1
|
Bhattacharya A, Samanta D, Shaw M, Shaik MAS, Basu R, Mondal I, Pathak A. Sensitive Detection of Hg 2+ and l-Cysteine through Optical Asymmetry-Tuned Fluorescence Switch Off-On Behavior in N-Doped Chiral Carbon Dot. ACS APPLIED BIO MATERIALS 2025; 8:503-518. [PMID: 39666901 DOI: 10.1021/acsabm.4c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Blue-emissive nitrogen-doped chiral carbon dots (d-NCD230 and l-NCD230) exhibiting antipodal chiroptical activity, synthesized from the thermal pyrolysis of citric acid and d/l-aspartic acid in 1:2 molar ratios, have been explored as chirality-based fluorescent turn-off/on probes for the detection of Hg2+ and l-cysteine (l-Cys). Circular dichroism (CD) spectroscopy revealed that the chiroptical activity originates from a synergy among intrinsic chirality, chiral precursors on the NCD surface, and hybridization of lower energy levels within the embedded chiral chromophore. Quantitative analysis of optical asymmetry using the Kuhn asymmetry factor (g) at the CD signal of 312 nm showed a higher value for d-NCD230 (1.03 × 10-4) compared to l-NCD230 (1.13 × 10-5). Moreover, we have demonstrated chirality transfer and chiral inversion phenomena in d/l-NCDs by preparing carbon dots with different precursor ratios at different temperatures and probing them through CD spectroscopy. The NCDs exhibited selective fluorescence quenching in the presence of Hg2+, demonstrating linearity in the Stern-Volmer plot. Limits of detection (LODs) for Hg2+ were calculated to be 129 and 192 nM for d-NCD230 and l-NCD230, respectively, in the 0-150 μM concentration range. The quenching mechanism involves nonradiative electron transfer due to Hg2+ binding to oxygen-rich functional groups on the d/l-NCD230 surface. The slight variation in LOD values between d-NCD230 and l-NCD230 indicates the negligible effect of the chirality on Hg2+ sensing. Notably, the fluorescence intensity of d/l-NCD230 could be restored upon adding l-cysteine, with d-NCD230 showing a more pronounced enhancement than l-NCD230. This differential response is attributed to a preferential stereoselective interaction arising from the homochirality of d-NCD230/Hg2+ and l-cysteine. These findings demonstrate the potential of chiral nitrogen-doped carbon dots as sensitive and selective probes for Hg2+ and l-cysteine, with implications for environmental monitoring and biological sensing applications.
Collapse
Affiliation(s)
- Angana Bhattacharya
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Dipanjan Samanta
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Manisha Shaw
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Md Abdus Salam Shaik
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rajarshi Basu
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Imran Mondal
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Amita Pathak
- Department of Chemistry, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
2
|
Maria Vitagliano C, Camilli A, Georgian Moldoveanu V, Di Sabato A, Feroci M, Sturabotti E, Scognamiglio V, Leonelli F, Masi A, Vetica F. Selective Interaction of Chiral Carbon Dots with Nucleic Acids: A Promising Nanosensing Platform. Chemistry 2024; 30:e202402787. [PMID: 39269209 DOI: 10.1002/chem.202402787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
Carbon dots (CDs) represent an emerging class of nanomaterials that combine outstanding photoluminescent properties with low toxicity and excellent biocompatibility. These unique features have garnered significant interest for potential applications in sensing as well as nanovectors for bioactive compounds. Within this context, the possibility of synthesizing chiral carbon dots (CCDs) has paved the way for a plethora of bioapplications in their interaction with chiral biomolecules. In this study we report the synthesis and characterization of CCDs with opposite chiralities and their selective interaction with nucleic acids. A systematic study on their interaction with different oligonucleotides (ODNs) using UV-vis, photoluminescence, and circular dichroism analyses highlighted how the chiral surface of the CCDs induces distinct spectroscopic responses in CCDs-ODN conjugates. These findings establish the foundation for innovative applications of CCDs as nanosensors and nanocarriers for nucleic acids. Additionally, the antioxidant properties of CCDs were investigated, highlighting their dual potential as both sensing and preservative nanomaterials for genetic material. Our results suggest significant implications for the development of chiral-specific diagnostic tools, drug delivery systems, and therapeutic agents. Furthermore, these properties open new avenues for the use of CCDs in antibiotic residue detection, fluorescence imaging, and photodynamic therapy.
