1
|
Regina S, Vitola G, Mazzei R, Giorno L. Tuning the Properties of Polyvinylidene Fluoride/Alkali Lignin Membranes to Develop a Biocatalytic Membrane Reactor for an Organophosphorus Pesticide Degradation. MEMBRANES 2024; 14:186. [PMID: 39330527 PMCID: PMC11434455 DOI: 10.3390/membranes14090186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
It has been observed that the immobilization of a phosphotriesterase enzyme (PTE) onto polyvinylidene fluoride (PVDF) membranes significantly decreased the enzyme activity, and this negative effect was attributed to the hydrophobic character of the membrane. The indirect indication of this reason was that the same enzyme immobilized on other membrane materials bearing hydrophilic character showed better performance. In this work, we provide direct evidence of the mechanism by immobilizing a PTE on a PVDF membrane hydrophilized by blending it with alkali lignin (AL). The PTE was immobilized on PVDF membrane by a covalent bond with the same procedure used in earlier studies to attribute changes in enzyme activity solely to the wettability properties (and not to the material chemistry). The activity of the PTE immobilized on the PVDF membrane hydrophilized with AL was 50% higher than that of the enzyme immobilized on the PVDF hydrophobic membrane. Further improvements of the membrane structure tailored for the development of a biocatalytic membrane reactor (BMR) were also promoted. In particular, the performance of the BMR was studied as a function of the thickness of the membrane, which allowed us to modulate the residence time into the enzyme-loaded membrane pores while maintaining the flow rate through the pores at a constant.
Collapse
Affiliation(s)
| | | | | | - Lidietta Giorno
- National Research Council of Italy, Institute on Membrane Technology, CNR-ITM, 87036 Rende, Italy; (S.R.); (G.V.); (R.M.)
| |
Collapse
|
2
|
Luo Z, Qiao L, Chen H, Mao Z, Wu S, Ma B, Xie T, Wang A, Pei X, Sheldon RA. Precision Engineering of the Co-immobilization of Enzymes for Cascade Biocatalysis. Angew Chem Int Ed Engl 2024; 63:e202403539. [PMID: 38556813 DOI: 10.1002/anie.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.
Collapse
Affiliation(s)
- Zhiyuan Luo
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Li Qiao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Haomin Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Zhili Mao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Shujiao Wu
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Bianqin Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Anming Wang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, China, Hangzhou, Zhejiang, 311121, China
| | - Roger A Sheldon
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand PO Wits., 2050, Johannesburg, South Africa
- Department of Biotechnology, Section BOC, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
3
|
Zhang L, Wang W, Yang Y, Zhu W, Li P, Wang S, Liu X. Site-specific, covalent immobilization of PNGase F on magnetic particles mediated by microbial transglutaminase. Anal Chim Acta 2023; 1250:340972. [PMID: 36898812 DOI: 10.1016/j.aca.2023.340972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
In the workflow of global N-glycosylation analysis, endoglycosidase-mediated removal of glycans from glycoproteins is an essential and rate-limiting step. Peptide-N-glycosidase F (PNGase F) is the most appropriate and efficient endoglycosidase for the removal of N-glycans from glycoproteins prior to analysis. Due to the high demand for PNGase F in both basic and industrial research, convenient and efficient methods are urgently needed to generate PNGase F, preferably in the immobilized form to solid phases. However, there is no integrated approach to implement both efficient expression, and site-specific immobilization of PNGase F. Herein, efficient production of PNGase F with a glutamine tag in Escherichia coli and site-specific covalent immobilization of PNGase F with this special tag via microbial transglutaminase (MTG) is described. PNGase F was fused with a glutamine tag to facilitate the co-expression of proteins in the supernatant. The glutamine tag was covalently and site-specifically transformed to primary amine-containing magnetic particles, mediated by MTG, to immobilize PNGase F. Immobilized PNGase F could deglycosylate substrates with identical enzymatic performance to that of the soluble counterpart, and exhibit good reusability and thermal stability. Moreover, the immobilized PNGase F could also be applied to clinical samples, including serum and saliva.
