1
|
Wang X, Gan J, Han M, Wu Y, Liu L, Zhao Y, Zhao R. Comparison of structure and the synergistic anti-hepatocellular carcinoma effect of three polysaccharides from vinegar-baked Radix Bupleuri. Int J Biol Macromol 2024; 282:136755. [PMID: 39442850 DOI: 10.1016/j.ijbiomac.2024.136755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Three polysaccharides from Vinegar-baked Radix Bupleuri (VR) and their combined effects were studied. VRP3-3 was a branched polysaccharide with a molecular weight (Mw) of 16.05 kDa characterized by 1,5 linked-α-Araf, 1,2,4 linked-α-Rhap and 1,4 linked-α-GalpA as main chain with a small amount of esterification and acetylation groups. And side chains were connected to the O-3 of Araf, O-4 of Rhap. VRP2-3 had a Mw of 95.35 kDa, its backbone comprised of 1,2 linked-α-Galp, 1,4 linked-β-GalpA(O-Ac), 1,2,4 linked-α-Rhap and 1,5 linked α-Araf. The residues of 1,4 linked-β-Galp,1,3 linked-β-Galp and 1,6 linked-β-D-Galp were connected at O-4 of α-L-Rhap and O-3 of α-L-Araf as its side chain. VRP2-4 was a pectin polysaccharide with a Mw of 57.90 kDa. Its main chain was constituted of 1,4 linked-α-Galp, 1,4 linked-α-GalpA(OMe), 1,4 linked-α-GalpA and 1,2,4 linked-α-Rhap, with some acetylation. As the major side chain, 1,5 linked-α-Araf was connected to O-4 of α-Rhap, a small amount of t-α-Galp and t-α-Manp were also included. VRP3-3 showed superior synergistic effect in combination with paclitaxel, methotrexate and cisplatin than the other two polysaccharides. The VR polysaccharide with a ~16 kDa molecular weight, a larger polymerization degree of arabinan in the backbone and the triple helix structure are the key structures for activity. Together, our findings clarify the pharmacodynamic basis of VR and provide promising adjuvants for Hepatocellular Carcinoma (HCC) chemotherapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Jianfeng Gan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Minghui Han
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Yayun Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Lijuan Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; The Second Clinical Medical School of Guangzhou University of Chinese Medicine, China
| | - Ya Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Ruizhi Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, China.
| |
Collapse
|
2
|
Zhao Y, Yang W, Zhang X, Lv C, Lu J. Icariin, the main prenylflavonoid of Epimedii Folium, ameliorated chronic kidney disease by modulating energy metabolism via AMPK activation. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116543. [PMID: 37088241 DOI: 10.1016/j.jep.2023.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedii Folium is a famous traditional Chinese medicine (TCM) widely used in classic formulas, Chinese patent drugs and health care products for treating kidney diseases. Therefore, we speculated that icariin, its main component, might also have a good therapeutic effect on chronic kidney disease (CKD). AIM OF STUDY To investigate the efficacy and potential mechanism of icariin on CKD. MATERIALS AND METHODS A CKD model was established by intragastric administration of adenine (200 mg/kg/d) to adult male SD rats for 28 consecutive days. TGF-β1-induced fibrotic HK-2 cells were applied to establish the renal fibrosis model in vitro. Biochemical determination, pathological staining, flow cytometry and ELISA were performed to preliminarily evaluate the renoprotection of icariin. The intervention effect of icariin on renal fibrosis progression was assessed by cell stiffness determination and multiple immunological methods. The potential mechanism of icariin on CKD was revealed by means of 1H NMR metabolomics, qRT-PCR and Western blotting analysis. RESULTS Icariin at the dosage of 100 mg/kg/d and 200 mg/kg/d markedly ameliorated rat renal function in a dose-dependent manner. Based on renal pathological features, the mechanism of icariin intervention in CKD was initially revealed by metabolomics, which was closely related to energy metabolism pathways. Furthermore, the detection results of AMPK and related factors in its mediated signaling pathways indicated that icariin exerted a therapeutic effect on CKD by attenuating inflammation and oxidative stress responses and retarding renal fibrosis progression through regulating AMPK/SIRT1/NF-κB and AMPK/ACC signaling pathways. CONCLUSION It was the first time to demonstrate that icariin could treat adenine-induced CKD by modulating energy metabolism via AMPK activation in a dose-dependent manner.
