1
|
Jain A, Yadav VK, Kumari A, Saha SK, Metre RK, Bhattacharyya S, Rana NK. Supported-amine-catalyzed cascade synthesis of spiro-thiazolone-tetrahydrothiophenes: assessing HSA binding activity. Org Biomol Chem 2024; 22:5087-5092. [PMID: 38835316 DOI: 10.1039/d4ob00619d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
We have devised a supported-amine-catalyzed efficient synthesis of spiro-thiazolone-tetrahydrothiophenes via a sulfa-Michael/aldol cascade approach. The catalyst demonstrated sustained efficacy over 21 cycles. These derivatives were found to exhibit excellent binding abilities with purified human serum albumin as indicated by both in silico and in vitro-based experiments.
Collapse
Affiliation(s)
- Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Vinay K Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India
| | - Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Suman K Saha
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
2
|
Takashima K, Nakamura S, Nagayama M, Marumoto S, Ishikawa F, Xie W, Nakanishi I, Muraoka O, Morikawa T, Tanabe G. Role of the thiosugar ring in the inhibitory activity of salacinol, a potent natural α-glucosidase inhibitor. RSC Adv 2024; 14:4471-4481. [PMID: 38312722 PMCID: PMC10835759 DOI: 10.1039/d3ra08485j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/06/2024] Open
Abstract
Herein, ring-cleaved (24) and truncated (25) analogues of an azasugar, 1-deoxynojirimycin (23), exhibited inhibitory activity (Ki = 4-10 μM) equal to that of the parent compound (1, Ki = 14 μM). Based on this structure-activity relationship (SAR), four ring-cleaved (26a-26c and 27c) and three truncated (28a-28c) analogues of salacinol (1), a potent thiosugar-ring-containing α-glucosidase inhibitor, were synthesised. Bioassay results revealed that all the synthetics were inactive, indicating that the 5-membered thiosugar ring of 1 played an essential role in the potent activities of sulfonium-type inhibitors. The present findings are interesting and important in understanding the function of salacinol, considering that the observed inhibitory activity trend was contrary to the SAR observed in aza-compounds (23, 24, and 25) in a previous study, which suggested that the cyclic structure did not contribute to their strong inhibitory activity.
Collapse
Affiliation(s)
- Katsuki Takashima
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shinya Nakamura
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Maiko Nagayama
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Shinsuke Marumoto
- Joint Research Centre, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Fumihiro Ishikawa
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, Department of Medicinal Chemistry, China Pharmaceutical University Nanjing 2100009 P. R. China
| | - Isao Nakanishi
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
- Pharmaceutical Research and Technology Institute, Kindai University 3-4-1 Kowakae, Higashi-osaka Osaka 577-8502 Japan
| |
Collapse
|
3
|
Lu L, Chen J, Tao W, Wang Z, Liu D, Zhou J, Wu X, Sun H, Li W, Tanabe G, Muraoka O, Zhao B, Wu L, Xie W. Design and Synthesis of Sulfonium Derivatives: A Novel Class of α-Glucosidase Inhibitors with Potent In Vivo Antihyperglycemic Activities. J Med Chem 2023; 66:3484-3498. [PMID: 36812150 DOI: 10.1021/acs.jmedchem.2c01984] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
We report the first attempt of double-spot structural modification on a side-chain moiety of sulfonium-type α-glucosidase inhibitors isolated from genus Salacia. A series of sulfonium salts with benzylidene acetal linkage at the C3' and C5' positions were designed and synthesized. In vitro enzyme inhibition evaluation showed that compounds with a strong electron-withdrawing group attached at the ortho position on the phenyl ring present stronger inhibitory activities. Notably, the most potent inhibitor 21b (1.0 mpk) can exhibit excellent hypoglycemic effects in mice, which can still compete with those of acarbose (20.0 mpk). Molecular docking of 21b demonstrated that besides conventional interacting patterns, the newly introduced benzylidene acetal moiety plays an important role in anchoring the whole molecule in a concave pocket of the enzyme. The successful identification of 21b as a lead compound for new drug discovery may provide a means for structure modification and diversification of the distinguished sulfonium-type α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhimei Wang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Dan Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiahui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiaoxing Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Haopeng Sun