Collapse
Affiliation(s)
- Liang Zhang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China
| | - Wenhui Wang
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yueqin Yang
- Exercise Immunology Center, Wuhan Sports University, Wuhan, 430079, China
| | - Wenjie Zhu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Pengjie Li
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan, 430079, China.
| | - Xin Liu
- Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
4
|
Song P, Zhang X, Feng W, Xu W, Wu C, Xie S, Yu S, Fu R. Biological synthesis of ursodeoxycholic acid. Front Microbiol 2023; 14:1140662. [PMID: 36910199 PMCID: PMC9998936 DOI: 10.3389/fmicb.2023.1140662] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Ursodeoxycholic acid (UDCA) is a fundamental treatment drug for numerous hepatobiliary diseases that also has adjuvant therapeutic effects on certain cancers and neurological diseases. Chemical UDCA synthesis is environmentally unfriendly with low yields. Biological UDCA synthesis by free-enzyme catalysis or whole-cell synthesis using inexpensive and readily available chenodeoxycholic acid (CDCA), cholic acid (CA), or lithocholic acid (LCA) as substrates is being developed. The free enzyme-catalyzed one-pot, one-step/two-step method uses hydroxysteroid dehydrogenase (HSDH); whole-cell synthesis, mainly uses engineered bacteria (mainly Escherichia coli) expressing the relevant HSDHs. To further develop these methods, HSDHs with specific coenzyme dependence, high enzyme activity, good stability, and high substrate loading concentration, P450 monooxygenase with C-7 hydroxylation activity and engineered strain harboring HSDHs must be exploited.
Collapse
Affiliation(s)
- Peng Song
- College of Life Sciences, Liaocheng University, Liaocheng, China
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Xue Zhang
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Feng
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Wei Xu
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Chaoyun Wu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Shaoqing Xie
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Sisi Yu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| | - Rongzhao Fu
- Jiangxi Zymerck Biotechnology Co., Ltd., Nanchang, China
| |
Collapse
|
5
|
Giunta CI, Nazemi SA, Olesińska M, Shahgaldian P. Plasmonic photothermal activation of an organosilica shielded cold-adapted lipase co-immobilised with gold nanoparticles on silica particles. NANOSCALE ADVANCES 2022; 5:81-87. [PMID: 36605806 PMCID: PMC9765444 DOI: 10.1039/d2na00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Gold nanoparticles (AuNPs), owing to their intrinsic plasmonic properties, are widely used in applications ranging from nanotechnology and nanomedicine to catalysis and bioimaging. Capitalising on the ability of AuNPs to generate nanoscale heat upon optical excitation, we designed a nanobiocatalyst with enhanced cryophilic properties. It consists of gold nanoparticles and enzyme molecules, co-immobilised onto a silica scaffold, and shielded within a nanometre-thin organosilica layer. To produce such a hybrid system, we developed and optimized a synthetic method allowing efficient AuNP covalent immobilisation on the surface of silica particles (SPs). Our procedure allows to reach a dense and homogeneous AuNP surface coverage. After enzyme co-immobilisation, a nanometre-thin organosilica layer was grown on the surface of the SPs. This layer was designed to fulfil the dual function of protecting the enzyme from the surrounding environment and allowing the confinement, at the nanometre scale, of the heat diffusing from the AuNPs after surface plasmon resonance photothermal activation. To establish this proof of concept, we used an industrially relevant lipase enzyme, namely Lipase B from Candida Antarctica (CalB). Herein, we demonstrate the possibility to photothermally activate the so-engineered enzymes at temperatures as low as -10 °C.