Collapse
Affiliation(s)
- Yudan Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Wanyue Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Xin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Chongning Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Jincai Lu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
3
|
Peng S, Zhou Y, Lu M, Wang Q. Review of Herbal Medicines for the Treatment of Depression. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221139082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Depression, a mental illness that is receiving increasing attention, is caused by multiple factors and genes and adversely affects social life and health. Several hypotheses have been proposed to clarify the pathogenesis of depression, and various synthetic antidepressants have been introduced to treat patients with depression. However, these drugs are effective only in a proportion of patients and fail to achieve complete remission. Recently, herbal medicines have received much attention as alternative treatments for depression because of their fewer side effects and lower costs. In this review, we have mainly focused on the herbal medicines that have been proven in clinical studies (especially randomized controlled trials and preclinical studies) to have antidepressant effects; we also describe the potential mechanisms of the antidepressant effects of those herbal medicines; the cellular and animal model of depression; and the development of novel drug delivery systems for herbal antidepressants. Finally, we objectively elaborate on the challenges of using herbal medicines as antidepressants and describe the benefits, adverse effects, and toxicity of these medicines.
Collapse
Affiliation(s)
- Siqi Peng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yalan Zhou
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Lu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingzhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Hu D, Gao J, Yang X, Liang Y. Chinese Pharmacopoeia Revisited: A Review of Anti-Depression Herbal Sources. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211059312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Depression, which can be accompanied by many fatal diseases and a low life quality, has become the leading cause of ill health and disability worldwide. However, Chinese Pharmacopoeia, the most authoritative and evidence-based encyclopedia of Traditional Chinese Medicine (TCM), could contain leads and insights into the development of new antidepressant drugs. In this work, nine herbal medicines with ‘dispel melancholy functions’ specifically documented in Chinese Pharmacopoeia have been comprehensively reviewed with respect to clinical trials, and phytochemical and pharmacological aspects. The nine drugs are Rosae Chinensis Flos, Croci Stigma, Albiziae Cortex and Flos, Roase Rugosae Flos, Curcumae Radix, Hyperici Perforati Herba, Cyperi Rhizoma and Bupleuri Radix. The mechanisms of action of their functional antidepressant compounds, including gallic acid, hypericin, kaempferol, crocetin, crocin, quercetin, luteolin, isorhamnetin, curcumin, hyperforin, adhyperforin, catechin, rutin, puerarin, and saikosaponins A and D, have been collected and discussed. These traditional Chinese herbs and their active compounds provide a promising resource to develop effective new antidepressant drugs in future. Moreover, mechanistic investigations, safety verification and large-scale clinical trials are still expected to finally transform such TCM-based antidepressant resources to new drugs for patients suffering from depression.
Collapse
Affiliation(s)
- Dongyi Hu
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Henan, China
| | - Xiao Yang
- School of Clinical Medicine, Henan University of Science and Technology, Henan, China
| | - Ying Liang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Institute of Mental Health, Peking University, Beijing, China
| |
Collapse
|
5
|
Gao L, Zhang Y, Xu H, Zhao F, Wang W. Therapeutic Effects of Modified Gengnianchun Formula on Stress-Induced Diminished Ovarian Reserve Based on Experimental Approaches and Network Pharmacology. Drug Des Devel Ther 2021; 14:4975-4992. [PMID: 33239863 PMCID: PMC7680799 DOI: 10.2147/dddt.s279553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/23/2020] [Indexed: 01/15/2023] Open
Abstract
Aim To verify the effects of modified Gengnianchun formula (MGNC), a traditional Chinese medicine, on a stressed diminished ovarian reserve (DOR) animal model and predict the underlying mechanisms through network pharmacology strategies. Methods Sexually mature female C57BL/6 mice were allocated to five groups, abbreviated as the control (C) group, stress manipulated model (M) group, stress with normal saline gavage (N) group, stress with low-dose MGNC gavage (L) group, and stress with high-dose MGNC gavage (H) group. Body weight and the estrous cycle were monitored during the stress and gavage process. Serum stress hormones and reproductive hormones were evaluated by ELISA. Ovarian follicle counts were calculated, and ovarian follicle-stimulating hormone receptor (FSHR) and anti-Müllerian hormone (AMH) expression were assessed by Western blotting and immunohistochemistry. Network pharmacology strategies included active compound screening, drug and disease target analysis, gene ontology analysis, pathway analysis, and visualization of results. Results MGNC treatment significantly decreased serum corticosterone (CORT) and follicle-stimulating hormone (FSH) levels and increased testosterone (T) levels in the H group compared with the M and N groups. Primordial and preantral follicle counts and ovarian AMH and FSHR expression were significantly increased in the H group compared to those in the M and N groups. Through pharmacokinetic screening, we found 244 active compounds in MGNC. A total of 186 candidate intersection target genes of disease and MGNC were further screened to construct the interaction network. Gene ontology and KEGG pathway enrichment analysis ultimately unveiled a series of key targets that mainly mediated the effects of MGNC on DOR induced by chronic stress. The PI3K-Akt pathway may serve as the critical pathway underlying this therapeutic mechanism. Conclusion MGNC is a promising formula to treat DOR induced by chronic stress, and the PI3K-Akt pathway may play an essential role in this effect.
