1
|
Hong S, Kim D, Kim KJ, Park JY. Facet-Controlled Cu 2O Support Enhances Catalytic Activity of Pt Nanoparticles for CO Oxidation. J Phys Chem Lett 2023:5241-5248. [PMID: 37263187 DOI: 10.1021/acs.jpclett.3c00937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The metal-support interaction plays a crucial role in determining the catalytic activity of supported metal catalysts. Changing the facet of the support is a promising strategy for catalytic control via constructing a well-defined metal-support nanostructure. Herein, we developed cubic and octahedral Cu2O supports with (100) and (111) facets terminated, respectively, and Pt nanoparticles (NPs) were introduced. The in situ characterizations revealed the facet-dependent encapsulation of the Pt NPs by a CuO layer due to the oxidation of the Cu2O support during the CO oxidation reaction. The CuO layer on Pt at cubic Cu2O (Pt/c-Cu2O) significantly enhanced catalytic performance, while the thicker CuO layer on Pt at octahedral Cu2O suppressed CO conversion. The formation of a thin CuO layer is attributed to the dominant Pt-O-Cu bond at the Pt/c-Cu2O interface, which suppresses the adsorption of oxygen molecules. This investigation provides insight into designing high-performance catalysts via engineering the interface interaction.
Collapse
Affiliation(s)
- Seunghwa Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki-Jeong Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), POSTECH, Pohang 37673, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Applications of in-situ wide spectral range infrared absorption spectroscopy for CO oxidation over Pd/SiO2 and Cu/SiO2 catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Wan W, Geiger J, Berdunov N, Lopez Luna M, Chee SW, Daelman N, López N, Shaikhutdinov S, Roldan Cuenya B. Highly Stable and Reactive Platinum Single Atoms on Oxygen Plasma-Functionalized CeO 2 Surfaces: Nanostructuring and Peroxo Effects. Angew Chem Int Ed Engl 2022; 61:e202112640. [PMID: 35243735 PMCID: PMC9315031 DOI: 10.1002/anie.202112640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O2 2- ) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites.
Collapse
Affiliation(s)
- Weiming Wan
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Julian Geiger
- Institute of Chemical Research of CataloniaThe Barcelona Institute of Science and Technology Institution43007TarragonaSpain
| | - Nikolay Berdunov
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Mauricio Lopez Luna
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - See Wee Chee
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Nathan Daelman
- Institute of Chemical Research of CataloniaThe Barcelona Institute of Science and Technology Institution43007TarragonaSpain
| | - Núria López
- Institute of Chemical Research of CataloniaThe Barcelona Institute of Science and Technology Institution43007TarragonaSpain
| | - Shamil Shaikhutdinov
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| |
Collapse
|
4
|
Shaikhutdinov S, Wan W, Geiger J, Berdunov N, Lopez Luna M, Chee SW, Daelman N, López N, Cuenya BR. Highly Stable and Reactive Platinum Single Atoms on Oxygen Plasma‐Functionalized CeO2 Surfaces: Nanostructuring and Peroxo Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Weiming Wan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science GERMANY
| | - Julian Geiger
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Not available SPAIN
| | - Nikolay Berdunov
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science GERMANY
| | - Mauricio Lopez Luna
- Fritz-Haber-Institut der MPG Berlin: Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science 14195 Berlin GERMANY
| | - See Wee Chee
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science GERMANY
| | - Nathan Daelman
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Not available SPAIN
| | - Núria López
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Not available SPAIN
| | | |
Collapse
|
5
|
Yang W, Gong J, Wang X, Bao Z, Guo Y, Wu Z. A Review on the Impact of SO 2 on the Oxidation of NO, Hydrocarbons, and CO in Diesel Emission Control Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weiwei Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian Gong
- Corporate Research and Technology, Cummins Inc., 1900 McKinley Avenue, Columbus, Indiana 47201, United States
| | - Xiang Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenghong Bao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yanbing Guo
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Zili Wu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
6
|
Chetyrin IA, Bukhtiyarov AV, Prosvirin IP, Bukhtiyarov VI. Investigation of concentration hysteresis in methane oxidation on bimetallic Pt–Pd/Al2O3 catalyst by in situ XPS and mass spectrometry. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Balamurugan C, Song S, Jo H, Seo J. GdFeO 3 Perovskite Oxide Decorated by Group X Heterometal Oxides and Bifunctional Oxygen Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2788-2798. [PMID: 33410321 DOI: 10.1021/acsami.0c21169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are necessary in the renewable energy systems. However, the kinetically slow and large energy-demanding procedures of oxygen electrocatalysis make the preparation of bifunctional catalysts difficult. In this work, we report a novel hierarchical GdFeO3 perovskite oxide of a spherelike nanostructure and surface modification with the group X heterometal oxides. The nanostructured GdFeO3 layer behaved as a bifunctional electrocatalyst in the oxygen electrocatalysis of OER and ORR. Moreover, the surface decoration with catalytically active PtOx + Ni/NiO nanoparticles enhanced the electrocatalytic performances substantially. Incorporation of mesoporous PtOx + Ni/NiO nanoparticles into the porous GdFeO3 nanostructure enlarged the electrochemically active surface area and provided the interconnected nanostructures to facilitate the OER/ORR. The nanostructures were visualized by scanning electron microscopy and transmission electron microscopy images, and the surface area and pore size of nanoparticles were analyzed from N2 adsorption/desorption isotherms. Tafel analysis indicates that surface modification effectively improves the kinetics of oxygen reactions and accordingly increases the electrocatalytic efficiency. Finally, the 2 wt % PtOx + NiO|GdFeO3 (x = 0, 1, and 2) electrode achieved the enhanced OER performance with an overpotential of 0.19 V at 10 mA/cm2 in an alkaline solution and a high turnover frequency of 0.28 s-1 at η = 0.5 V. Furthermore, the ORR activity is observed with an onset potential of 0.80 V and a half-wave potential (E1/2) of 0.40 V versus reversible hydrogen electrode.