Collapse
Affiliation(s)
- Carolina I Giunta
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Seyed Amirabbas Nazemi
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Magdalena Olesińska
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
| | - Patrick Shahgaldian
- Institute of Chemistry and Bioanalytics, School of Life Science, University of Applied Sciences and Arts Northwestern Switzerland Hofackerstrasse 30 Muttenz CH-4132 Switzerland
- Swiss Nanoscience Institute Klingelbergstrasse 82 Basel CH-4056 Switzerland
| |
Collapse
|
6
|
Hu R, Niu Z, Lu Y, Zhu H, Mao Z, Yan K, Hu X, Chen H. Immobilization for Lipase: Enhanced Activity and Stability by Flexible Combination and Solid Support. Appl Biochem Biotechnol 2022; 194:5963-5976. [DOI: 10.1007/s12010-022-04026-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
|
7
|
Baron AM, Rodrigues RDS, Sante LGG, Kister JMDM, do Nascimento VMG, Bail A. Metal-organic framework based on iron and terephthalic acid as a multiporous support for lipase Burkholderia lata LBBIO-BL02 and its potential for biocatalysis. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2068371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alessandra Machado Baron
- Universidade Tecnológica Federal do Paraná (UTFPR), Coordenação de Licenciatura em Química (COLIQ), Apucarana, Brazil
| | - Ricardo de Sousa Rodrigues
- Universidade Tecnológica Federal do Paraná (UTFPR), Coordenação de Licenciatura em Química (COLIQ), Apucarana, Brazil
| | - Luis Guilherme Giannina Sante
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| | - Jocácia Muriele de Miranda Kister
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| | - Valéria Marta Gomes do Nascimento
- Universidade Estadual de São Paulo (Unesp), Departamento de Ciências Biológicas, Laboratório de Bioquímica e Bioprocessos, Assis, Brazil
| | - Alesandro Bail
- Grupo de Química de Materiais e Tecnologias Sustentáveis (GQMATS), Universidade Tecnológica Federal do Paraná (UTFPR), Londrina, Brazil
| |
Collapse
|
8
|
Wang Z, Fan C, Zheng X, Jin Z, Bei K, Zhao M, Kong H. Roles of Surfactants in Oriented Immobilization of Cellulase on Nanocarriers and Multiphase Hydrolysis System. Front Chem 2022; 10:884398. [PMID: 35402378 PMCID: PMC8983819 DOI: 10.3389/fchem.2022.884398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Surfactants, especially non-ionic surfactants, play an important role in the preparation of nanocarriers and can also promote the enzymatic hydrolysis of lignocellulose. A broad overview of the current status of surfactants on the immobilization of cellulase is provided in this review. In addition, the restricting factors in cellulase immobilization in the complex multiphase hydrolysis system are discussed, including the carrier structure characteristics, solid-solid contact obstacles, external diffusion resistance, limited recycling frequency, and nonproductive combination of enzyme active centers. Furthermore, promising prospects of cellulase-oriented immobilization are proposed, including the hydrophilic-hydrophobic interaction of surfactants and cellulase in the oil-water reaction system, the reversed micelle system of surfactants, and the possible oriented immobilization mechanism.
Collapse
Affiliation(s)
- Zhiquan Wang
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Chunzhen Fan
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Xiangyong Zheng
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Zhan Jin
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Ke Bei
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Min Zhao
- School of Life and Environmental Science, Wenzhou University, Wenzhou, China
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou, China
- Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Wenzhou, China
| | - Hainan Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Sun Q, Heater BS, Li TL, Ye W, Guo Z, Chan MK. Cry3Aa*SpyCatcher Fusion Crystals Produced in Bacteria as Scaffolds for Multienzyme Coimmobilization. Bioconjug Chem 2022; 33:386-396. [PMID: 35100510 DOI: 10.1021/acs.bioconjchem.2c00003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The production of Cry3Aa enzyme fusion crystals in Bacillus thuringiensis provides a direct method to immobilize individual enzymes and thereby improve their stability and recyclability. Nevertheless, many reactions require multiple enzymes to produce a desired product; thus a general strategy was developed to extend our Cry3Aa technology to multienzyme coimmobilization. Here, we report the direct production of particles comprising a modified Cry3Aa (Cry3Aa*) fused to SpyCatcher002 (Cry3Aa*SpyCat2) for coimmobilization of model enzymes MenF, MenD, and MenH associated with the biosynthesis of menaquinone. The resultant coimmobilized particles showed improved reaction rates compared to free enzymes presumably due to the higher local enzyme substrate concentrations and enhanced enzyme coupling made possible by colocalization. Furthermore, coimmobilization of these enzymes on Cry3Aa*SpyCat2 led to increased thermal stability and recyclability of the overall multienzyme system. These characteristics together with its overall simplicity of production highlight the benefits of Cry3Aa*SpyCat2 crystals as a platform for enzyme coimmobilization.
