1
|
Koshy D, Allardyce BJ, Dumée LF, Sutti A, Rajkhowa R, Agrawal R. Silk Industry Waste Protein-Derived Sericin Hybrid Nanoflowers for Antibiotics Remediation via Circular Economy. ACS OMEGA 2024; 9:15768-15780. [PMID: 38617643 PMCID: PMC11007843 DOI: 10.1021/acsomega.3c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 04/16/2024]
Abstract
Hybrid protein-copper nanoflowers have emerged as promising materials with diverse applications in biocatalysis, biosensing, and bioremediation. Sericin, a waste biopolymer from the textile industry, has shown potential for fabricating such nanoflowers. However, the influence of the molecular weight of sericin on nanoflower morphology and peroxidase-like activity remains unexplored. This work focused on the self-assembly of nanoflowers using high- and low-molecular-weight (HMW and LMW) silk sericin combined with copper(II) as an inorganic moiety. The peroxidase-like activity of the resulting nanoflowers was evaluated using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide (H2O2). The findings revealed that high-molecular-weight sericin hybrid nanoflowers (HMW-ShNFs) exhibited significantly higher peroxidase-like activity than low-molecular-weight sericin hybrid nanoflowers (LMW-ShNFs). Furthermore, HMW-ShNFs demonstrated superior reusability and storage stability, thereby enhancing their potential for practical use. This study also explored the application of HMW-ShNF for ciprofloxacin degradation to address the environmental and health hazards posed by this antibiotic in water. The results indicated that HMW-ShNFs facilitated the degradation of ciprofloxacin, achieving a maximum degradation of 33.2 ± 1% at pH 8 and 35 °C after 72 h. Overall, the enhanced peroxidase-like activity and successful application in ciprofloxacin degradation underscore the potential of HMW-ShNFs for a sustainable and ecofriendly remediation process. These findings open avenues for the further exploration and utilization of hybrid nanoflowers in various environmental applications.
Collapse
Affiliation(s)
- Divya
S. Koshy
- TERI-Deakin
Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy
and Resources Institute, TERI Gram, Gwal
Pahari, Gurugram, Haryana 122001, India
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons
Road, Geelong, VIC 3216, Australia
| | - Benjamin J. Allardyce
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons
Road, Geelong, VIC 3216, Australia
| | - Ludovic F. Dumée
- Department
of Chemical Engineering, Khalifa University
of Science and Technology, Abu
Dhabi 127788, UAE
| | - Alessandra Sutti
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons
Road, Geelong, VIC 3216, Australia
| | - Rangam Rajkhowa
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Pigdons
Road, Geelong, VIC 3216, Australia
| | - Ruchi Agrawal
- TERI-Deakin
Nanobiotechnology Centre, Sustainable Agriculture Division, The Energy
and Resources Institute, TERI Gram, Gwal
Pahari, Gurugram, Haryana 122001, India
| |
Collapse
|
2
|
Dadi S, Cardoso MH, Mandal AK, Franco OL, Ildiz N, Ocsoy I. Natural Molecule‐Incorporated Magnetic Organic‐Inorganic Nanoflower: Investigation of Its Dual Fenton Reaction‐Dependent Enzyme‐Like Catalytic Activities with Cyclic Use. ChemistrySelect 2023. [DOI: 10.1002/slct.202300404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Seyma Dadi
- Department of Analytical Chemistry Faculty of Pharmacy Erciyes University 38039 Kayseri Turkey
- Department of Nanotechnology Engineering Abdullah Gül University 38080 Kayseri Turkey
| | - Marlon Henrique Cardoso
- S-inova Biotech Programa de Pós-Graduação em Biotecnologia Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte Brasília DF 70790160 Brazil
| | - Amit Kumar Mandal
- Chemical Biology Laboratory Department of Sericulture Raiganj University North Dinajpur West Bengal 733134 India
- Centre for Nanotechnology Sciences (CeNS) Raiganj University North Dinajpur West Bengal 733134 India
| | - Octávio Luiz Franco
- S-inova Biotech Programa de Pós-Graduação em Biotecnologia Universidade Católica Dom Bosco Avenida Tamandaré 6000 Campo Grande MS 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas Pós-Graduação em Ciências Genômicas e Biotecnologia Universidade Católica de Brasília SGAN 916 Módulo B, Asa Norte Brasília DF 70790160 Brazil