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wei Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Genzoh Tanabe
- Faculty of Pharmacy Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Osamu Muraoka
- Faculty of Pharmacy Kinki University, 3-4-1 Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Bo Zhao
- Department of Chemical and Material Science, Nanjing Normal University, Nanjing 210009, P. R. China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Ding Y, Chen J, Liu D, Zhou J, Tao W, Yang Z, Tanabe G, Muraoka O, Xie W. Synthetic studies on naturally occurring sulfonium-type α-glucosidase inhibitors: progress and perspective. J Carbohydr Chem 2022. [DOI: 10.1080/07328303.2022.2115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Ying Ding
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jingyi Chen
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Dan Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Jiahui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Zhizhong Yang
- SINOPEC Nanjing chemical industries CO., LTD, Nanjing, P. R. China
| | | | | | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
5
|
Jain A, Maji S, Shukla K, Kumari A, Garg S, Metre RK, Bhattacharyya S, Rana NK. Stereoselective synthesis of tri-substituted tetrahydrothiophenes and their in silico binding against mycobacterial protein tyrosine phosphatase B. Org Biomol Chem 2022; 20:3124-3135. [PMID: 35343552 DOI: 10.1039/d2ob00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile approach to tri-substituted tetrahydrothiophenes via thia-Michael/aldol has been developed. The cascade reaction was carried out in the presence of 5 mol% of DABCO in ethyl acetate to afford diversely functionalized tetrahydrothiophenes (THTs) with excellent diastereoselectivity. The present methodology has broad substrate tolerance. Gram-scale reaction proceeds with equal efficiency. Functional group transformations further highlight the synthetic potential of the THTs. An asymmetric version of the cascade reaction has also been investigated and a maximum of 72% ee was observed with cinchonidine derived squaramide. Moreover, in silico based molecular docking followed by deep learning based affinity prediction and molecular dynamics simulation analysis indicate the synthesized THT derivatives can act as potent competitive inhibitors of MptpB at low micromolar to nanomolar concentrations. In silico ADME analysis further suggests the plausibility of these compounds to act as future anti-mycobacterial therapeutic leads.
Collapse
Affiliation(s)
- Anshul Jain
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| | - Sushobhan Maji
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| | - Khyati Shukla
- Department of Chemistry, Indian Institute of Technology Kanpur, Uttar Pradesh-208016, India
| | - Akanksha Kumari
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| | - Shivani Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| | - Sudipta Bhattacharyya
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| | - Nirmal K Rana
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajashtan-342037, India.
| |
Collapse
|
6
|
Saeedi M, Raeisi-Nafchi M, Sobhani S, Mirfazli SS, Zardkanlou M, Mojtabavi S, Faramarzi MA, Akbarzadeh T. Synthesis of 4-alkylaminoimidazo[1,2-a]pyridines linked to carbamate moiety as potent α-glucosidase inhibitors. Mol Divers 2021; 25:2399-2409. [PMID: 33047276 DOI: 10.1007/s11030-020-10137-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 08/25/2020] [Indexed: 02/05/2023]
Abstract
In this work, various imidazo[1,2-a]pyridines linked to carbamate moiety were designed, synthesized, and evaluated for their α-glucosidase inhibitory activity. Among synthesized compounds, 4-(3-(tert-Butylamino)imidazo[1,2-a]pyridin-2-yl)phenyl p-tolylcarbamate (6d) was the most potent compound (IC50 = 75.6 µM) compared with acarbose as the reference drug (IC50 = 750.0 µM). Kinetic study of compound 6d indicated a competitive inhibition. Also, the molecular docking study suggested desired interactions with the active site residues. In particular, hydrogen bonds and electrostatic interactions constructed by compound 6d afforded well-oriented conformation in the 3A4A active site.