Collapse
Affiliation(s)
- Qian Sun
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Bradley S Heater
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tin Lok Li
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Weijian Ye
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhihong Guo
- Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Shenzhen Research Institute and Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Michael K Chan
- School of Life Sciences and Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
10
|
Gao X, Pan H, Qiao C, Liu Y, Zhou C, Zhai Q, Hu M, Li S, Jiang Y. Facile preparation of MOF-derived MHCo3O4&Co/C with a hierarchical porous structure for entrapping enzymes: having both high stability and catalytic activity. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01393a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MHCo3O4&Co/C with hierarchical porous structure are functionally modified with “polydopamine (PDA)” bionic membrane for entrapping horseradate peroxidase (HRP).
Collapse
Affiliation(s)
- Xia Gao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Huibin Pan
- Public Basic Teaching Division, Shangluo Vocational & Technical College, Shangluo 726000, P.R. China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
| | - Yongliang Liu
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
| | - Chunsheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering & Modern Materials, Shangluo University, Shangluo, 726000, P.R. China
| | - Quanguo Zhai
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Mancheng Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Shuni Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| | - Yucheng Jiang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China
| |
Collapse
|
11
|
Deshwal A, Maiti S. Macromolecular Crowding Effect on the Activity of Liposome-Bound Alkaline Phosphatase: A Paradoxical Inhibitory Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7273-7284. [PMID: 34086469 DOI: 10.1021/acs.langmuir.1c01177] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The cytoplasm of a cell is extremely crowded, with 20-30% being large biomolecules. This crowding enforces a significant amount of the physical and chemical barrier around biomolecules, so understanding any biomolecular event within the cellular system is challenging. Unsurprisingly, enzymes show a diverse kind of catalytic behavior inside a crowded environment and thus have remained an area of active interest in the last few decades. The situation can become even more complex and exciting in the case of understanding the behavior of a membrane-bound enzyme (almost 25-30% of enzymes are membrane-bound) in such a crowded environment that until now has remained unexplored. Herein, we have particularly investigated how a membrane-bound enzyme (using liposome-bound alkaline phosphatase) can behave in a crowded environment comprising polymer molecule-like poly(ethylene glycol) (PEG) of different weights (PEG400, PEG4000, and PEG9000) and Ficoll 400. We have compared the activity using a polymer microbead conjugated enzyme and have found that liposome-bound alkaline phosphatase had much higher activity in crowded environments, showing the importance and superiority of soft-deformable particles (i.e., vesicles) over hard spheres in macro-molecularly crowded media. Interstingly, we have found a paradoxical behavior of inhibitors in terms of both their extent and pathway of inhibitory action. For instance, phosphates, known as competitive inhibitors in buffer, behave as uncompetitive inhibitors in liposome-bound enzymes in crowded media with an ∼5-fold less inhibitory effect, whereas phenyl alanine (an uncompetitive inhibitor in buffer) did not show any inhibitory potential when the enzyme was membrane-bound and in crowded media containing PEG9000 (30 wt %). Overall, this demonstration elucidates aspects of membrane-bound enzymes in crowded media in terms of both catalytic behavior and inhibitory actions and can lead to further studies of the understanding of enzymatic behavior in such complex crowded environments having a dampening effect in regular diffusive transport.