| | - Nilay Ildiz
- Department of Pharmaceutical Microbiology Faculty of Pharmacy Erciyes University 38039 Kayseri Turkey
| | - Ismail Ocsoy
- Department of Analytical Chemistry Faculty of Pharmacy Erciyes University 38039 Kayseri Turkey
| |
Collapse
|
3
|
Xu K, Appiah B, Zhang BW, Yang ZH, Quan C. Recent advances in enzyme immobilization based on nanoflowers. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Ucar A. Dopamine-Based Nanoflower (Dop/CuNf) as a Catalyst for Sonocatalytic Degradation of Methylene Blue. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222090117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Caparco AA, Dautel DR, Champion JA. Protein Mediated Enzyme Immobilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106425. [PMID: 35182030 DOI: 10.1002/smll.202106425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Enzyme immobilization is an essential technology for commercializing biocatalysis. It imparts stability, recoverability, and other valuable features that improve the effectiveness of biocatalysts. While many avenues to join an enzyme to solid phases exist, protein-mediated immobilization is rapidly developing and has many advantages. Protein-mediated immobilization allows for the binding interaction to be genetically coded, can be used to create artificial multienzyme cascades, and enables modular designs that expand the variety of enzymes immobilized. By designing around binding interactions between protein domains, they can be integrated into functional materials for protein immobilization. These materials are framed within the context of biocatalytic performance, immobilization efficiency, and stability of the materials. In this review, supports composed entirely of protein are discussed first, with systems such as cellulosomes and protein cages being discussed alongside newer technologies like spore-based biocatalysts and forizymes. Protein-composite materials such as polymersomes and protein-inorganic supraparticles are then discussed to demonstrate how protein-mediated strategies are applied to many classes of solid materials. Critical analysis and future directions of protein-based immobilization are then discussed, with a particular focus on both computational and design strategies to advance this area of research and make it more broadly applicable to many classes of enzymes.
Collapse
Affiliation(s)
- Adam A Caparco
- Department of Nanoengineering, University of California, San Diego, MC 0448, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Liu Z, Liu S, Gao D, Li Y, Tian Y, Bai E. An Optical Sensing Platform for Beta-Glucosidase Activity Using Protein-Inorganic Hybrid Nanoflowers. J Fluoresc 2022; 32:669-680. [PMID: 35040029 DOI: 10.1007/s10895-021-02859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
In this work, a convenient and dual-signal readout optical sensing platform for the sensitively and selectively determination of beta-glucosidase (β-Glu) activity was reported using protein-inorganic hybrid nanoflowers [BSA-Cu3(PO4)2·3H2O] possessing peroxidase-mimicking activity. The nanoflowers (NFs) were facilely synthesized through a self-assembled synthesis strategy at room temperature. The as-prepared NFs could catalytically convert the colorless and non-fluorescent Amplex Red into colored and highly fluorescent resorufin in the presence of hydrogen peroxide via electron transfer process. β-Glu could hydrolyze cyanogenic glycoside, using amygdalin (Amy) as a model, into cyanide ions (CN-), which can subsequently efficiently suppress the catalytic activity of NFs, accompanied with the fluorescence decrease and the color fading. The concentration of CN- was controlled by β-Glu-triggered enzymatic reaction of Amy. Thus, a sensing system was established for fluorescent and visual determination of β-Glu activity. Under the optimum conditions, the present fluorescent and visual bimodal sensing platform exhibited good sensitivity for β-Glu activity assay with a detection limit of 0.33 U·L-1. The sensing platform was further applied to determinate β-Glu in real samples and satisfactory results were attained. Additionally, the optical sensing system can potentially be a promising candidate for β-Glu inhibitors screening.
