1
|
Al Alabdullah MAA, Goodarzi MT, Homayouni Tabrizi M. The silibinin-loaded Zein-β cyclodextrin nano-carriers (SZBC-NCs) as a novel selective cancer cell drug delivery system in HT-29 cell line. Sci Rep 2024; 14:14769. [PMID: 38926533 PMCID: PMC11208413 DOI: 10.1038/s41598-024-65881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024] Open
Abstract
Entrapping phytochemical bioactive compounds into nano-structured biocompatible polymers has been successfully utilized for improving cancer treatment efficiency. Silibinin is a potent compound that shows promising anticancer properties. In the present study, the Zein-β-cyclodextrin complex was used to encapsulate silibinin and evaluate the induced cell death type and cytotoxic impacts on human cancer cells. The silibinin-loaded Zein-β cyclodextrin nano-carriers (SZBC-NCs) were synthesized utilizing a gradual ultrasound-mediated homogenization technique and characterized by Zeta potential, DLS, FESEM, and FTIR analysis. The SZBC-NCs' antioxidant activity was studied by conducting ABTS and DPPH radical scavenging assays. Finally, the SZBC-NCs selective toxicity and cellular death induction mechanism were studied on the HT-29 and AGS cancer cells by measuring the cell survival and apoptotic gene (Caspase 3, 9), respectively, which were verified by conducting the DAPI staining analysis. The negatively charged (- 27.47 mV) nanoparticles (286.55 nm) showed significant ABTS and DPPH radical scavenging activity. Moreover, the remarkable decrease in the IC50 concentrations of the SZBC-NCs among the HT-29 and AGS cancer cell lines exhibited their selective cytotoxic potential. Also, the overexpressed apoptotic (Caspases 3 and 9) and down-regulated necrotic (NFKB) gene expressions following the SZBC-NCs treatment doses indicated the apoptotic activity of SZBC-NCs, which were verified by the increased apoptotic morphology of the DAPI-stained HT-29 cancer cells. The antioxidant and colon cancer cell-related apoptotic activity of the SZBC-NCs make it an appropriate anti-colon cancer nano delivery system. Therefore, they can potentially be used as a safe efficient colon cancer treatment strategy. However, further in vivo experiments including animal cancer models have to be studied.
Collapse
|
2
|
Sadowska JM, Power RN, Genoud KJ, Matheson A, González-Vázquez A, Costard L, Eichholz K, Pitacco P, Hallegouet T, Chen G, Curtin CM, Murphy CM, Cavanagh B, Zhang H, Kelly DJ, Boccaccini AR, O'Brien FJ. A Multifunctional Scaffold for Bone Infection Treatment by Delivery of microRNA Therapeutics Combined With Antimicrobial Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307639. [PMID: 38009631 DOI: 10.1002/adma.202307639] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Rachael N Power
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Katelyn J Genoud
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Austyn Matheson
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Lara Costard
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Kian Eichholz
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Pierluca Pitacco
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Tanguy Hallegouet
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- University of Strasbourg, Strasbourg, 67412, France
| | - Gang Chen
- Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Huijun Zhang
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Daniel J Kelly
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| |
Collapse
|
5
|
Cai JY, Wang YY, Ma K, Hou YN, Yao GD, Hayashi T, Itoh K, Tashiro SI, Onodera S, Ikejima T. Salicylate induces reactive oxygen species and reduces ultraviolet C susceptibility in Staphylococcus aureus. FEMS Microbiol Lett 2018; 365:4931717. [PMID: 29546276 DOI: 10.1093/femsle/fny056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This study demonstrates that growth of Staphylococcus aureus in the presence of salicylate reduces ultraviolet C (UVC)-induced cell death and increases the generation of reactive oxygen species (ROS). In addition, compounds that scavenge ROS (N-acetylcysteine, glutathione, catalase and superoxide dismutase) reverse the increased UVC survival induced by growth in the presence of salicylate, while ROS donors (tert-butylhydroperoxide, H2O2 and NaClO) enhance survival of salicylate challenged cultures. Collectively, these findings suggest that ROS production induced by growth in the presence of salicylate protects S. aureus from UVC-induced cell death.
Collapse
Affiliation(s)
- Jia-Yi Cai
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan-Yuan Wang
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.,Department of Drug Discover and Development, Shanghai FrontHealth Pharmaceutical Technology Company, Shanghai 201203, China
| | - Kai Ma
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong-Na Hou
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guo-Dong Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Toshihiko Hayashi
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Kikuji Itoh
- Biochemical Center, Japan SLC, Inc., Shizuoka 431-1103, Japan
| | - Shin-Ichi Tashiro
- Department of Medical Education & Primary Care, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoshi Onodera
- Department of Clinical and Pharmaceutical Sciences, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Takashi Ikejima
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|