Collapse
Affiliation(s)
- Chiara Maria Vitagliano
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Alessandro Camilli
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | | | - Antonio Di Sabato
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via Castro Laurenziano, 7, 00161, Rome, Italy
| | - Elisa Sturabotti
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
| | - Viviana Scognamiglio
- Institute of Crystallography, National Research Council, 00015, Montelibretti, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| | - Annalisa Masi
- Institute of Crystallography, National Research Council, 00015, Montelibretti, Italy
| | - Fabrizio Vetica
- Department of Chemistry, Sapienza University of Rome, Piazzc Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
3
|
Long T, Luo H, Li H, Sun J, Wang Y, Zhou J, Chen Y, Xu D. Fe-doping green fluorescent carbon dots via co-electrolysis of chrysoidine G and potassium ferrocyanide for sensitive Cr(VI) detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:124010. [PMID: 38340446 DOI: 10.1016/j.saa.2024.124010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
In this study, we aimed to synthesis of Fe-doping green fluorescent carbon dots (G-CDs) through the co-electrolysis of chrysoidine G and potassium ferrocyanide for Cr(VI) detection. The use of potassium ferrocyanide improves the quantum yield and sensing performance of G-CDs toward Cr(VI). The G-CDs have a maximum excitation wavelength of 308 nm and an emission wavelength of 510 nm. Comprehensive analyses including Raman, FT-IR, and XPS provided insights into the chemical structure and composition of the G-CDs. Under optimal conditions, G-CDs demonstrated concentration-dependent quenching upon interaction with Cr(VI). A linear relationship within the range of 0.25-100 µM was established with a calibration equation of ΔF/F0 = 0.005 + 0.015CCr(VI), yielding an R2 value of 0.996 and a limit of detection of 0.15 μM. The applicability of the G-CDs method was demonstrated by successful Cr(VI) detection in water samples with recovery rates ranging from 98.8 % to 100.1 % and relative standard deviation within 3.0 %. The fluorescence lifetime and Zeta potential measurements confirmed that the mechanism was via a static quenching process, while redox reaction, nanoparticle aggregation, and surface charge variation also played significant roles.
Collapse
Affiliation(s)
- Tiantian Long
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China; College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, China
| | - Hongmei Luo
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Hongchen Li
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Jingbo Sun
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China
| | - Yang Wang
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570000, China
| | - Jiaquan Zhou
- Department of Urology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan 570000, China
| | - Yi Chen
- Hunan Intellijoy Biotechnology Co., Ltd., Changsha, Hunan 410125, China
| | - Dong Xu
- National Engineering Laboratory for Rice and By-products Further Processing, College of Food Science and Engineering, Central South University of Forestry & Technology, Changsha, 410004, China.
| |
Collapse
|
4
|
Li S, Pei H, He S, Liang H, Guo R, Liu N, Mo Z. Chiral Carbon Dots and Chiral Carbon Dots with Circularly Polarized Luminescence: Synthesis, Mechanistic Investigation and Applications. Chem Asian J 2023; 18:e202300770. [PMID: 37819766 DOI: 10.1002/asia.202300770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Chiral carbon dots (CCDs) can be widely used in various fields such as chiral recognition, chiral catalysis and biomedicine because of their unique optical properties, low toxicity and good biocompatibility. In addition, CCDs with circularly polarized luminescence (CPL) can be synthesized, thus broadening the prospects of CCDs applications. Since the research on CCDs is still in its infancy, this paper reviews the chiral origin, formation mechanism, chiral evolution, synthesis and emerging applications of CCDs, with a special focus on CCDs with CPL activity. It is hoped that it will provide some reference to solve the current problems faced by CCDs. Finally, the opportunities and challenges of the current research on CCDs are described, and their future development trends have also been prospected.
Collapse
Affiliation(s)
- Shijing Li
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hebing Pei
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Simin He
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Hao Liang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
5
|
Chen X, Yu M, Li P, Xu C, Zhang S, Wang Y, Xing X. Recent Progress on Chiral Carbon Dots: Synthetic Strategies and Biomedical Applications. ACS Biomater Sci Eng 2023; 9:5548-5566. [PMID: 37735749 DOI: 10.1021/acsbiomaterials.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The discovery of chiral carbon dots (Ch-CDs) has opened up an exciting new research direction in the field of carbon dots. It not only retains the chirality of the precursor and exhibits highly symmetric chiral optical properties but also has properties such as chemical stability, antibacterial and antitumor properties, and good biocompatibility of carbon dots. Based on these advantages, the application of Ch-CDs in the biomedical field has attracted significant interest among researchers. However, a comprehensive review of the selection of precursors for Ch-CDs, preparation methods, and applications in biomedical fields is still lacking. Here, we summarize their precursor selection and preparation methods based on recent reports on Ch-CDs and provide the first comprehensive review for specific applications in biomedical engineering, such as biosensing, bioimaging, drug carriers, antibacterial and antibiofilm, and enzyme activity modulation. Finally, we discuss application prospects and challenges that need to be overcome. We hope this review will provide valuable guidance for researchers to prepare novel Ch-CDs and facilitate their application in biomedical engineering.