Collapse
Affiliation(s)
- Akshi Deshwal
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Indian Institute of Science Education and Research (IISER) Mohali, Department of Chemical Sciences, Knowledge City, Manauli 140306, India
| |
Collapse
|
12
|
Li Y, Luan P, Zhou L, Xue S, Liu Y, Liu Y, Jiang Y, Gao J. Purification and immobilization of His-tagged organophosphohydrolase on yolk−shell Co/C@SiO2@Ni/C nanoparticles for cascade degradation and detection of organophosphates. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Ji S, Pan Y, Zhu L, Tan J, Tang S, Yang Q, Zhang Z, Lou D, Wang B. A novel 7α-hydroxysteroid dehydrogenase: Magnesium ion significantly enhances its activity and thermostability. Int J Biol Macromol 2021; 177:111-118. [PMID: 33592267 DOI: 10.1016/j.ijbiomac.2021.02.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) plays an important role in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this paper, a novel NADP(H)-dependent 7α-HSDH (named J-1-1) was discovered, heterologously expressed in Escherichia coli and biochemically characterized. J-1-1 exhibited high enzymatic activities. The specific activities of J-1-1 toward TCDCA, glycochenodeoxycholic acid (GCDCA) and ethyl benzoylacetate (EBA) were 188.3 ± 0.2, 217.6 ± 0.4, and 20.0 ± 0.2 U·mg-1, respectively, in 50 mM Glycine-NaOH, pH 10.5. Simultaneously, J-1-1 showed high thermostability; 73% of its activity maintained after heat treatment at 40 °C for 100 h. Particularly noteworthy is that magnesium ion could stabilize the structure of J-1-1, resulting in the enhancement of its enzymatic activity and thermostability. The enzymatic activity of J-1-1 increased 40-fold in the presence of 50 mM Mg2+, and T0.5 increased by approximately 6 °C. Furthermore, after heat treatment at 40 °C for 20 min, the control group only retained 52% of the residual enzyme activity, while the residual enzyme activity of the experimental group was still 77% of the J-1-1 enzyme activity with Mg2+ and without heat treatment. These properties of 7α-HSDH would be expected to contribute to more extensive applications in the biotransformation of related substrates.
Collapse
Affiliation(s)
- Shunlin Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Modern Life Science Experiment Teaching Center, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Shijin Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Qiong Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China; Chongqing Key Laboratory of Inorganic Special Functional Materials, Collaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal University, Chongqing 408100, PR China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical Engineering, Chongqing University of Education, Chongqing 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
14
|
Yang Q, Li L, Wang B, Zhu L, Tan J. Modifying the Microenvironment of Epoxy Resin to Improve the Activity of Immobilized 7α-Hydroxysteroid Dehydrogenases. Appl Biochem Biotechnol 2020; 193:925-939. [PMID: 33225381 DOI: 10.1007/s12010-020-03473-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 01/07/2023]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) is one of the key enzymes in the catalytic reaction of taurochenodeoxycholic acid (TCDCA). To improve the activity of immobilized 7α-HSDH, the microenvironment of immobilized 7α-HSDH was modified with epoxy resin and ethanediamine (EDA). The amino-epoxy support was characterized by Fourier transform infrared (FTIR), Spectrometer elemental analysis (EA), scanning electron microscopy (SEM), contact angle (CA), and Zetasizer. The effects of the immobilization of 7α-HSDH on the amino-epoxy resin and epoxy resin were studied. The results indicated that the relative activity of immobilized 7α-HSDH on the amino-epoxy resin increased by approximately 80%. Meanwhile, the immobilized 7α-HSDH showed favorable thermal stability and operational stability. The thermal stability of immobilized 7α-HSDH increased at temperatures ranging from 15 to 35 °C, while the relative activities of 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin retained 56.4% and 61.0%. After 6 cycles, the residual activities of the 7α-HSDH immobilized on the amino-epoxy resin and epoxy resin were 81.4% and 89.5%, respectively.
Collapse
Affiliation(s)
- Qiong Yang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, Yangtze Normal University, Chongqing, 408100, People's Republic of China. .,Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Liuying Li
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China.
