1
|
Ge J, Zhang XD, Peng Y, Bai XL. Unraveling the effect of solvents on the excited state dynamics of C540A by experimental and theoretical study. RSC Adv 2023; 13:4924-4931. [PMID: 36762085 PMCID: PMC9906279 DOI: 10.1039/d3ra00259d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
In this work, the excited-state dynamics including intramolecular charge transfer (ICT) and the redshift of C540A have been investigated in a series of solvents on the basis of the Kamlet-Taft solvatochromic parameters (π*, α, β) using femtosecond transient absorption spectra and systematic theoretical calculation. We demonstrate that the redshift of the emission peak has a linear relationship with the α and π* scales and the effect of the π* scale is slightly stronger than that of the α scale. Meanwhile, the ICT rates can be suggested as relevant to not only the α scale but also the π* scale. Additionally, C540A-AN has proved that the excited state molecules have a unique inactivation mechanism because of the dark feature of the S1 (CT) state. The valuable mechanistic information gleaned from the excited-state dynamics by the experimental and theoretical study would facilitate the design of organic materials for prospective applications in photochemistry and photobiology.
Collapse
Affiliation(s)
- Jing Ge
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Xue-Dong Zhang
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Yue Peng
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| | - Xi-Lin Bai
- School of Physics and Information Engineering, Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Shanxi Normal University Taiyuan 030031 China
| |
Collapse
|
2
|
Chaihan K, Semakul N, Promarak V, Bui TT, Kungwan N, Goubard F. Tunable far-red fluorescence utilizing π-extension and substitution on the excited state intramolecular proton transfer (ESIPT) of naphthalene-based Schiff bases: A combined experimental and theoretical study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
3
|
Hao J, Yang Y. Theoretical Investigation of the Excited-State Dynamics Mechanism of the Asymmetric Two-Way Proton Transfer Molecule BTHMB. J Phys Chem A 2021; 125:10280-10290. [PMID: 34846887 DOI: 10.1021/acs.jpca.1c05530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An asymmetric two-way proton transfer molecule 3-(benzo[d]-thiazol-2-yl)-2-hydroxy-5-methoxybenzaldehyde (BTHMB) with the function of white-light emission was synthesized in a recent experiment (Bhattacharyya, A.; Mandal, S. K.; Guchhait, N. J. Phys. Chem. A 2019, 123, 10246). The particularity of this molecule is that there are two possible forms, one of which contained a six-membered H-bonded network toward a N atom (BTHMB-NH) present in the molecule as a proton acceptor and the other was toward an O atom (BTHMB-OH). Unfortunately, the experimental work lacked the theoretical explanation about the determination of the BTHMB-NH form and its excited-state intramolecular proton transfer (ESIPT) process under different solvents. Therefore, this study has explored these two points by means of the time-dependent density functional theory (TDDFT) method. The calculated relative energy and potential energy profile (PEP) of the transformation between BTHMB-NH and BTHMB-OH forms illustrated that BTHMB-NH was more stable, and the transfer from BTHMB-NH to BTHMB-OH was almost impossible at both S0 and S1 states under all solvents due to high potential energy barriers (PEBs) (11.67-21.59 kcal/mol). These calculated results provided the theoretical explanation and verification for the conclusion that the BTHMB molecule exists in the BTHMB-NH form in the experiment. Subsequently, the constructed PEPs of the ESIPT process for BTHMB-NH have proved that it was prone to the ESIPT process due to low PEBs (0.11-0.28 kcal/mol) at the S1 state. In particular, as the solvent polarity increased, the intensity of the intramolecular hydrogen bond (IHB) (O3-H4···N5) increased and the ESIPT process was more likely to occur. In addition, the twisted intramolecular charge-transfer (TICT) process was studied to explore the possible fluorescence quenching pathway of BTHMB-NH. Based on the PEPs of BTHMB-NH-T as a function of the N5-C6-C7-C8 dihedral angle at the S0 and S1 states, it is seen that the S0 state TICT process was inhibited due to the large PEBs (16.45-23.93 kcal/mol). Although the S1 state PEBs have been greatly reduced, they were still maintained at about 3.60 kcal/mol (3.60-3.84 kcal/mol), and hence, this process was still relatively difficult to occur. Due to the fact that BTHMB can be regarded as a standard in future designs involving red light and solvent-specific white-light emitters, a certain amount of investigative work on the ESIPT process was done in detail, and it paved the way for future research on the directionality of ESIPT in double ESIPT probes.
