocomposites (NCs) obtained by a modified sol-gel method. The Fourier transform infrared spectra confirm the formation of a SiO2 matrix and ferrite, while the X-ray diffraction patterns show the presence of poorly crystalline ferrite at low annealing temperatures and highly crystalline mixed cubic spinel ferrite accompanied by secondary phases at high annealing temperatures. The lattice parameters gradually decrease, while the crystallite size, volume, and X-ray density of Mn1−xNixFe2O4@SiO2 NCs increase with increasing Ni content and follow Vegard’s law. The saturation magnetization, remanent magnetization, squareness, magnetic moment per formula unit, and anisotropy constant increase, while the coercivity decreases with increasing Ni content. These parameters are larger for the samples with the same chemical formula, annealed at higher temperatures. The NCs with high Ni content show superparamagnetic-like behavior, while the NCs with high Mn content display paramagnetic behavior.
Collapse
|
4
|
Zachanowicz E, Kulpa-Greszta M, Tomaszewska A, Gazińska M, Marędziak M, Marycz K, Pązik R. Multifunctional Properties of Binary Polyrhodanine Manganese Ferrite Nanohybrids-From the Energy Converters to Biological Activity. Polymers (Basel) 2020; 12:polym12122934. [PMID: 33302596 PMCID: PMC7764815 DOI: 10.3390/polym12122934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/18/2023] Open
Abstract
The PRHD@MnFe2O4 binary hybrids have shown a potential for applications in the biomedical field. The polymer cover/shell provides sufficient surface protection of magnetic nanoparticles against adverse effects on the biological systems, e.g., it protects against Fenton’s reactions and the generation of highly toxic radicals. The heating ability of the PRHD@MnFe2O4 was measured as a laser optical density (LOD) dependence either for powders as well as nanohybrid dispersions. Dry hybrids exposed to the action of NIR radiation (808 nm) can effectively convert energy into heat that led to the enormous temperature increase ΔT 170 °C (>190 °C). High concentrated colloidal suspensions (5 mg/mL) can generate ΔT of 42 °C (65 °C). Further optimization of the nanohybrids amount and laser parameters provides the possibility of temperature control within a biologically relevant range. Biological interactions of PRHD@MnFe2O4 hybrids were tested using three specific cell lines: macrophages (RAW 264.7), osteosarcoma cells line (UMR-106), and stromal progenitor cells of adipose tissue (ASCs). It was shown that the cell response was strongly dependent on hybrid concentration. Antimicrobial activity of the proposed composites against Escherichia coli and Staphylococcus aureus was confirmed, showing potential in the exploitation of the fabricated materials in this field.
Collapse
Affiliation(s)
- Emilia Zachanowicz
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland;
- Correspondence: (E.Z.); (R.P.)
| | - Magdalena Kulpa-Greszta
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszow, Poland;
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
| | - Małgorzata Gazińska
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland;
| | - Monika Marędziak
- Faculty of Biology, University of Environmental and Life Sciences Wroclaw, Kożuchowska 5b, 50-631 Wroclaw, Poland; (M.M.); (K.M.)
| | - Krzysztof Marycz
- Faculty of Biology, University of Environmental and Life Sciences Wroclaw, Kożuchowska 5b, 50-631 Wroclaw, Poland; (M.M.); (K.M.)
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland;
- Correspondence: (E.Z.); (R.P.)
| |
Collapse
|
5
|
Kulpa-Greszta M, Pązik R, Kłoda P, Tomaszewska A, Zachanowicz E, Pałka K, Ginalska G, Belcarz A. Efficient non-contact heat generation on flexible, ternary hydroxyapatite/curdlan/nanomagnetite hybrids for temperature controlled processes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111360. [PMID: 33254979 DOI: 10.1016/j.msec.2020.111360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/13/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
The ternary HAp/curdlan/nanomagnetite hybrids with ceramic and polymer phase incorporation of magnetite nanoparticles (MNPs) were fabricated to study their heating ability under action of the alternating magnetic field (AMF), 808 nm near infrared laser radiation (NIR) and their synergic stimulation. The energy conversion was evaluated in terms of the specific absorption rate (SAR) as a function of the MNPs concentration in composites and to estimate their potential in temperature-controlled regenerative processes and hyperthermia. Measurements were carried out on dry and Ringer's solution soaked composite materials in order to mimic in situ conditions. It was found that the MNPs release during prolonged experiment is limited and has no significant effect on energy conversion emphasizing stability of the hybrids. Incorporation of the MNPs in polymer phase of the hybrid can additionally limit particle leaking as well as plays a role as insulating layer for the heat dissipation lowering the risk of sample overheating. In general, it was shown that maximum temperature of hybrid can be achieved in a relatively short time of exposure to stimulating factors whereas its control can be done through optimization of experiment conditions. MNPs incorporation into the curdlan (polymer phase) lead to strengthening of the mechanical properties of the whole network.