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, No. 174, Shapingba Main Street, Chongqing, 400030, People's Republic of China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, 400067, China
| |
Collapse
|
15
|
Wong JX, Ogura K, Chen S, Rehm BHA. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front Bioeng Biotechnol 2020; 8:156. [PMID: 32195237 PMCID: PMC7064635 DOI: 10.3389/fbioe.2020.00156] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymes function as biocatalysts and are extensively exploited in industrial applications. Immobilization of enzymes using support materials has been shown to improve enzyme properties, including stability and functionality in extreme conditions and recyclability in biocatalytic processing. This review focuses on the recent advances utilizing the design space of in vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds. Self-assembly of biologically active enzyme-coated PHA particles is a one-step in vivo production process, which avoids the costly and laborious in vitro chemical cross-linking of purified enzymes to separately produced support materials. The homogeneous orientation of enzymes densely coating PHA particles enhances the accessibility of catalytic sites, improving enzyme function. The PHA particle technology has been developed into a remarkable scaffolding platform for the design of cost-effective designer biocatalysts amenable toward robust industrial bioprocessing. In this review, the PHA particle technology will be compared to other biological supramolecular assembly-based technologies suitable for in vivo enzyme immobilization. Recent progress in the fabrication of biological particulate scaffolds using enzymes of industrial interest will be summarized. Additionally, we outline innovative approaches to overcome limitations of in vivo assembled PHA particles to enable fine-tuned immobilization of multiple enzymes to enhance performance in multi-step cascade reactions, such as those used in continuous flow bioprocessing.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Kampachiro Ogura
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
16
|
Zhang G, Johnston T, Quin MB, Schmidt-Dannert C. Developing a Protein Scaffolding System for Rapid Enzyme Immobilization and Optimization of Enzyme Functions for Biocatalysis. ACS Synth Biol 2019; 8:1867-1876. [PMID: 31305981 DOI: 10.1021/acssynbio.9b00187] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Immobilization of enzymes is required for most biocatalytic processes, but chemistries used in enzyme immobilization are limited and can be challenging. Genetically encoded protein-based biomaterials could provide easy-to-use immobilization platforms for biocatalysts. We recently developed a self-assembling protein scaffold that covalently immobilized SpyTagged enzymes by engineering the bacterial microcompartment protein EutM from Salmonella enterica with a SpyCatcher domain. We also identified a range of EutM homologues as robust protein nanostructures with diverse architectures and electrostatic surface properties. In this work, we created a modular immobilization platform with tunable surface properties by developing a toolbox of self-assembling, robust EutM-SpyCatcher scaffolds. Using an alcohol dehydrogenase as model biocatalyst, we show that the scaffolds improve enzyme activity and stability. This work provides a modular, easy-to-use immobilization system that can be tailored for the optimal function of biocatalysts of interest.
Collapse
Affiliation(s)
- Guoqiang Zhang
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Timothy Johnston
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Maureen B. Quin
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
17
|
Tonin F, Otten LG, Arends IWCE. NAD + -Dependent Enzymatic Route for the Epimerization of Hydroxysteroids. CHEMSUSCHEM 2019; 12:3192-3203. [PMID: 30265441 PMCID: PMC6681466 DOI: 10.1002/cssc.201801862] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Indexed: 05/12/2023]
Abstract
Epimerization of cholic and chenodeoxycholic acid (CA and CDCA, respectively) is a notable conversion for the production of ursodeoxycholic acid (UDCA). Two enantiocomplementary hydroxysteroid dehydrogenases (7α- and 7β-HSDHs) can carry out this transformation fully selectively by specific oxidation of the 7α-OH group of the substrate and subsequent reduction of the keto intermediate to the final product (7β-OH). With a view to developing robust and active biocatalysts, novel NADH-active 7β-HSDH species are necessary to enable a solely NAD+ -dependent redox-neutral cascade for UDCA production. A wild-type NADH-dependent 7β-HSDH from Lactobacillus spicheri (Ls7β-HSDH) was identified, recombinantly expressed, purified, and biochemically characterized. Using this novel NAD+ -dependent 7β-HSDH enzyme in combination with 7α-HSDH from Stenotrophomonas maltophilia permitted the biotransformations of CA and CDCA in the presence of catalytic amounts of NAD+ , resulting in high yields (>90 %) of UCA and UDCA.