Collapse
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Dong H, Liu X, Yang H, Zhao J, Zheng Y. Harnessing Excited-State Proton Transfer Reaction for 2-(6′-Hydroxy-2′-pyridyl)benzimidazole via Solvents. ACS APPLIED BIO MATERIALS 2021; 4:1950-1957. [DOI: 10.1021/acsabm.0c01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Dong
- School of Physics, Shandong University, Jinan 250100, China
| | - Xiaoyan Liu
- School of Physics, Shandong University, Jinan 250100, China
| | - Huan Yang
- School of Physics, Shandong University, Jinan 250100, China
| | - Jinfeng Zhao
- School of Physics, Shandong University, Jinan 250100, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
5
|
Mohan M, John R, Nagarajan SM, Trivedi DR. Design, Synthesis and Characterization of N‐Substituted Heteroaromatics: DFT‐Studies and Organic Light Emitting Device Application. ChemistrySelect 2020. [DOI: 10.1002/slct.201903409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory Department of Physics National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| | - Raganjali John
- Supramolecular Chemistry Laboratory Department of Chemistry National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| | - Satyanarayan M. Nagarajan
- Optoelectronics Laboratory Department of Physics National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory Department of Chemistry National Institute of Technology Karnataka (NITK) Surathkal Mangalore 575025
| |
Collapse
|
6
|
Chaihan K, Kungwan N. Effect of number and different types of proton donors on excited-state intramolecular single and double proton transfer in bipyridine derivatives: theoretical insights. NEW J CHEM 2020. [DOI: 10.1039/d0nj01304h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Intra-HBs are strengthened upon photoexcitation, confirmed by red-shift in vibrational mode and topology analysis. Number and type of donors result in difference in photophysical properties. Occurrence of ESIPT depends on barrier and reaction energy.
Collapse
Affiliation(s)
- Komsun Chaihan
- Department of Chemistry, Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
- The Graduate School
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
- Center of Excellence in Materials Science and Technology
| |
Collapse
|
7
|
Kaviani M, Di Valentin C. Rational design of nanosystems for simultaneous drug delivery and photodynamic therapy by quantum mechanical modeling. NANOSCALE 2019; 11:15576-15588. [PMID: 31403155 DOI: 10.1039/c9nr03763b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Drug delivery systems are based on reversible interactions between carriers and drugs. Spacers are often introduced to tailor the type of interaction and to keep drugs intact. Here, we model a drug delivery system based on a functionalized curved TiO2 nanoparticle of realistic size (700 atoms - 2.2 nm) by the neurotransmitter dopamine to carry the anticancer chemotherapeutic agent doxorubicin (DOX). The multiscale quantum chemical study aims at unraveling the nature and mechanism of the interactions between the components and the electronic properties of the composite system. We simulate the temperature effect through molecular dynamics runs of thermal annealing. Dopamine binds preferentially to low coordinated Ti sites on the nanoparticle through dissociated bidentate and chelate modes involving the diol groups. DOX is tethered by H-bonds, π-π stacking, dipole-dipole interactions and dispersion forces. Comparing different coverage densities of the spacer on the nanoparticle surface, we assess the best conditions for an effective drug transport and release: only at full coverage, DOX does not slip among the dopamine molecules to reach the nanoparticle surface, which is crucial to avoid the formation of stable coordinative bonds with under-coordinated Ti atoms. Finally, given the strong absorption properties and fluorescence of DOX and of the TiO2 photocatalyst, we model the effect of light irradiation through excited state calculations to localize excitons and to follow the charge carrier's life path. This fundamental study on the nature and mechanism of drug/carrier interaction provides a solid ground for the rational design of new experimental protocols for a more efficient drug transport and release and its combination with photodynamic therapy.