Collapse
Affiliation(s)
- Ziping Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.,School of Geographical Sciences, Northeast Normal University, People's Street 5268, Changchun Jilin, 130024, China
| | - Shasha Liu
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China
| | - Decai Gao
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| | - Yanan Li
- Key Laboratory for Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, Jilin Province, 130024, China
| | - Ye Tian
- Jilin Province Product Quality Supervision Testing Institute, Changchun, 130012, People's Republic of China
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
7
|
Ahmadpoor F, Nasrollahzadeh M, Mohammad M. Self-assembled lignosulfonate-inorganic hybrid nanoflowers and their application in catalytic reduction of methylene blue and 4-nitrophenol. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118864] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Dube S, Rawtani D. Understanding intricacies of bioinspired organic-inorganic hybrid nanoflowers: A quest to achieve enhanced biomolecules immobilization for biocatalytic, biosensing and bioremediation applications. Adv Colloid Interface Sci 2021; 295:102484. [PMID: 34358991 DOI: 10.1016/j.cis.2021.102484] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023]
Abstract
The immobilization of biomolecules has been a subject of interest for scientists for a long time. The organic-inorganic hybrid nanoflowers are a new class of nanostructures that act as a host platform for the immobilization of such biomolecules. It provides better practical applicability to these functional biomolecules while also providing superior activity and reusability when catalysis is involved. These nanostructures have a versatile and straightforward synthesis process and also exhibit enzyme mimicking activity in many cases. However, this facile synthesis involves many intricacies that require in-depth analysis to fully attain its potential as an immobilization technique. A complete account of all the factors involving the synthesis process optimisation is essential to be studied to make it commercially viable. This paper explores all the different aspects of hybrid nanoflowers which sets them apart from the conventional immobilization techniques while also giving an overview of its wide range of applications in industries.
Collapse
|
9
|
Multi-Scale Biosurfactant Production by Bacillus subtilis Using Tuna Fish Waste as Substrate. Catalysts 2021. [DOI: 10.3390/catal11040456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste materials as low-cost substrates for the growth of biosurfactant producers has emerged as a feasible solution for economical biosurfactant production. In this study, fish peptone was generated through enzyme hydrolyzation of smashed tuna (Katsuwonus pelamis). Biosurfactant (mainly surfactin) production by Bacillus subtilis ATCC 21332 was further evaluated and optimized using the generated fish peptone as a comprehensive substrate. The optimized production conduction was continuously assessed in a 7 L batch-scale and 100 L pilot-scale fermenter, exploring the possibility for a large-scale surfactin production. The results showed that Bacillus subtilis ATCC 21332 could effectively use the fish waste peptones for surfactin production. The highest surfactin productivity achieved in the pilot-scale experiments was 274 mg/L. The experimental results shed light on the further production of surfactins at scales using fish wastes as an economical substrate.
Collapse
|
10
|
A novel smartphone-based colorimetric biosensor for reliable quantification of hydrogen peroxide by enzyme-inorganic hybrid nanoflowers. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Jones LA. Flower-Like Superstructures: Structural Features, Applications and Future Perspectives. CHEM REC 2020; 21:257-283. [PMID: 33215848 DOI: 10.1002/tcr.202000129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/20/2022]
Abstract
Mimicking natural objects such as flowers, is an objective of scientists not only because of their attractive appearance, but also to understand the natural phenomena that underpin real world applications such as drug delivery, enzymatic reactions, electronics, and catalysis, to name few. This article reviews the types, preparation methods, and structural features of flower-like structures along with their key applications in various fields. We discuss the various types of flower-like structures composed of inorganic, organic-inorganic hybrid, inorganic-protein, inorganic-enzyme and organic compositions. We also discuss recent development in flower-like structures prepared by self-assembly approaches. Finally, we conclude our review with the future prospects of flower-like micro-structures in key fields, being biomedicine, sensing and catalysis.