Collapse
Affiliation(s)
- Fabio Tonin
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Linda G. Otten
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Isabel W. C. E. Arends
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
- Present address: Faculty of ScienceUtrecht UniversityBudapestlaan 63584 CDUtrechtThe Netherlands
| |
Collapse
|
18
|
Tang S, Pan Y, Lou D, Ji S, Zhu L, Tan J, Qi N, Yang Q, Zhang Z, Yang B, Zhao W, Wang B. Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase. Protein Sci 2019; 28:910-919. [PMID: 30839141 PMCID: PMC6460000 DOI: 10.1002/pro.3599] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
7α-Hydroxysteroid dehydrogenase (7α-HSDH) is an NAD(P)H-dependent oxidoreductase belonging to the short-chain dehydrogenases/reductases. In vitro, 7α-HSDH is involved in the efficient biotransformation of taurochenodeoxycholic acid (TCDCA) to tauroursodeoxycholic acid (TUDCA). In this study, a gene encoding novel 7α-HSDH (named as St-2-1) from fecal samples of black bear was cloned and heterologously expressed in Escherichia coli. The protein has subunits of 28.3 kDa and a native size of 56.6 kDa, which suggested a homodimer. We studied the relevant properties of the enzyme, including the optimum pH, optimum temperature, thermal stability, activators, and inhibitors. Interestingly, the data showed that St-2-1 differs from the 7α-HSDHs reported in the literature, as it functions under acidic conditions. The enzyme displayed its optimal activity at pH 5.5 (TCDCA). The acidophilic nature of 7α-HSDH expands its application environment and the natural enzyme bank of HSDHs, providing a promising candidate enzyme for the biosynthesis of TUDCA or other related chemical entities.
Collapse
Affiliation(s)
- Shijin Tang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Yinping Pan
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Deshuai Lou
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological & Chemical Engineering, Chongqing University of EducationChongqing 400067China
| | - Shunlin Ji
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
- Modern Life Science Experiment Teaching CenterCollege of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir RegionSchool of Biological & Chemical Engineering, Chongqing University of EducationChongqing 400067China
| | - Na Qi
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Qiong Yang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
- Chongqing Key Laboratory of Inorganic Special Functional MaterialsCollaborative Innovation Center for Green Development in Wuling Mountain Areas, Yangtze Normal UniversityChongqing 408100China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Biling Yang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Wenyan Zhao
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and TechnologyMinistry of Education, College of Bioengineering, Chongqing UniversityChongqing 400030China
| |
Collapse
|
19
|
Pérez MM, Gonçalves ECS, Salgado JCS, Rocha MDS, Almeida PZD, Vici AC, Infante JDC, Guisán JM, Rocha-Martin J, Pessela BC, Polizeli MDLTDM. Production of Omegas-6 and 9 from the Hydrolysis of Açaí and Buriti Oils by Lipase Immobilized on a Hydrophobic Support. Molecules 2018; 23:E3015. [PMID: 30453683 PMCID: PMC6278552 DOI: 10.3390/molecules23113015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
Abstract
This paper describes a bioprocess to obtain omegas-6 and 9 from the hydrolysis of Açaí (Euterpe oleracea Martius) and Buriti (Mauritia flexuosa) oils by lipases immobilized on octyl-sepharose. For this, oils and butters were initially selected as the carbon source which resulted in higher production of lipases in Beauveria bassiana and Fusarium oxysporum cultures. The carbon source that provided secretion of lipase by B. bassiana was Açaí oil, and for F. oxysporum, Bacuri butter. Lipases obtained under these conditions were immobilized on octyl-sepharose, and both, the derivatives and the crude extracts were biochemically characterized. It was observed that the immobilization promoted an increase of stability in B. bassiana and F. oxysporum lipase activities at the given temperatures and pH. In addition, the immobilization promoted hyperactivation of B. bassiana and F. oxysporum lipase activities being 23.5 and 11.0 higher than free enzyme, respectively. The hydrolysis of Açaí and Buriti oils by the derivatives was done in a biphasic (organic/aqueous) system, and the products were quantified in RP-HPLC. The results showed the potential of these immobilized lipases to obtain omegas-6 and 9 from Brazilian natural oils. This work may improve the enzymatic methodologies for obtaining foods and drugs enriched with fatty acids.