Collapse
Affiliation(s)
- Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Raeisi-Nafchi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Sobhani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Zardkanlou
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Morikawa T, Ninomiya K, Tanabe G, Matsuda H, Yoshikawa M, Muraoka O. A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia. J Nat Med 2021; 75:449-466. [PMID: 33900535 PMCID: PMC8159842 DOI: 10.1007/s11418-021-01522-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
During our studies characterizing functional substances from food resources for the prevention and treatment of lifestyle-related diseases, we isolated the active constituents, salacinol (1) and neokotalanol (4), and related thiosugar sulfoniums, from the roots and stems of the genus Salacia plants [Celastraceae (Hippocrateaceae)] such as Salacia reticulata Wight, S. oblonga Wall., and S. chinensis L., and observed their antidiabetic effects. These plant materials have been used traditionally in Ayurvedic medicine as a specific remedy at the early stage of diabetes, and have been extensively consumed in Japan, the United States, and other countries as a food supplement for the prevention of obesity and diabetes. Here, we review our studies on the antidiabetic effects of plants from the genus Salacia, from basic chemical and pharmacological research to their application and development as new functional food ingredients.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan.
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, Okayama, 703-8516, Japan
| | - Genzoh Tanabe
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Kyoto Pharmaceutical University, 1 Shichono-cho, Misasagi, Yamashina-ku, Kyoto, 607-8412, Japan
| | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| |
Collapse
|
8
|
Yang K, Zhang S, Ying Y, Li Y, Cai M, Guan R, Hu J, Sun P. Cultivated Fruit Body of Phellinus baumii: A Potentially Sustainable Antidiabetic Resource. ACS OMEGA 2020; 5:8596-8604. [PMID: 32337422 PMCID: PMC7178366 DOI: 10.1021/acsomega.9b04478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/26/2020] [Indexed: 05/06/2023]
Abstract
Previous studies have been reported that the fruit body of wild Phellinus baumii alleviates diabetes, and antioxidants are beneficial to diabetes by protecting the β-cell from damage due to oxidative stress. Large-scale cultivation of P. baumii fruit body has been successful in the past decade. This paper aimed to investigate whether the fruit body of the cultivated P. baumii has the same analogical effects as the wild. The cultivated P. baumii fruit body was extracted by 80% of ethanol extracts, and different fractions were obtained with the successive use of petroleum ether, ethyl acetate (EtOAc), n-butanol (n-BuOH), and water, which yielded 15.98 ± 1.56, 1.74 ± 0.34, 3.31 ± 0.41, 4.12 ± 0.37, and 1.38 ± 0.26% extract recovery, respectively. Results show that the EtOAc fraction exhibits the highest inhibitory effect on α-glucosidase activity (IC50 = 49.05 ± 3.14 μg mL-1), which is an order of magnitude higher than the positive control (acarbose, IC50 = 645.73 ± 7.86 μg mL-1). It was mainly composed of phenolic compounds with a purity of 79.45% and characterized by liquid chromatography-mass spectrometry as osmudacetone, hispidin, davallialactone, 2,5-bis(4,7-dihydroxy-8-methyl-2-oxo-2H-chromen-3-yl)cyclohexa-2,5-diene-1,4-dione, hypholomin B, and inoscavin A. Furthermore, the EtOAc fraction increased the glucose consumption of insulin-resistant HepG2 cells at a concentration range of 25-100 μg mL-1. The EtOAc fraction also demonstrated antioxidant activities by scavenging 1,1-diphenyl-2-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt, and hydroxyl radicals. In conclusion, the EtOAc fraction of the cultivated P. baumii fruit body exerted effective antidiabetic effects, possibly due to the high content of selective phenolic compounds. Hence, the cultivated fruit body of P. baumii can be a sustainable resource for treating diabetes, and our work also shed some light on its future utilization.