Collapse
Affiliation(s)
- Chandran Balamurugan
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Seungjin Song
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeonjeong Jo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Junhyeok Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
8
|
Choi H, Lee J, Kim D, Kumar A, Jeong B, Kim KJ, Lee H, Park JY. Influence of lattice oxygen on the catalytic activity of blue titania supported Pt catalyst for CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02166k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of oxygen defect sites in the reaction mechanism for CO oxidation using blue TiO2 with a higher concentration of oxygen vacancies deposited by Pt nanoparticles is investigated.
Collapse
Affiliation(s)
- Hanseul Choi
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Jinsun Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
- Center for Integrated Nanostructure Physics
| | - Daeho Kim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| | - Ashwani Kumar
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
- Center for Integrated Nanostructure Physics
| | - Beomgyun Jeong
- Advanced Nano Surface Research Group
- Korea Basic Science Institute (KBSI)
- Daejeon 34133
- Republic of Korea
| | - Ki-Jeong Kim
- Beamline Research Division
- Pohang Accelerator Laboratory (PAL)
- Pohang 37673
- Republic of Korea
| | - Hyoyoung Lee
- Department of Chemistry
- Sungkyunkwan University
- Suwon 440-746
- Republic of Korea
- Center for Integrated Nanostructure Physics
| | - Jeong Young Park
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Center for Nanomaterials and Chemical Reactions
| |
Collapse
|
9
|
Shin H, Jung WG, Kim DH, Jang JS, Kim YH, Koo WT, Bae J, Park C, Cho SH, Kim BJ, Kim ID. Single-Atom Pt Stabilized on One-Dimensional Nanostructure Support via Carbon Nitride/SnO 2 Heterojunction Trapping. ACS NANO 2020; 14:11394-11405. [PMID: 32833436 DOI: 10.1021/acsnano.0c03687] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catalysis with single-atom catalysts (SACs) exhibits outstanding reactivity and selectivity. However, fabrication of supports for the single atoms with structural versatility remains a challenge to be overcome, for further steps toward catalytic activity augmentation. Here, we demonstrate an effective synthetic approach for a Pt SAC stabilized on a controllable one-dimensional (1D) metal oxide nano-heterostructure support, by trapping the single atoms at heterojunctions of a carbon nitride/SnO2 heterostructure. With the ultrahigh specific surface area (54.29 m2 g-1) of the nanostructure, we obtained maximized catalytic active sites, as well as further catalytic enhancement achieved with the heterojunction between carbon nitride and SnO2. X-ray absorption fine structure analysis and HAADF-STEM analysis reveal a homogeneous atomic dispersion of Pt species between carbon nitride and SnO2 nanograins. This Pt SAC system with the 1D nano-heterostructure support exhibits high sensitivity and selectivity toward detection of formaldehyde gas among state-of-the-art gas sensors. Further ex situ TEM analysis confirms excellent thermal stability and sinter resistance of the heterojunction-immobilized Pt single atoms.
Collapse
Affiliation(s)
- Hamin Shin
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Wan-Gil Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yoon Hwa Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Tae Koo
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaehyeong Bae
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Su-Ho Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bong Joong Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
10
|
Kim TS, Kim J, Song HC, Kim D, Jeong B, Lee J, Shin JW, Ryoo R, Park JY. Catalytic Synergy on PtNi Bimetal Catalysts Driven by Interfacial Intermediate Structures. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taek-Seung Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jeongjin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hee Chan Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Beomgyun Jeong
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Jouhahn Lee
- Research Center for Materials Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Jae Won Shin
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Ryong Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Choi H, Oh S, Park JY. High methane selective Pt cluster catalyst supported on Ga2O3 for CO2 hydrogenation. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Oh S, Ha H, Choi H, Jo C, Cho J, Choi H, Ryoo R, Kim HY, Park JY. Oxygen activation on the interface between Pt nanoparticles and mesoporous defective TiO2 during CO oxidation. J Chem Phys 2019; 151:234716. [DOI: 10.1063/1.5131464] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Sunyoung Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Hanseul Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Changbum Jo
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Jangkeun Cho
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Ryong Ryoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, South Korea
| | - Jeong Young Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
13
|
Solid-supported Pt-catalyzed remote C-H etherification of arylamines: A simple and practical approach for the synthesis of aromatic ethers. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
14
|
Choi H, Oh S, Trung Tran SB, Park JY. Size-controlled model Ni catalysts on Ga2O3 for CO2 hydrogenation to methanol. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Tran SBT, Choi H, Oh S, Park JY. Defective Nb2O5-supported Pt catalysts for CO oxidation: Promoting catalytic activity via oxygen vacancy engineering. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
|