Collapse
Affiliation(s)
- Lingyun Gao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Yang Zhang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Huangfang Xu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| | - Fangui Zhao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China.,Department of Ultrasound Diagnosis, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China
| | - Wenjun Wang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, People's Republic of China
| |
Collapse
|
6
|
Pu J, Liu Y, Zhang H, Tian L, Gui S, Yu Y, Chen X, Chen Y, Yang L, Ran Y, Zhong X, Xu S, Song X, Liu L, Zheng P, Wang H, Xie P. An integrated meta-analysis of peripheral blood metabolites and biological functions in major depressive disorder. Mol Psychiatry 2021; 26:4265-4276. [PMID: 31959849 PMCID: PMC8550972 DOI: 10.1038/s41380-020-0645-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/24/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Major depressive disorder (MDD) is a serious mental illness, characterized by high morbidity, which has increased in recent decades. However, the molecular mechanisms underlying MDD remain unclear. Previous studies have identified altered metabolic profiles in peripheral tissues associated with MDD. Using curated metabolic characterization data from a large sample of MDD patients, we meta-analyzed the results of metabolites in peripheral blood. Pathway and network analyses were then performed to elucidate the biological themes within these altered metabolites. We identified 23 differentially expressed metabolites between MDD patients and controls from 46 studies. MDD patients were characterized by higher levels of asymmetric dimethylarginine, tyramine, 2-hydroxybutyric acid, phosphatidylcholine (32:1), and taurochenodesoxycholic acid and lower levels of L-acetylcarnitine, creatinine, L-asparagine, L-glutamine, linoleic acid, pyruvic acid, palmitoleic acid, L-serine, oleic acid, myo-inositol, dodecanoic acid, L-methionine, hypoxanthine, palmitic acid, L-tryptophan, kynurenic acid, taurine, and 25-hydroxyvitamin D compared with controls. L-tryptophan and kynurenic acid were consistently downregulated in MDD patients, regardless of antidepressant exposure. Depression rating scores were negatively associated with decreased levels of L-tryptophan. Pathway and network analyses revealed altered amino acid metabolism and lipid metabolism, especially for the tryptophan-kynurenine pathway and fatty acid metabolism, in the peripheral system of MDD patients. Taken together, our integrated results revealed that metabolic changes in the peripheral blood were associated with MDD, particularly decreased L-tryptophan and kynurenic acid levels, and alterations in the tryptophan-kynurenine and fatty acid metabolism pathways. Our findings may facilitate biomarker development and the elucidation of the molecular mechanisms that underly MDD.
Collapse
Affiliation(s)
- Juncai Pu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Yiyun Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Hanping Zhang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Lu Tian
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Siwen Gui
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Yue Yu
- grid.203458.80000 0000 8653 0555College of Medical Informatics, Chongqing Medical University, Chongqing, 400016 China ,grid.66875.3a0000 0004 0459 167XDepartment of Health Sciences Research, Mayo Clinic, Rochester, MN 55901 USA
| | - Xiang Chen
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Yue Chen
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Lining Yang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Yanqin Ran
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Xiaogang Zhong
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Shaohua Xu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Xuemian Song
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Lanxiang Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Peng Zheng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.452206.70000 0004 1758 417XDepartment of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Haiyang Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016 China ,grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Neurobiology, Chongqing, 400016 China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Yuzhong District, Chongqing, 400016, China. .,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China.
| |
Collapse
|
7
|
Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int J Mol Sci 2020; 21:ijms21239234. [PMID: 33287416 PMCID: PMC7730936 DOI: 10.3390/ijms21239234] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a global threat to mental health that affects around 264 million people worldwide. Despite the considerable evolution in our understanding of the pathophysiology of depression, no reliable biomarkers that have contributed to objective diagnoses and clinical therapy currently exist. The discovery of the microbiota-gut-brain axis induced scientists to study the role of gut microbiota (GM) in the pathogenesis of depression. Over the last decade, many of studies were conducted in this field. The productions of metabolites and compounds with neuroactive and immunomodulatory properties among mechanisms such as the mediating effects of the GM on the brain, have been identified. This comprehensive review was focused on low molecular weight compounds implicated in depression as potential products of the GM. The other possible mechanisms of GM involvement in depression were presented, as well as changes in the composition of the microbiota of patients with depression. In conclusion, the therapeutic potential of functional foods and psychobiotics in relieving depression were considered. The described biomarkers associated with GM could potentially enhance the diagnostic criteria for depressive disorders in clinical practice and represent a potential future diagnostic tool based on metagenomic technologies for assessing the development of depressive disorders.