Collapse
Affiliation(s)
- Kai Yang
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
| | - Su Zhang
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
| | - Youmin Ying
- College
of Pharmaceutical Science, Zhejiang University
of Technology, Hangzhou 310014, P. R. China
| | - Yougui Li
- Sericultural
Research Institute, Zhejiang Academy of
Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Ming Cai
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
| | - Rongfa Guan
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
| | - Junrong Hu
- Research
Institute of Food Science, Hangzhou Wahaha
Group Company Ltd., Hangzhou 310018; P. R. China
| | - Peilong Sun
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
9
|
Lu L, Li X, Yang Y, Xie W. Recent Progress in the Construction of Natural De-O-Sulfonated Sulfonium Sugars with Antidiabetic Activities. Chemistry 2019; 25:13458-13471. [PMID: 31314135 DOI: 10.1002/chem.201902562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/11/2019] [Indexed: 12/16/2022]
Abstract
A group of sulfonium salts equipped with a polyhydroxylated side-chain structure have been isolated and identified as potent α-glycosidase inhibitors. Consequently, they have become an attractive target in diverse research disciplines, including organic synthesis, drug discovery, and chemical biology. To this end, the development of practical and effective synthetic strategies, especially for more bioactive de-O-sulfonated sulfonium salts, is a significant research area in organic synthesis. An ideal synthetic methodology should provide easily accessible intermediates with high chemical stability for the key coupling reaction to diastereoselectively construct the sulfonium cation center. This minireview summarizes recently developed strategies applied in the construction of natural de-O-sulfonated sulfonium sugars: 1) acid-catalyzed de-O-sulfonation of sulfonium sulfate inner salts, 2) a coupling reaction between side-chain fragments containing leaving groups and a thiosugar, 3) a coupling reaction between side-chain fragments containing epoxide structures and a thiosugar, and 4) a two-step sequential SN 2 nucleophilic substitution between side-chain fragments containing thiol groups and a diiodide derivative.
Collapse
Affiliation(s)
- Lu Lu
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Xiaoya Li
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yao Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, P.R. China
| | - Weijia Xie
- State Key Laboratory of Natural Medicines (SKLNM), Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
10
|
Flavonoid Composition of Salacia senegalensis (Lam.) DC. Leaves, Evaluation of Antidermatophytic Effects, and Potential Amelioration of the Associated Inflammatory Response. Molecules 2019; 24:molecules24142530. [PMID: 31295972 PMCID: PMC6680804 DOI: 10.3390/molecules24142530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 01/28/2023] Open
Abstract
Predominantly spread in West Tropical Africa, the shrub Salacia senegalensis (Lam.) DC. is known because of its medicinal properties, the leaves being used in the treatment of skin diseases. Prompted by the ethnomedicinal use, a hydroethanolic extract obtained from the leaves of the plant was screened against a panel of microbial strains, the majority of which involved in superficial infections. The extract was found to be active against the dermatophytes Trichophyton rubrum and Epidermophyton floccosum. Notable results were also recorded regarding the attenuation of the inflammatory response, namely the inhibitory effects observed against soybean 5-lipoxygenase (IC50 = 71.14 μg mL-1), no interference being recorded in the cellular viability of RAW 264.7 macrophages and NO levels. Relevantly, the extract did not lead to detrimental effects against the keratinocyte cell line HaCaT, at concentrations displaying antidermatophytic and anti-inflammatory effects. Flavonoid profiling of S. senegalensis leaves was achieved for the first time, allowing the identification and quantitation of myricitrin, three 3-O-substituted quercetin derivatives, and three other flavonoid derivatives, which may contribute, at least partially, to the observed antidermatophytic and anti-inflammatory effects. In the current study, the plant S. senegalensis is assessed concerning its antidermatophytic and anti-inflammatory properties.
Collapse
|
11
|
Tian ZY, Hu YT, Teng HB, Zhang CP. Application of arylsulfonium salts as arylation reagents. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|