Collapse
Affiliation(s)
- Xueli Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Meizhe Yu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peili Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu 233000, China
| | - Chunning Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shiyin Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanglei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaodong Xing
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Yan X, Zhao H, Zhang K, Zhang Z, Chen Y, Feng L. Chiral Carbon Dots: Synthesis and Applications in Circularly Polarized Luminescence, Biosensing and Biology. Chempluschem 2023; 88:e202200428. [PMID: 36680303 DOI: 10.1002/cplu.202200428] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Chiral carbon dots (CDs) are a novel luminescent zero-dimensional carbon-based nanomaterial with chirality. They not only have the advantages of good biocompatibility, multi-color-emission, easy functionalization, but also exhibits highly symmetrical chiral optical characteristics, which broadens their applicability to enantioselectivity of some chiral amino acids like cysteine and lysine, asymmetric catalysis as well as biomedicine in gene expression and antibiosis. In addition, the exploration of the excited state chirality of CDs has developed its excellent circularly polarized luminescence (CPL) properties, opening up a new application scenario like recognition of chiral light sources and anti-counterfeit printing with information encryption. This review mainly focuses on the mature synthesis approaches of chiral CDs, including chiral ligand method and supramolecular self-assembly method, then we consider emerging applications of chiral CDs in CPL, biosensing and biological effect. Finally, we concluded with a perspective on the potential challenges and future opportunities of such fascinating chiral CDs.
Collapse
Affiliation(s)
- Xuetao Yan
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Huijuan Zhao
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Ke Zhang
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
- QianWeichang College, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Zhiwei Zhang
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Yingying Chen
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Lingyan Feng
- Materials Genome Institute and Shanghai Engineering Research Center of Organ Repair, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| |
Collapse
|
7
|
Fabrication of polyaspartic acid surface-modified highly fluorescent carbon quantum dot nanoprobe for sensing of reduced glutathione in real sample. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Deka MJ. Recent advances in fluorescent 0D carbon nanomaterials as artificial nanoenzymes for optical sensing applications. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
de Boëver R, Town JR, Li X, Claverie JP. Carbon Dots for Carbon Dummies: The Quantum and The Molecular Questions Among Some Others. Chemistry 2022; 28:e202200748. [DOI: 10.1002/chem.202200748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Raphaël de Boëver
- Department of Chemistry Université de Sherbrooke 2500 Boulevard de l'Université, Sherbrooke Québec J1 K 2R1 Canada
- Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jason R. Town
- Department of Chemistry Université de Sherbrooke 2500 Boulevard de l'Université, Sherbrooke Québec J1 K 2R1 Canada
| | - Xu Li
- Institute of Materials Research and Engineering and Institute of Sustainability for Chemicals, Energy and Environment Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis, #08-03 Singapore 138634 Singapore
| | - Jerome P. Claverie
- Department of Chemistry Université de Sherbrooke 2500 Boulevard de l'Université, Sherbrooke Québec J1 K 2R1 Canada
| |
Collapse
|
10
|
Zhang X, Xu Y, Valenzuela C, Zhang X, Wang L, Feng W, Li Q. Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence. LIGHT, SCIENCE & APPLICATIONS 2022; 11:223. [PMID: 35835737 PMCID: PMC9283403 DOI: 10.1038/s41377-022-00913-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/14/2022] [Accepted: 06/23/2022] [Indexed: 05/15/2023]
Abstract
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
Collapse
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Yiyi Xu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China
| | - Xinfang Zhang
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, 300350, Tianjin, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, 211189, Nanjing, China.
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
11
|
Cong S, Jiang Z, Zhang R, Lv H, Guo J, Zhang L, Lu X. Polymer Carbon Nanodots: A Novel Electrochemiluminophore for Dual Mode Detection of Ferric Ions. Anal Chem 2022; 94:6695-6702. [PMID: 35483019 DOI: 10.1021/acs.analchem.1c05408] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of simple and effective dual-mode analytical methods plays crucial regulatory roles in the discrimination of relevant target species, because of their built-in cross reference correction and high accuracy. In this work, a novel polymer carbon nanodots (PCNDs) prepared from a facile one-pot hydrothermal procedure using readily available l-tryptophan and l-phenylalanine as precursors, showed excellent aqueous solubility and blue fluorescence property with a high quantum yield of 29%. Moreover, the PCNDs was demonstrated to be a robust luminophore with electrochemiluminescence (ECL) efficiency of 43% was achieved by using K2S2O8 as a coreactant. The spooling ECL spectroscopy was employed to take insight into excited states responsible for the potential-dependent ECL emissions. Most importantly, when introduced into construction of the fluorescence and ECL dual mode sensing platform, for the first time, the PCNDs displayed prominent performance for the detection of ferric ions (Fe3+). The ferric ions could be quantified ranging from micromolar to millimolar with a detection limit of 0.22 and 5.3 μM, respectively. Such a dual-functional sensing platform also exhibits excellent selectivity, reproducibility and stability. Results from this work indicate that PCNDs showing great promise as a bright luminophore for the fabrication of low-cost, high-performance dual-signal readout platforms for ferric ions determination.