Collapse
Affiliation(s)
| | - Mohammad Al Kobaisi
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | - Lathe A Jones
- School of Applied Sciences, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
12
|
Jadhav RW, La DD, More VG, Tung Vo H, Nguyen DA, Tran DL, Bhosale SV. Self-assembled kanamycin antibiotic-inorganic microflowers and their application as a photocatalyst for the removal of organic dyes. Sci Rep 2020; 10:154. [PMID: 31932614 PMCID: PMC6957687 DOI: 10.1038/s41598-019-57044-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 11/08/2022] Open
Abstract
Construction of hybrid three-dimensional (3D) hierarchical nanostructures via self-assembly of organic and inorganic compounds have recently attracted immense interest from scientists due to their unique properties and promise in a large range of applications. In this article, hybrid flower structures were successfully constructed by self-assembly an antibiotic, kanamycin, with Cu2+. The flower-like morphology was observed by scanning electron microscopy, to be approximately 4 µm in diameter and about 10 nm in thickness. FTIR spectroscopy and X-ray diffraction confirmed the antibiotic-inorganic hybrid structure was uniform composition, and showed crystallinity due to ordered self-assembly. The hybrid flowers showed high photocatalytic activity towards degradation of methyl blue during 240 minutes under visible light irradiation. A possible mechanism of photocatalytic activity was also proposed, that exposes the inherent advantages in using antibiotic-inorganic hybrid flowers as photocatalysts, where self-assembly can be used to generate active, high surface area structures for photodegradation of pollutants.
Collapse
Affiliation(s)
- Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India
| | - Duong Duc La
- Institute of Chemistry and Materials, Hanoi, Vietnam
| | - Vishal G More
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India
| | - Hoang Tung Vo
- Environmental Institute, Vietnam Maritime University, Haiphong city, Vietnam
| | | | - Dai Lam Tran
- Institute of Tropical Engineering, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403 206, India.
| |
Collapse
|
13
|
Chen M, Zhang G, Jiang Y, Yin K, Zhang L, Li H, Hao J. Fullerene-Directed Synthesis of Flowerlike Cu 3(PO 4) 2 Crystals for Efficient Photocatalytic Degradation of Dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8806-8815. [PMID: 31244259 DOI: 10.1021/acs.langmuir.9b00193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomineralization is a typical methodology developed by nature to produce calcium-based materials. A method mimicking this process has nowadays become popular for the preparation of artificial organic-inorganic hybrids. Here, Cu3(PO4)2 crystals with a flowerlike morphology have been prepared using water-soluble derivatives of fullerene C60 as templates. In a typical system, flowerlike crystals of Cu3(PO4)2 (denoted FLCs-Cu) were obtained by simply dropping an aqueous solution of CuSO4 into phosphate-buffered saline (PBS) containing a highly water-soluble multiadduct of C60 (fullerenol). The best condition for the preparation of FLCs-Cu appeared at 0.20 mg·mL-1 fullerenol and 0.10 mol·L-1 PBS. During the formation of FLCs-Cu, fullerenol acts as a template and its content in FLCs-Cu is trace (less than 5% by atom) as confirmed by scanning electron microscopy mapping and thermogravimetric analysis. This feature makes fullerenol reusable, and the FLCs-Cu can be prepared repeatedly using the same fullerenol aqueous solution at least 10 times without a noticeable change in the morphology. The N2 adsorption/desorption isotherm showed that the doping of fullerenol increased the specific surface area of the Cu3(PO4)2 crystal. When fullerenol was replaced by C60 monoadducts that are cofunctionalized with a pyrrolidine cation and oligo(poly(ethylene oxide)) chains, FLCs-Cu can form as well, indicating that the strategy of using water-soluble C60 derivative as a template to get FLCs-Cu is universal. As a typical example of practical applications, the photocatalytic activity of the FLCs-Cu was investigated toward the degradation of dyes including rhodamine B and rhodamine 6G. In both cases, efficient photodegradation has been confirmed.