Collapse
|
8
|
Jiang H, Yang L, Hou A, Zhang J, Wang S, Man W, Zheng S, Yu H, Wang X, Yang B, Wang Q, Kuang H. Botany, traditional uses, phytochemistry, analytical methods, processing, pharmacology and pharmacokinetics of Bupleuri Radix: A systematic review. Biomed Pharmacother 2020; 131:110679. [PMID: 32858498 DOI: 10.1016/j.biopha.2020.110679] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bupleuri Radix (BR) is the dry root of Bupleurum chinense DC. and Bupleurum scorzonerifolium Willd. It has the functions of evacuation and antipyretic, soothing liver and relieving depression and often used to treat cold fever, chest and rib swelling pain, irregular menstruation, uterine prolapse, rectocele and other diseases. In this paper, the botany, traditional application, phytochemistry, pharmacology and toxicity of BR were reviewed. On the basis of limited literature, the analytical method, quality control, processing method, processing effect and pharmacokinetics of BR were summarized and analyzed for the first time. This review makes an in-depth discussion on the shortcomings of the current research on BR, and puts forward its own views and solutions. This has never been summarized in the previous review of BR. It is of great practical significance for future scholars to find a breakthrough point in the study of BR. So far, its mechanism has not been satisfactorily explained. Moreover, the comprehensive quality evaluation and multi-target network pharmacology of BR need to be further studied. In the future, more in vitro and in vivo experiments are needed to give full play to the therapeutic potential of BR.
Collapse
Affiliation(s)
- Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Song Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Wenjing Man
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Senwang Zheng
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Huan Yu
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Xuejiao Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 528458, China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, 150040, China.
| |
Collapse
|
9
|
Yuan ZY, Li J, Zhou XJ, Wu MH, Li L, Pei G, Chen NH, Liu KL, Xie MZ, Huang HY. HS-GC-IMS-Based metabonomics study of Baihe Jizihuang Tang in a rat model of chronic unpredictable mild stress. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1148:122143. [PMID: 32417717 DOI: 10.1016/j.jchromb.2020.122143] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 04/02/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to investigate the differences in volatile organic compounds (VOCs) obtained from the feces of a Baihe Jizihuang Tang (BHT)-treated rat depression model. Rats were subjected to chronic unpredictable mild stress (CUMS), and the differences in VOCs were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), NIST software, principal component analysis, and orthogonal partial least squares discriminant analysis. Eleven biomarkers were identified on the basis of VOC migration time, and their relative peak intensities were analyzed. A metabonomic model was established using multivariate statistical analysis. The study demonstrated the metabonomics of CUMS rats and the intervention effect of BHT and also highlighted the potential therapeutic effects of the traditional Chinese medicine (TCM) Jingfang for the clinical treatment of complex diseases, which was in line with the holistic and systemic approaches of TCM. This study augments the use of metabonomics based on HS-GC-IMS in research studies. Using this method, there is no need to pre-process samples by extraction or derivatization, and the VOC component of the sample can be detected directly and rapidly. In conclusion, this study establishes a simple, convenient, and fast technique, which can help identify clinical biomarkers for rapid medical diagnosis.
Collapse
Affiliation(s)
- Zhi-Ying Yuan
- Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Engineering Technology Center of Functional Food Homology of Medicine, Changsha 410208, China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Jing Li
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiao-Jiang Zhou
- Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Min-Hui Wu
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Liang Li
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, Changsha 410208, China
| | - Nai-Hong Chen
- Hunan University of Chinese Medicine, Changsha 410208, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Kai-Li Liu
- Hunan University of Chinese Medicine, Changsha 410208, China
| | - Men-Zhou Xie
- Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Engineering Technology Center of Functional Food Homology of Medicine, Changsha 410208, China.
| | - Hui-Yong Huang
- Hunan University of Chinese Medicine, Changsha 410208, China; Hunan Engineering Technology Center of Functional Food Homology of Medicine, Changsha 410208, China.
| |
Collapse
|