Collapse
Affiliation(s)
- Shanshan Cong
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ziyu Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Huiping Lv
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Jinna Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
12
|
Subedi S, Rella AK, Trung LG, Kumar V, Kang SW. Electrically Switchable Anisometric Carbon Quantum Dots Exhibiting Linearly Polarized Photoluminescence: Syntheses, Anisotropic Properties, and Facile Control of Uniaxial Orientation. ACS NANO 2022; 16:6480-6492. [PMID: 35343230 DOI: 10.1021/acsnano.2c00758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbon quantum dots (CQDs) have been extensively explored in diverse fields because of their exceptional features. The nanometric particles with photoluminescence (PL) benefit various optical and photonic applications. However, the majority of previous reports have mainly focused on either unpolarized or circular-polarized (CP) PL. Linearly polarized (LP) emission of CQDs is limited mainly because of their isometric shape and difficulties in macroscopic orientation control. Herein, we report syntheses of anisometric CQDs and facile control of the uniaxial orientation on a macroscopic scale, which results in linearly polarized photoluminescence (LP-PL). The anisometric CQDs are synthesized from rigid-rod-shaped precursors and evenly dispersed in the rod-like liquid crystal (LC) host. As-synthesized CQDs exhibit a PL quantum yield as high as 35% in chloroform. In addition to uniform alignment, facile directional switching of the elongated CQD is established by employing the electrical responsiveness of the CQD and host LC. Therefore, the dichroic photophysical properties of anisometric CQDs have been beneficially adopted for fabrications of polarization-sensitive and electrically switchable PL devices. Also, anisometric CQDs are embedded in polymer films with molecular orientational patterns and clearly recognized by LP-PL.
Collapse
Affiliation(s)
- Subhangi Subedi
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, 44613, Nepal
| | - Avinash K Rella
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Le Gia Trung
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Vineet Kumar
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Shin-Woong Kang
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
13
|
Das A, Kundelev EV, Vedernikova AA, Cherevkov SA, Danilov DV, Koroleva AV, Zhizhin EV, Tsypkin AN, Litvin AP, Baranov AV, Fedorov AV, Ushakova EV, Rogach AL. Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. LIGHT, SCIENCE & APPLICATIONS 2022; 11:92. [PMID: 35410998 PMCID: PMC9001697 DOI: 10.1038/s41377-022-00778-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/23/2022] [Accepted: 03/27/2022] [Indexed: 06/04/2023]
Abstract
Carbon dots (CDs) are light-emitting nanoparticles that show great promise for applications in biology and medicine due to the ease of fabrication, biocompatibility, and attractive optical properties. Optical chirality, on the other hand, is an intrinsic feature inherent in many objects in nature, and it can play an important role in the formation of artificial complexes based on CDs that are implemented for enantiomer recognition, site-specific bonding, etc. We employed a one-step hydrothermal synthesis to produce chiral CDs from the commonly used precursors citric acid and ethylenediamine together with a set of different chiral precursors, namely, L-isomers of cysteine, glutathione, phenylglycine, and tryptophan. The resulting CDs consisted of O,N-doped (and also S-doped, in some cases) carbonized cores with surfaces rich in amide and hydroxyl groups; they exhibited high photoluminescence quantum yields reaching 57%, chiral optical signals in the UV and visible spectral regions, and two-photon absorption. Chiral signals of CDs were rather complex and originated from a combination of the chiral precursors attached to the CD surface, hybridization of lower-energy levels of chiral chromophores formed within CDs, and intrinsic chirality of the CD cores. Using DFT analysis, we showed how incorporation of the chiral precursors at the optical centers induced a strong response in their circular dichroism spectra. The optical characteristics of these CDs, which can easily be dispersed in solvents of different polarities, remained stable during pH changes in the environment and after UV exposure for more than 400 min, which opens a wide range of bio-applications.
Collapse
Affiliation(s)
- Ananya Das
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia.
| | - Evgeny V Kundelev
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Anna A Vedernikova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Sergei A Cherevkov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Denis V Danilov
- Research Park, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | | | - Evgeniy V Zhizhin
- Research Park, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton N Tsypkin
- Laboratory of Femtosecond Optics and Femtotechnology, ITMO University, Saint Petersburg, 197101, Russia
| | - Aleksandr P Litvin
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
- Laboratory of Quantum Processes and Measurements, ITMO University, Saint Petersburg, 197101, Russia
| | - Alexander V Baranov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Anatoly V Fedorov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia.