Collapse
Affiliation(s)
- Magdalena Kulpa-Greszta
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszow, Poland.
| | - Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland.
| | - Patrycja Kłoda
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstańców Warszawy 12, 35-959 Rzeszow, Poland
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Emilia Zachanowicz
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - Krzysztof Pałka
- Faculty of Mechanical Engineering, Lublin University of Technology, Nadbystrzycka 36, 20-618 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; Medical Inventi Joint stock Company, 14 Nałęczowska Str., 20-701 Lublin, Poland
| | - Anna Belcarz
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; Medical Inventi Joint stock Company, 14 Nałęczowska Str., 20-701 Lublin, Poland
| |
Collapse
|
6
|
Pązik R, Lewińska A, Adamczyk-Grochala J, Kulpa-Greszta M, Kłoda P, Tomaszewska A, Dziedzic A, Litwienienko G, Noga M, Sikora D, Wnuk M. Energy Conversion and Biocompatibility of Surface Functionalized Magnetite Nanoparticles with Phosphonic Moieties. J Phys Chem B 2020; 124:4931-4948. [PMID: 32407114 DOI: 10.1021/acs.jpcb.0c02808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Magnetite nanoparticles (MNPs) were synthesized using two distinctly different approaches, co-precipitation (CP) and thermal decomposition (TD), and further surface functionalized with organophosphonic ligands containing different numbers of phosphonic groups. We have shown that it is possible to fabricate flower-like assemblies of MNPs through TD at lower temperatures, whereas CP MNPs formed agglomerates of particles with broad size distribution and irregular shapes. The effect of the organophosphonic ligands on the heating efficiency of the TD and CP MNPs under dual mode stimulation (simultaneous action of AMF and NIR laser radiation) was studied for the first time. It was found that in the case of the cost-effective CP MNP synthesis surface functionalization with chosen phosphonic ligands leads to higher heating efficiency upon laser stimulation, whereas better performance of TD MNPs was found under the action of AMF due to the significant difference of nanoparticle properties. The biocompatibility of surface functionalized MNPs with organophosphonic ligands was evaluated through thorough studies of the metabolic activity of MNPs in normal human foreskin fibroblasts as well as oxidative stress induction and oxidation stress response which has not been previously reported for most of the organophosphonic moieties used in this study.
Collapse
Affiliation(s)
- Robert Pązik
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Anna Lewińska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jagoda Adamczyk-Grochala
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Magdalena Kulpa-Greszta
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstan ́ców Warszawy 12, 35-959 Rzeszow, Poland
| | - Patrycja Kłoda
- Faculty of Chemistry, Rzeszow University of Technology, Aleja Powstan ́ców Warszawy 12, 35-959 Rzeszow, Poland
| | - Anna Tomaszewska
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Andrzej Dziedzic
- Department of Spectroscopy and Materials, Institute of Physics, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | | | - Maciej Noga
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Daniel Sikora
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Maciej Wnuk
- Department of Biotechnology, Institute of Biology and Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
7
|
Bulavinets T, Kulpa-Greszta M, Tomaszewska A, Kus-Liśkiewicz M, Bielatowicz G, Yaremchuk I, Barylyak A, Bobitski Y, Pązik R. Efficient NIR energy conversion of plasmonic silver nanostructures fabricated with the laser-assisted synthetic approach for endodontic applications. RSC Adv 2020; 10:38861-38872. [PMID: 35518429 PMCID: PMC9057347 DOI: 10.1039/d0ra06614a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/11/2020] [Accepted: 10/07/2020] [Indexed: 11/26/2022] Open
Abstract
Silver nanoparticles were synthesized with the laser-assisted wet chemical approach at room temperature. The effect of light exposure on the silver nanoparticles' spatial parameters shaping the localized surface plasmon resonance has been evaluated. The optical, structural and morphological characterizations of the Ag nanostructures were conducted with UV-VIS-NIR spectrophotometry, DLS and TEM techniques. The ability of the light-modified Ag nanostructures for energy conversion under the influence of 445 and 880 nm laser radiation is estimated. We have found that the most efficient heat generation can be achieved using triangular Ag nanostructures under the NIR irradiation (880 nm). The temperature effect on the Ag nanostructures' antibacterial properties has been evaluated against the Staphylococcus aureus population. The prospects of triangular Ag nanostructures' application on modern endodontics for the rapid nano-laser disinfection of the root canal system of the human tooth have been demonstrated. Energy conversion by plasmonic silver nanostructures fabricated with the laser assisted synthetic approach at room temperature.![]()