Collapse
Affiliation(s)
- Malena Martínez Pérez
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Enrico Cerioni Spiropulos Gonçalves
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Jose Carlos Santos Salgado
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-901, Brazil.
| | - Mariana de Souza Rocha
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Paula Zaghetto de Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Ana Claudia Vici
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| | - Juliana da Conceição Infante
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Jose Manuel Guisán
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica, CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Benevides Costa Pessela
- Departamento de Biotecnología y Microbiologia de los Alimentos, Instituto de Ciencias de la Alimentación, CIAL-CSIC, Campus UAM, Cantoblanco, 28049, Spain: .
- Departamento de Engenharia e Tecnologias, DET- Instituto Superior Politecnico de Tecnologias e Ciências-ISPTEC, Av. Luanda Sul, Rua Lateral Via S10, Talatona-Republica de Angola.
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil.
| |
Collapse
|
20
|
Preparation of a Flower-Like Immobilized D-Psicose 3-Epimerase with Enhanced Catalytic Performance. Catalysts 2018. [DOI: 10.3390/catal8100468] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this present study, we proposed a smart biomineralization method for creating hybrid organic–inorganic nanoflowers using a Co2+-dependent enzyme (D-psicose 3-epimerase; DPEase) as the organic component and cobalt phosphate as the inorganic component. The prepared nanoflowers have many separated petals that have a nanometer size. Under optimum conditions (60 °C and pH of 8.5), the nanoflower can display its maximum activity (36.2 U/mg), which is about 7.2-fold higher than free DPEase. Furthermore, the immobilized DPEase presents enhanced pH and thermal stabilities. The DPEase-nanoflower maintained about 90% of its activity after six reaction cycles, highlighting its excellent reusability.
Collapse
|
21
|
Li K, Liu XT, Zhang YF, Liu D, Zhang XY, Ma SM, Ruso JM, Tang Z, Chen ZB, Liu Z. The engineering and immobilization of penicillin G acylase onto thermo-sensitive tri-block copolymer system. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4446] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ke Li
- School of Materials Science and Engineering; Lanzhou University of Technology; Lanzhou China 730050
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials; Lanzhou University of Technology; Lanzhou China 730050
| | - Xiao Ting Liu
- School of Materials Science and Engineering; Lanzhou University of Technology; Lanzhou China 730050
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials; Lanzhou University of Technology; Lanzhou China 730050
| | - Yun Fei Zhang
- School of Materials Science and Engineering; Lanzhou University of Technology; Lanzhou China 730050
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials; Lanzhou University of Technology; Lanzhou China 730050
| | - Donglei Liu
- School of Materials Science and Engineering; Lanzhou University of Technology; Lanzhou China 730050
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials; Lanzhou University of Technology; Lanzhou China 730050
| | - Xin Yu Zhang
- School of Materials Science and Engineering; Lanzhou University of Technology; Lanzhou China 730050
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials; Lanzhou University of Technology; Lanzhou China 730050
| | - Song Mei Ma
- School of Chemistry and Materials Science; Ludong University; Yantai China 264025
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics; University of Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials; New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre; Guangzhou China 510006
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy; South China University of Technology, Guangzhou Higher Education Mega Centre; Guangzhou China 510006
| | - Zhen Bin Chen
- School of Materials Science and Engineering; Lanzhou University of Technology; Lanzhou China 730050
- State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials; Lanzhou University of Technology; Lanzhou China 730050
| | - Zhen Liu
- Department of Physics and Engineering; Frostburg State University; MD USA 21532
| |
Collapse
|
22
|
Wong JX, Rehm BHA. Design of Modular Polyhydroxyalkanoate Scaffolds for Protein Immobilization by Directed Ligation. Biomacromolecules 2018; 19:4098-4112. [DOI: 10.1021/acs.biomac.8b01093] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jin Xiang Wong
- Institute of Fundamental Sciences, Massey University, Private Bag, 11222 Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, 4111 Queensland, Australia
| |
Collapse
|