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
14
|
Döring A, Ushakova E, Rogach AL. Chiral carbon dots: synthesis, optical properties, and emerging applications. LIGHT, SCIENCE & APPLICATIONS 2022; 11:75. [PMID: 35351850 PMCID: PMC8964749 DOI: 10.1038/s41377-022-00764-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 05/05/2023]
Abstract
Carbon dots are luminescent carbonaceous nanoparticles that can be endowed with chiral properties, making them particularly interesting for biomedical applications due to their low cytotoxicity and facile synthesis. In recent years, synthetic efforts leading to chiral carbon dots with other attractive optical properties such as two-photon absorption and circularly polarized light emission have flourished. We start this review by introducing examples of molecular chirality and its origins and providing a summary of chiroptical spectroscopy used for its characterization. Then approaches used to induce chirality in nanomaterials are reviewed. In the main part of this review we focus on chiral carbon dots, introducing their fabrication techniques such as bottom-up and top-down chemical syntheses, their morphology, and optical/chiroptical properties. We then consider emerging applications of chiral carbon dots in sensing, bioimaging, and catalysis, and conclude this review with a summary and future challenges.
Collapse
Affiliation(s)
- Aaron Döring
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Elena Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101, Russia
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, 518057, Shenzhen, China.
| |
Collapse
|
15
|
Ma J, Huang L, Zhou B, Yao L. Construction and Catalysis Advances of Inorganic Chiral Nanostructures. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Das S, Gogoi S, Singh NK, Goswami P. Analytical application of H
2
O
2
-induced chiroptical graphitic carbon dots. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac3389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Carbon dots (CDs) have emerged as efficient peroxidase mimics in recent years. However, to further increase its efficiency as peroxidase-mimic, it is also desirable to understand the modification of CD’s geometry during the catalytic reaction. Herein, we focused on the change in material property of the CDs upon their reaction with H2O2 during the peroxidase reaction. D-(+)-glucose was transformed into chiroptical CDs bearing peroxidase-like activity and can be used to detect H2O2 with a limit of detection of 630 μM. The addition of H2O2 to the CDs resulted in its increased molecular orderliness leading to the introduction of polycrystallinity without affecting its peroxidase-like activity.
Collapse
|
17
|
Ramana LN, Dinh LNM, Agarwal V. Influence of surface charge of graphene quantum dots on their uptake and clearance in melanoma cells. NANOSCALE ADVANCES 2021; 3:3513-3521. [PMID: 36133718 PMCID: PMC9419262 DOI: 10.1039/d0na00935k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/15/2021] [Indexed: 06/13/2023]
Abstract
Graphene quantum dots (GQDs) continue to draw interest in biomedical applications. However, their efficacy gets compromised due to their rapid clearance from the body. On one hand, rapid clearance is desired and considered advantageous in terms of their cytocompatibility, but on the other hand, it is a major limitation for their prolonged use as imaging and therapeutic probes. The uptake and clearance of GQDs have been described in vivo, however, their clearance in vitro is still not understood, one of the main reasons being that their uptake and clearance are a cell type-dependent phenomena. Studies on other types of quantum dots revealed the importance of surface charge in their uptake and retention in different cell types. However, the role of surface chemistry in GQD uptake and clearance has not been described previously. Here, we studied the influence of surface charge on GQDs (anionic and cationic) on their uptake and clearance in melanoma cells. Both cationic and anionic GQDs were synthesized using a hydrothermal method to have a relatively consistent size with an aim to study the role of surface charge in their uptake and clearance in isolation by avoiding size-dependent uptake bias. Both GQDs exhibited excellent biocompatibility with cell viability over 90% even at a high concentration of 200 μg mL-1. Using confocal microscopy and flow cytometry, we observed significantly faster and higher uptake of cationic GQDs compared to anionic GQDs. Consequently, relatively rapid clearance was observed in cells treated with anionic GQDs compared to those treated with cationic GQDs, highlighting the role of surface charge on GQDs in their uptake and clearance. Raman analysis of the cleared exocytosed GQDs revealed no sign of biodegradation of either type.