Collapse
Affiliation(s)
- Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Geping Zhang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Yue Jiang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Keyang Yin
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Linwen Zhang
- State Key Laboratory of Solid Lubrication , Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Hongguang Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , China
| |
Collapse
|
14
|
Kong D, Jin R, Zhao X, Li H, Yan X, Liu F, Sun P, Gao Y, Liang X, Lin Y, Lu G. Protein-Inorganic Hybrid Nanoflower-Rooted Agarose Hydrogel Platform for Point-of-Care Detection of Acetylcholine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11857-11864. [PMID: 30830739 DOI: 10.1021/acsami.8b21571] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Rapid and precise profiling of acetylcholine (ACh) has become important for diagnosing diseases and safeguarding health care because of its pivotal role in the central nervous system. Herein, we developed a new colorimetric sensor based on protein-inorganic hybrid nanoflowers as artificial peroxidase, comprising a test kit and a smartphone reader, which sensitively quantifies ACh in human serum. In this sensor, ACh indirectly triggered the substrate reaction with the help of a multienzyme system including acetylcholinesterase, choline oxidase, and mimic peroxidase (nanoflowers), accompanying the enhancement of absorbance intensity at 652 nm. Therefore, the multienzyme platform can be used to detect ACh via monitoring the change of the absorbance in a range from 0.0005 to 6.0 mmol L-1. It is worth mentioning that the platform was used to prepare a portable agarose gel-based kit for rapid qualitative monitoring of ACh. Coupling with ImageJ program, the image information of test kits can be transduced into the hue parameter, which provides a directly quantitative tool to identify ACh. Based on the advantages of simple operation, good selectivity, and low cost, the availability of a portable kit for point-of-care testing will achieve the needs of frequent screening and diagnostic tracking.
Collapse
Affiliation(s)
- Deshuai Kong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Rui Jin
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Xu Zhao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Hongxia Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Xu Yan
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Fangmeng Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Peng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Yuan Gao
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Xishuang Liang
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Geyu Lu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , People's Republic of China
| |
Collapse
|
15
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
16
|
Lei Z, Gao C, Chen L, He Y, Ma W, Lin Z. Recent advances in biomolecule immobilization based on self-assembly: organic-inorganic hybrid nanoflowers and metal-organic frameworks as novel substrates. J Mater Chem B 2018; 6:1581-1594. [PMID: 32254274 DOI: 10.1039/c7tb03310a] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past few years, the immobilization of biomolecules on hybrid nanoflowers and metal-organic frameworks (MOFs) via self-assembly synthesis has received much attention due to its simplicity, high efficiency, and a bright prospect of enhancing the stability, activity and even selectivity of biomolecules compared to conventional immobilization methods. In the synthesis of organic-inorganic hybrid nanoflowers, biomolecules used as organic components are simply mixed with metal ions which act as inorganic components to form flower-like nanocomposites, while in the self-assembly process of encapsulating biomolecules in MOFs (biomolecule@MOF composites), the biomolecules just need to be added to the precursor mixtures of MOFs, in which the biomolecules are therefore embedded in MOF crystals with small pores. In this review, we focus on the recent advances of these composites, especially in the synthesis strategies, mechanism and applications in biosensors, biomedicine, pollutant disposal, and industrial biocatalysis, and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Zhixian Lei
- Ministry of Education Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | | | | | | | | | | |
Collapse
|
17
|
Munyemana JC, He H, Fu C, Wei W, Tian J, Xiao J. A trypsin–calcium carbonate hybrid nanosphere based enzyme reactor with good stability and reusability. NEW J CHEM 2018. [DOI: 10.1039/c8nj04282a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trypsin not only acts as a novel robust biotemplate to mediate the growth of CaCO3 crystals, but also enhances their biological properties as an excellent enzyme.
Collapse
Affiliation(s)
- Jean Claude Munyemana
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Huixia He
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Caihong Fu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Wenyu Wei
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jing Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
18
|
Jing M, Fei X, Ren W, Tian J, Zhi H, Xu L, Wang X, Wang Y. Self-assembled hybrid nanomaterials with alkaline protease and a variety of metal ions. RSC Adv 2017. [DOI: 10.1039/c7ra10597e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have synthesized two kinds of hierarchical flower-like hybrid nanomaterials with alkaline protease and metal ions by self-assembly method.
Collapse
Affiliation(s)
- Muzi Jing
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
- School of Biological Engineering
| | - Xu Fei
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Weifan Ren
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Jing Tian
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Hui Zhi
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Longquan Xu
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Xiuying Wang
- Instrumental Analysis Center
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| | - Yi Wang
- School of Biological Engineering
- Dalian Polytechnic University
- Dalian 116034
- P. R. China
| |
Collapse
|