Collapse
Affiliation(s)
- Tetiana Bulavinets
- Department of Photonics
- Lviv Polytechnic National University
- 79013 Lviv
- Ukraine
| | | | - Agata Tomaszewska
- Department of Biotechnology
- Institute of Biology and Biotechnology
- College of Natural Sciences
- University of Rzeszow
- 35-310 Rzeszow
| | - Malgorzata Kus-Liśkiewicz
- Department of Biotechnology
- Institute of Biology and Biotechnology
- College of Natural Sciences
- University of Rzeszow
- 35-310 Rzeszow
| | - Gabriela Bielatowicz
- Department of Biotechnology
- Institute of Biology and Biotechnology
- College of Natural Sciences
- University of Rzeszow
- 35-310 Rzeszow
| | - Iryna Yaremchuk
- Department of Photonics
- Lviv Polytechnic National University
- 79013 Lviv
- Ukraine
| | - Adriana Barylyak
- Department of Therapeutic Dentistry
- Danylo Galytsky Lviv National Medical University
- 79010 Lviv
- Ukraine
| | - Yaroslav Bobitski
- Department of Photonics
- Lviv Polytechnic National University
- 79013 Lviv
- Ukraine
- Department of Physics
| | - Robert Pązik
- Department of Biotechnology
- Institute of Biology and Biotechnology
- College of Natural Sciences
- University of Rzeszow
- 35-310 Rzeszow
| |
Collapse
|
8
|
Zachanowicz E, Pigłowski J, Grzymajło M, Poźniak B, Tikhomirov M, Pierunek N, Śniadecki Z, Idzikowski B, Marycz K, Marędziak M, Kisała J, Hęclik K, Pązik R. Efficient synthesis of PMMA@Co 0.5Ni 0.5Fe 2O 4 organic-inorganic hybrids containing hyamine 1622 - Physicochemical properties, cytotoxic assessment and antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:248-256. [PMID: 29853088 DOI: 10.1016/j.msec.2018.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 03/23/2018] [Accepted: 04/15/2018] [Indexed: 11/30/2022]
Abstract
The PMMA@Co0.5Ni0.5Fe2O4 ferrite containing hybrid nanomaterials with hyamine were prepared using emulsion polymerization method. Structural and morphological properties were evaluated using XRD, FT-IR, SEM techniques. The TGA and DTA analysis were performed in order to study the thermal properties of hybrid materials in contrast to reference material. Magnetic properties were studied using Quantum Design PPMS (VSM option) in a constant external magnetic field equal (100 Oe and 1000 Oe) in the temperature range from 2 to 380 K. Both the pure Co0.5Ni0.5Fe2O4and the sample with 85% of PMMA exhibit superparamagnetic behavior whereas blocking temperatureTB decreases with increase of PMMA content. The cytotoxicity assessment of PMMA@Co0.5Ni0.5Fe2O4 with hyamine in J774.E murine macrophages and U2OS human osteosarcoma cell lines was performed. Additionally, sensitivity of bacteria Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25923 to hybrid materials (with/without hyamine) was investigated using a of Kirby-Bauer disc method.
Collapse
Affiliation(s)
- E Zachanowicz
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - J Pigłowski
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - M Grzymajło
- Polymer Engineering and Technology Division, Wroclaw University of Technology, 50-370 Wrocław, Poland
| | - B Poźniak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Scineces, Ul. Norwida 25, 50-375 Wrocław, Poland
| | - M Tikhomirov
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Scineces, Ul. Norwida 25, 50-375 Wrocław, Poland
| | - N Pierunek
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - Z Śniadecki
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - B Idzikowski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
| | - K Marycz
- University of Environmental and Life Sciences Wroclaw, Faculty of Biology, Kożuchowska 5b, 50-631 Wroclaw, Poland
| | - M Marędziak
- University of Environmental and Life Sciences Wroclaw, Faculty of Biology, Kożuchowska 5b, 50-631 Wroclaw, Poland
| | - J Kisała
- Institute of Biotechnology, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
| | - K Hęclik
- Institute of Biotechnology, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland
| | - R Pązik
- Institute of Biotechnology, University of Rzeszow, Pigonia 1, 35-959 Rzeszow, Poland.
| |
Collapse
|