Collapse
Affiliation(s)
- Lakshmi Narashimhan Ramana
- Multidisciplinary Clinical and Translational Research Group (MCTR), Translational Health Science and Technology Institute (THSTI) Faridabad Haryana 121001 India
| | - Le N M Dinh
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| | - Vipul Agarwal
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
18
|
Das A, Arefina IA, Danilov DV, Koroleva AV, Zhizhin EV, Parfenov PS, Kuznetsova VA, Ismagilov AO, Litvin AP, Fedorov AV, Ushakova EV, Rogach AL. Chiral carbon dots based on L/D-cysteine produced via room temperature surface modification and one-pot carbonization. NANOSCALE 2021; 13:8058-8066. [PMID: 33956931 DOI: 10.1039/d1nr01693h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Since chirality is one of the phenomena often occurring in nature, optically active chiral compounds are important for applications in the fields of biology, pharmacology, and medicine. With this in mind, chiral carbon dots (CDs), which are eco-friendly and easy-to-obtain light-emissive nanoparticles, offer great potential for sensing, bioimaging, enantioselective synthesis, and development of emitters of circularly polarized light. Herein, chiral CDs have been produced via two synthetic approaches using a chiral amino acid precursor l/d-cysteine: (i) surface modification treatment of achiral CDs at room temperature and (ii) one-pot carbonization in the presence of chiral precursor. The chiral signal in the absorption spectra of synthesized CDs originates not only from the chiral precursor but from the optical transitions attributed to the core and surface states of CDs. The use of chiral amino acid molecules in the CD synthesis through carbonization results in a substantial (up to 8 times) increase in their emission quantum yield. Moreover, the synthesized CDs show two-photon absorption which is an attractive feature for their potential bioimaging and sensing applications.
Collapse
Affiliation(s)
- Ananya Das
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Irina A Arefina
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Denis V Danilov
- Saint Petersburg State University, Saint Petersburg, 199034 Russia
| | | | | | - Peter S Parfenov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Vera A Kuznetsova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Azat O Ismagilov
- Laboratory of Quantum Processes and Measurements, ITMO University, Saint Petersburg, 197101 Russia
| | - Aleksandr P Litvin
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia. and Laboratory of Quantum Processes and Measurements, ITMO University, Saint Petersburg, 197101 Russia
| | - Anatoly V Fedorov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China and Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
19
|
Rana S, Kherb J. Fluorimetric detection of distinct lyotropic anion interactions on nanoscopic surfaces. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Victoria F, Manioudakis J, Zaroubi L, Findlay B, Naccache R. Tuning residual chirality in carbon dots with anti-microbial properties. RSC Adv 2020; 10:32202-32210. [PMID: 35518167 PMCID: PMC9056545 DOI: 10.1039/d0ra05208f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/24/2020] [Indexed: 11/29/2022] Open
Abstract
Chirality remains a critical consideration in drug development and design, as well as in applications of enantioselective recognition and sensing. However, the preparation of chiral nanomaterials requires extensive post synthetic modifications with a chiral agent, coupled with extensive purification. This limits the use and application of chiral nanomaterials. Herein, we report a facile, one-step microwave-assisted synthesis of chiral carbon dots through the reaction of l- and d-cysteine amino acid precursors and citric acid. We modulated the synthetic parameters to preserve and tune the residual chiral properties of the dots and demonstrate that the reaction conditions play a critical role in dictating the chiral behaviour of the dots. Finally, in a proof of concept application we demonstrated that the synthesized carbon dots, particularly d-carbon dots inhibit bacterial growth at a lower concentration than l-carbon dots. By varying bacterial strains and chirality of the carbon dots, concentrations ranging from 0.25-4 mg mL-1 of the nanoparticles were required to inhibit microbial growth. The ability to preserve and tune chirality during synthesis can open up novel avenues and research directions for the development of enantioselective materials, as well as antibacterial films and surfaces.
Collapse
Affiliation(s)
- Florence Victoria
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
- Centre for NanoScience Research, Concordia University Montreal QC Canada H4B 1R6
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University Montreal QC H4B 1R6 Canada
| | - John Manioudakis
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
- Centre for NanoScience Research, Concordia University Montreal QC Canada H4B 1R6
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University Montreal QC H4B 1R6 Canada
| | - Liana Zaroubi
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
| | - Brandon Findlay
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
| | - Rafik Naccache
- Department of Chemistry and Biochemistry, Concordia University Montreal QC Canada H4B 1R6
- Centre for NanoScience Research, Concordia University Montreal QC Canada H4B 1R6
- Quebec Centre for Advanced Materials, Department of Chemistry and Biochemistry, Concordia University Montreal QC H4B 1R6 Canada
| |
Collapse
|
21
|
Xia C, Zhu S, Feng T, Yang M, Yang B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901316. [PMID: 31832313 PMCID: PMC6891914 DOI: 10.1002/advs.201901316] [Citation(s) in RCA: 506] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Indexed: 05/02/2023]
Abstract
Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.