Collapse
Affiliation(s)
- Moloud Kaviani
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy.
| |
Collapse
|
8
|
Mohan M, Satyanarayan M, Trivedi DR. Exploring the possibilities of double proton transfer in hydrazides: A theoretical approach. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.4003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory, Department of PhysicsNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| | - M.N. Satyanarayan
- Optoelectronics Laboratory, Department of PhysicsNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory, Department of ChemistryNational Institute of Technology Karnataka (NITK) Surathkal Mangalore India
| |
Collapse
|
9
|
Hao J, Yang Y. Dynamic Excited-State Intramolecular Proton Transfer Mechanisms of Two Novel 3-Hydroxyflavone-Based Chromophores in Two Different Surroundings. J Phys Chem A 2019; 123:3937-3948. [DOI: 10.1021/acs.jpca.9b00879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
10
|
Mohan M, Satyanarayan MN, Trivedi DR. Photophysics of proton transfer in hydrazides: a combined theoretical and experimental analysis towards OLED device application. NEW J CHEM 2019. [DOI: 10.1039/c9nj01503e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effect of conjugation to support ESIPT with impossible double proton transfer in structurally favored species.
Collapse
Affiliation(s)
- Makesh Mohan
- Optoelectronics Laboratory
- Department of Physics
- National Institute of Technology Karnataka (NITK) Surathkal
- Mangalore – 575025
- India
| | - M. N. Satyanarayan
- Optoelectronics Laboratory
- Department of Physics
- National Institute of Technology Karnataka (NITK) Surathkal
- Mangalore – 575025
- India
| | - Darshak R. Trivedi
- Supramolecular Chemistry Laboratory
- Department of Chemistry
- National Institute of Technology Karnataka (NITK) Surathkal
- Mangalore – 575025
- India
| |
Collapse
|
11
|
Prommin C, Kerdpol K, Saelee T, Kungwan N. Effects of π-expansion, an additional hydroxyl group, and substitution on the excited state single and double proton transfer of 2-hydroxybenzaldehyde and its relative compounds: TD-DFT static and dynamic study. NEW J CHEM 2019. [DOI: 10.1039/c9nj05055h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of π-expansion, an extra hydroxyl group, and substituents on the photophysical properties, the excited state single proton transfer and the double proton transfer of 2-hydroxybenzaldehyde and its relatives have been theoretically investigated using TD-DFT.
Collapse
Affiliation(s)
- Chanatkran Prommin
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Khanittha Kerdpol
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Tinnakorn Saelee
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| | - Nawee Kungwan
- Department of Chemistry
- Faculty of Science
- Chiang Mai University
- Chiang Mai 50200
- Thailand
| |
Collapse
|
12
|
Ren G, Meng Q, Zhao J, Chu T. Molecular Design for Electron-Driven Double-Proton Transfer: A New Scenario for Excited-State Proton-Coupled Electron Transfer. J Phys Chem A 2018; 122:9191-9198. [DOI: 10.1021/acs.jpca.8b09264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Guanghua Ren
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingchi Meng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jinfeng Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Tianshu Chu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Institute for Computational Sciences and Engineering, Laboratory of New Fiber Material and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
13
|
Hao J, Yang Y. The theoretical study about the ESIPT mechanism for 2,4-bis(benzooxazol-2′-yl)hydroquinone: Single or double? J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics; Dalian Institute of Chemical Physics, Chinese Academy of Sciences; Dalian China
| |
Collapse
|