Collapse
Affiliation(s)
- Chunlei Xia
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Shoujun Zhu
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of Health35 Convent DrBethesda20892MDUSA
| | - Tanglue Feng
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of ChemistryJilin UniversityChangchun130012P. R. China
- State Key Laboratory of Applied OpticsChangchun Institute of OpticsFine Mechanics and PhysicsChinese Academy of SciencesChangchun130033P. R. China
| |
Collapse
|
22
|
Fluorescent N/Al Co-Doped Carbon Dots from Cellulose Biomass for Sensitive Detection of Manganese (VII). J Fluoresc 2019; 29:1291-1300. [PMID: 31707509 DOI: 10.1007/s10895-019-02452-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Development of metallic and nonmetallic heteroatom doped carbon dots have gained attention due to their enhanced physicochemical and photoluminescence properties. In this study, a facile one pot hydrothermal carbonisation approach was taken to synthesise nitrogen, aluminum co-doped carbon dots (N/Al-CDs) with a photoluminescence quantum yield of 28.7%. Durian shell, a cellulose biomass waste, was used as the primary carbon source and compared to previously reported cellulose based carbon dots, this study presents one of the highest quantum yields. The structural and fluorescent properties of the synthesised N/Al-CDs were characterized through X-ray photoelectron spectroscopy (XPS), fluorescence spectra, and Fourier transform infrared spectroscopy (FTIR). The maximum emission was at 415 nm upon excitation at 345 nm. The synthesised N/Al-CDs were resistant to photobleaching and highly photostable within the pH, ionic strength and temperature variations investigated. The transmission electron microscopy (TEM) images showed particles were quasi-spherical and well dispersed with an average diameter of 10.0 nm. Further, the N/Al-CDs was developed as a fluorescence sensor for highly selective and sensitive detection of Mn (VII) ions. A linear relationship was developed over a concentration range of 0-100 μM while the limit of detection was 46.8 nM. Application of the sensor for detection of Manganese (VII) to two real water samples showed relative standard deviation was less than 3.9% and 1.3%, respectively.
Collapse
|
23
|
Deka MJ, Dutta P, Sarma S, Medhi OK, Talukdar N, Chowdhury D. Carbon dots derived from water hyacinth and their application as a sensor for pretilachlor. Heliyon 2019; 5:e01985. [PMID: 31338457 PMCID: PMC6626484 DOI: 10.1016/j.heliyon.2019.e01985] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/09/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022] Open
Abstract
Recently,carbon-based nanomaterials have been attracted much interest among the scientific community due to its extraordinary properties and applications. Mostly the fluorescent carbon nanomaterials are prepared from commercially available precursors. In this work, develop a new strategy for producing carbon nanoparticles (carbon dots) using phosphoric acid as an activating agent from water hyacinth present in Assam, India. These carbon nanoparticles show green fluorescence under UV light, and the sizes are found below 10 nm. These carbon dots are applied as a fluorescence sensor for detecting the herbicide (pretilachlor). The developed PL sensor is exclusively selective and sensitive for detection of this herbicide, and the limit of detection is found to be 2.9 μM.This sensor is also tested for real samples like soil contaminated with pretilachlor.
Collapse
Affiliation(s)
- Manash Jyoti Deka
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 7810 35, Assam, India
| | - Parlie Dutta
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 7810 35, Assam, India
| | - Sewaljyoti Sarma
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 7810 35, Assam, India
| | - Okhil Kumar Medhi
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 7810 35, Assam, India
| | - N.C. Talukdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 7810 35, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 7810 35, Assam, India
| |
Collapse
|
24
|
Shukla D, Pandey FP, Kumari P, Basu N, Tiwari MK, Lahiri J, Kharwar RN, Parmar AS. Label‐Free Fluorometric Detection of Adulterant Malachite Green Using Carbon Dots Derived from the Medicinal Plant Source
Ocimum tenuiflorum. ChemistrySelect 2019. [DOI: 10.1002/slct.201900530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Devyani Shukla
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| | - Fanindra Pati Pandey
- Department of PhysicsInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Puja Kumari
- Department of BotanyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Nilanjan Basu
- Department of PhysicsUniversity of Hyderabad, Gachibowli, Hyderabad Telangana 500046, India
| | - Manish K. Tiwari
- Department of PhysicsInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Jayeeta Lahiri
- Department of PhysicsUniversity of Hyderabad, Gachibowli, Hyderabad Telangana 500046, India
| | - Ravindra N. Kharwar
- Department of BotanyInstitute of ScienceBanaras Hindu University Varanasi Uttar Pradesh 221005 India
| | - Avanish S. Parmar
- Department of PhysicsIndian Institute of Technology (Banaras Hindu University), Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
25
|
|
26
|
l-tryptophan adsorption differentially changes the optical behaviour of pseudo-enantiomeric cysteine-functionalized quantum dots: Towards chiral fluorescent biosensors. SENSING AND BIO-SENSING RESEARCH 2019. [DOI: 10.1016/j.sbsr.2018.100251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
27
|
Wei Y, Chen L, Wang J, Liu X, Yang Y, Yu S. Investigation on the chirality mechanism of chiral carbon quantum dots derived from tryptophan. RSC Adv 2019; 9:3208-3214. [PMID: 35518943 PMCID: PMC9059925 DOI: 10.1039/c8ra09649j] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/12/2019] [Indexed: 01/15/2023] Open
Abstract
Chiral carbon quantum dots (CQDs) with chirality, fluorescence and biocompatibility were synthesized by a one-step method with l-/d-tryptophan (l-/d-Trp), as both carbon source and chiral source. Levogyration-/dextrorotation-CQDs (l-/d-CQDs) were characterized by transmission electron microscopy, Fourier transform infrared spectrometry, ultraviolet-visible absorption, excitation and emission spectrometry and circular dichroism (CD) spectrometry. Results show that l-CQDs and d-CQDs present similar spherical morphology, functional groups and optical properties. The CD signal, around 220, 240 and 290 nm are opposite and symmetric, which conclusively demonstrates that l-CQDs and d-CQDs are enantiomers. Besides the CD signal around 220 nm from the inheritance of l-/d-Trp, two new chiral signals around 240 and 290 nm were induced by chiral environment. To clarify the chirality mechanism of chiral CQDs prepared by l-/d-tryptophan, the chirality origin in CQD structure was revealed.![]()
Collapse
Affiliation(s)
- Yingying Wei
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
- Key Laboratory of Interface Science and Engineering in Advanced Materials
| | - Lin Chen
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| | - Junli Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| | - Xuguang Liu
- College of Materials Science and Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
- Key Laboratory of Interface Science and Engineering in Advanced Materials
| | - Yongzhen Yang
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| | - Shiping Yu
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Ministry of Education
- Taiyuan 030024
- China
| |
Collapse
|
28
|
Xiao L, Sun H. Novel properties and applications of carbon nanodots. NANOSCALE HORIZONS 2018; 3:565-597. [PMID: 32254112 DOI: 10.1039/c8nh00106e] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In the most recent decade, carbon dots have drawn intensive attention and triggered substantial investigation. Carbon dots manifest superior merits, including excellent biocompatibility both in vitro and in vivo, resistance to photobleaching, easy surface functionalization and bio-conjugation, outstanding colloidal stability, eco-friendly synthesis, and low cost. All of these endow them with the great potential to replace conventional unsatisfactory fluorescent heavy metal-containing semiconductor quantum dots or organic dyes. Even though the understanding of their photoluminescence mechanism is still controversial, carbon dots have already exhibited many versatile applications. In this article, we summarize and review the recent progress achieved in the field of carbon dots, and provide a comprehensive summary and discussion on their synthesis methods and emission mechanisms. We also present the applications of carbon dots in bioimaging, drug delivery, microfluidics, light emitting diode (LED), sensing, logic gates, and chiral photonics, etc. Some unaddressed issues, challenges, and future prospects of carbon dots are also discussed. We envision that carbon dots will eventually have great commercial utilization and will become a strong competitor to some currently used fluorescent materials. It is our hope that this review will provide insights into both the fundamental research and practical applications of carbon dots.
Collapse
Affiliation(s)
- Lian Xiao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | |
Collapse
|
29
|
Design principles of chiral carbon nanodots help convey chirality from molecular to nanoscale level. Nat Commun 2018; 9:3442. [PMID: 30143608 PMCID: PMC6109168 DOI: 10.1038/s41467-018-05561-2] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023] Open
Abstract
The chirality of (nano)structures is paramount in many phenomena, including biological processes, self-assembly, enantioselective reactions, and light or electron spin polarization. In the quest for new chiral materials, metallo-organic hybrids have been attractive candidates for exploiting the aforementioned scientific fields. Here, we show that chiral carbon nanoparticles, called carbon nanodots, can be readily prepared using hydrothermal microwave-assisted synthesis and easily purified. These particles, with a mean particle size around 3 nm, are highly soluble in water and display mirror-image profile both in the UV–Vis and in the infrared regions, as detected by electronic and vibrational circular dichroism, respectively. Finally, the nanoparticles are used as templates for the formation of chiral supramolecular porphyrin assemblies, showing that it is possible to use and transfer the chiral information. This simple (and effective) methodology opens up exciting opportunities for developing a variety of chiral composite materials and applications. A promising and efficient route to chiral materials involves the transfer of chirality across length scales. Here, the authors use chiral molecular precursors to synthesize chiral carbon nanodots, which in turn can template the formation of chiral supramolecular assemblies.
Collapse
|